Intelligent Localization of a High-Speed Train Using LSSVM and the Online Sparse Optimization Approach

For a high-speed train (HST), quick and accurate localization of its position is crucial to safe and effective operation of the HST. In this paper, we develop a mathematical localization model by analyzing the location report created by the HST. Then, we apply two sparse optimization algorithms, i.e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 18; H. 8; S. 2071 - 2084
Hauptverfasser: Cheng, Ruijun, Song, Yongduan, Chen, Dewang, Chen, Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For a high-speed train (HST), quick and accurate localization of its position is crucial to safe and effective operation of the HST. In this paper, we develop a mathematical localization model by analyzing the location report created by the HST. Then, we apply two sparse optimization algorithms, i.e., iterative pruning error minimization (IPEM) and L 0 -norm minimization algorithms, to improve the sparsity of both least squares support vector machine (LSSVM) and weighted LSSVM models. Furthermore, in order to enhance the adaptability and real-time performance of established localization model, four online sparse learning algorithms LSSVM-online, IPEM-online, L 0 -norm-online, and hybrid-online are developed to sparsify the training data set and update parameters of the LSSVM model online. Finally, the field data of the Beijing-Shanghai highspeed railway (BS_HSR) is used to test the performance of the established localization models. The proposed method overcomes the problem of memory constraints and high computational costs resulting in highly sparse reductions to the LSSVM models. Experiments on real-world data sets from the BS_HSR illustrate that these methods achieve sparse models and increase the realtime performance in online updating process on the premise of reducing the location error. For the rapid convergence of proposed online sparse algorithms, the localization model can be updated when the HST passes through the balise every time.
AbstractList For a high-speed train (HST), quick and accurate localization of its position is crucial to safe and effective operation of the HST. In this paper, we develop a mathematical localization model by analyzing the location report created by the HST. Then, we apply two sparse optimization algorithms, i.e., iterative pruning error minimization (IPEM) and [Formula Omitted]-norm minimization algorithms, to improve the sparsity of both least squares support vector machine (LSSVM) and weighted LSSVM models. Furthermore, in order to enhance the adaptability and real-time performance of established localization model, four online sparse learning algorithms LSSVM-online, IPEM-online, [Formula Omitted]-norm-online, and hybrid-online are developed to sparsify the training data set and update parameters of the LSSVM model online. Finally, the field data of the Beijing–Shanghai high-speed railway (BS_HSR) is used to test the performance of the established localization models. The proposed method overcomes the problem of memory constraints and high computational costs resulting in highly sparse reductions to the LSSVM models. Experiments on real-world data sets from the BS_HSR illustrate that these methods achieve sparse models and increase the real-time performance in online updating process on the premise of reducing the location error. For the rapid convergence of proposed online sparse algorithms, the localization model can be updated when the HST passes through the balise every time.
For a high-speed train (HST), quick and accurate localization of its position is crucial to safe and effective operation of the HST. In this paper, we develop a mathematical localization model by analyzing the location report created by the HST. Then, we apply two sparse optimization algorithms, i.e., iterative pruning error minimization (IPEM) and L 0 -norm minimization algorithms, to improve the sparsity of both least squares support vector machine (LSSVM) and weighted LSSVM models. Furthermore, in order to enhance the adaptability and real-time performance of established localization model, four online sparse learning algorithms LSSVM-online, IPEM-online, L 0 -norm-online, and hybrid-online are developed to sparsify the training data set and update parameters of the LSSVM model online. Finally, the field data of the Beijing-Shanghai highspeed railway (BS_HSR) is used to test the performance of the established localization models. The proposed method overcomes the problem of memory constraints and high computational costs resulting in highly sparse reductions to the LSSVM models. Experiments on real-world data sets from the BS_HSR illustrate that these methods achieve sparse models and increase the realtime performance in online updating process on the premise of reducing the location error. For the rapid convergence of proposed online sparse algorithms, the localization model can be updated when the HST passes through the balise every time.
Author Ruijun Cheng
Dewang Chen
Long Chen
Yongduan Song
Author_xml – sequence: 1
  givenname: Ruijun
  orcidid: 0000-0003-0184-5446
  surname: Cheng
  fullname: Cheng, Ruijun
– sequence: 2
  givenname: Yongduan
  surname: Song
  fullname: Song, Yongduan
– sequence: 3
  givenname: Dewang
  surname: Chen
  fullname: Chen, Dewang
– sequence: 4
  givenname: Long
  surname: Chen
  fullname: Chen, Long
BookMark eNp9UD1PwzAUtFCRKIUfgFgsMafYsR3HY1UBrVTUISlr5DhO6yp1QuwO8OtxaGFgYHofunt3767ByLZWA3CH0RRjJB7zZZ5NY4STaZwQQii9AGPMWBqhsBsNfUwjgRi6AtfO7cOWMozHoF5ar5vGbLX1cNUq2ZhP6U1rYVtDCRdmu4uyTusK5r00Fm6csVu4yrK3VyhtBf1Ow7VtjNUw62TvwtR5c_g5Muu6vpVqdwMua9k4fXuuE7B5fsrni2i1flnOZ6tIxYL4qExKLjCvKYkVERXXopQUKYFqxqSoSZ1UKeKp1jhFjFZKhjeSUlWUlgmKWUUm4OF0N8i-H7Xzxb499jZIFljECRec4Tig-Aml-ta5XteFMv7bsA9PNgVGxRBqMYRaDKEW51ADE_9hdr05yP7jX879iWO01r94ngYrlJMvPtqEOQ
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_iswa_2022_200087
crossref_primary_10_3390_rs16050809
crossref_primary_10_1016_j_ins_2020_10_018
crossref_primary_10_1109_TITS_2023_3332348
crossref_primary_10_23919_JSEE_2023_000103
crossref_primary_10_1016_j_future_2018_03_041
crossref_primary_10_1016_j_jfranklin_2023_06_029
crossref_primary_10_1109_TITS_2023_3305074
crossref_primary_10_1109_LRA_2019_2897169
crossref_primary_10_1109_LRA_2022_3190093
crossref_primary_10_1109_TITS_2023_3344468
crossref_primary_10_3390_s25154637
crossref_primary_10_1109_TITS_2024_3513717
crossref_primary_10_1109_JSEN_2025_3531643
crossref_primary_10_1109_TITS_2018_2878442
crossref_primary_10_1109_TIM_2018_2878073
crossref_primary_10_3390_e24030402
crossref_primary_10_1109_TCYB_2019_2915191
crossref_primary_10_1109_TETCI_2023_3349183
crossref_primary_10_1016_j_cie_2018_03_022
crossref_primary_10_3390_app14041552
Cites_doi 10.1016/j.asoc.2015.07.027
10.1016/j.ress.2015.09.014
10.1016/j.engappai.2016.10.002
10.1016/j.eswa.2011.08.002
10.1016/j.ress.2015.02.008
10.1016/j.asoc.2013.04.020
10.1109/TNN.2005.852239
10.3390/s131217130
10.1016/j.asoc.2009.08.025
10.1023/A:1009715923555
10.1016/S0925-2312(01)00644-0
10.1109/TITS.2013.2265171
10.1007/978-3-540-30499-9_194
10.1016/j.asoc.2015.01.017
10.1109/TCYB.2016.2521428
10.1023/B:STCO.0000035301.49549.88
10.1016/j.neucom.2014.02.036
10.1109/72.248452
10.1016/j.csda.2010.01.024
10.1016/j.knosys.2015.01.006
10.1007/s00521-015-1960-6
10.1007/s11063-010-9162-9
10.1023/A:1018628609742
10.1109/TNN.2003.810597
10.1016/j.trb.2016.05.009
10.1016/j.patrec.2010.06.017
10.1007/3-540-46084-5_116
10.1016/j.asoc.2006.04.002
10.1007/s00521-009-0258-y
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2016.2633344
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 2084
ExternalDocumentID 10_1109_TITS_2016_2633344
7875147
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61103153/F020503
  funderid: 10.13039/501100001809
– fundername: Start Project for Minjiang Chair Professor by Fujian Province
  grantid: 510146
– fundername: Project from the Fujian Province Key Laboratory of Network Computing and Intelligent Information Processing
  grantid: 2009J1007
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-b6b7917f432c39d7e9ba40c90f55a9f3f6d8078ee18054dca0146bcd44b6025d3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407347300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Mon Jun 30 05:14:17 EDT 2025
Tue Nov 18 21:25:32 EST 2025
Sat Nov 29 06:34:51 EST 2025
Tue Aug 26 16:56:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b6b7917f432c39d7e9ba40c90f55a9f3f6d8078ee18054dca0146bcd44b6025d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0184-5446
PQID 1926797512
PQPubID 75735
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TITS_2016_2633344
crossref_primary_10_1109_TITS_2016_2633344
proquest_journals_1926797512
ieee_primary_7875147
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref30
ref33
ref32
ref10
ref2
ref1
ref17
ref19
weston (ref28) 2003; 3
ref18
chen (ref11) 2015; 30
vapnik (ref6) 1998
ref24
ref23
ref25
ref20
ref22
ref21
ref27
williams (ref16) 2001
ref29
ref8
ref7
(ref31) 2008
brabanter (ref35) 2009
ref9
ref4
ref3
vapnik (ref5) 1996
wang (ref26) 2013; 13
References_xml – ident: ref12
  doi: 10.1016/j.asoc.2015.07.027
– ident: ref2
  doi: 10.1016/j.ress.2015.09.014
– year: 1998
  ident: ref6
  publication-title: Statistical Learning Theory
– ident: ref33
  doi: 10.1016/j.engappai.2016.10.002
– ident: ref3
  doi: 10.1016/j.eswa.2011.08.002
– ident: ref1
  doi: 10.1016/j.ress.2015.02.008
– year: 2008
  ident: ref31
  publication-title: Science and Technology Department of Chinese Ministry of Railways System Requirement Specification of Level-3 Chinese Train Control System (CTCS)
– ident: ref4
  doi: 10.1016/j.asoc.2013.04.020
– ident: ref20
  doi: 10.1109/TNN.2005.852239
– volume: 13
  start-page: 17130
  year: 2013
  ident: ref26
  article-title: Online least squares one-class support vector machines-based abnormal visual event detection
  publication-title: SENSORS
  doi: 10.3390/s131217130
– ident: ref15
  doi: 10.1016/j.asoc.2009.08.025
– ident: ref7
  doi: 10.1023/A:1009715923555
– ident: ref24
  doi: 10.1016/S0925-2312(01)00644-0
– ident: ref30
  doi: 10.1109/TITS.2013.2265171
– ident: ref17
  doi: 10.1007/978-3-540-30499-9_194
– volume: 30
  start-page: 758
  year: 2015
  ident: ref11
  article-title: Position computation models for high-speed train based on support vector machine approach
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.01.017
– ident: ref23
  doi: 10.1109/TCYB.2016.2521428
– ident: ref8
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref27
  doi: 10.1016/j.neucom.2014.02.036
– year: 1996
  ident: ref5
  publication-title: The Nature of Statistical Learning Theory[M
– ident: ref18
  doi: 10.1109/72.248452
– ident: ref19
  doi: 10.1016/j.csda.2010.01.024
– ident: ref22
  doi: 10.1016/j.knosys.2015.01.006
– start-page: 682
  year: 2001
  ident: ref16
  article-title: Using the nyström method to speed up kernel machines
  publication-title: Proc 14th Annu Conf Neural Inf Process Syst
– ident: ref10
  doi: 10.1007/s00521-015-1960-6
– ident: ref21
  doi: 10.1007/s11063-010-9162-9
– start-page: 100
  year: 2009
  ident: ref35
  article-title: Robustness of kernel based regression: A comparison of iterative weighting schemes
  publication-title: Proc Int Conf Artif Neural Netw (ICANN 1998)
– volume: 3
  start-page: 1439
  year: 2003
  ident: ref28
  article-title: Use of the zero-norm with linear models and kernel methods
  publication-title: J Mach Learn Res
– ident: ref13
  doi: 10.1023/A:1018628609742
– ident: ref25
  doi: 10.1109/TNN.2003.810597
– ident: ref32
  doi: 10.1016/j.trb.2016.05.009
– ident: ref29
  doi: 10.1016/j.patrec.2010.06.017
– ident: ref34
  doi: 10.1007/3-540-46084-5_116
– ident: ref14
  doi: 10.1016/j.asoc.2006.04.002
– ident: ref9
  doi: 10.1007/s00521-009-0258-y
SSID ssj0014511
Score 2.3305366
Snippet For a high-speed train (HST), quick and accurate localization of its position is crucial to safe and effective operation of the HST. In this paper, we develop...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2071
SubjectTerms Adaptation models
Algorithms
Computational modeling
Computer memory
Data models
Distance learning
High speed
High speed rail
High-speed train
Iterative methods
iterative pruning error minimization
Localization
location error
LSSVM
L₀-norm minimization
Machine learning
Mathematical model
online sparse optimization
Optimization
Pruning
Rail transportation
Real time
Real-time systems
Support vector machines
Title Intelligent Localization of a High-Speed Train Using LSSVM and the Online Sparse Optimization Approach
URI https://ieeexplore.ieee.org/document/7875147
https://www.proquest.com/docview/1926797512
Volume 18
WOSCitedRecordID wos000407347300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED624YM--GuK0yl58Ens1jVZ0zwOURzMIbSOvZU0SUHQbeyHf7-5rC2KIvjW0rSUfmm-u9zddwDXuLXPncKl4tKzC17mydxkXiRVpJFkqQu0T0Z8PI6mU_Fcg9uqFsYY45LPTAcPXSxfz9UGt8q6dnJZfud1qHMebmu1qogB6mw5bdSAecLvlxHMni-6yTCJMYkr7AQhpZSxbxzkmqr8WIkdvTwc_O_FDmG_MCPJYIv7EdTM7Bj2vogLNiEfVmqbazJCyipKLsk8J5JggocXLyx5kQTbRBCXPEBGcTx5InKmibUMyVaIlMQL6_7aM7u8vJcPGRRi5Cfw8nCf3D16RVcFT1lqX3tZmHHro-WMBooKzY3IJPOV8PN-X4qc5qFGDXpjepE157SSKC-TKc1YFlrsND2Fxmw-M2dAqPYjk3HrslDNekxKHmpL-FjsizW3ugV--Z1TVUiOY-eLt9S5Hr5IEZoUoUkLaFpwU92y2Opt_DW4iVhUAwsYWtAuwUyLP3KVWks25MJeD85_v-sCdgOkbJfc14bGerkxl7CjPtavq-WVm2yfnhDQAg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED78BeqDv6Y4nZoHn8RuXZM1zeMQxWEdQuvYW0mTFATdhlb_fnNZVxRF8K2laSn90nx3ubvvAM5xa587hUvFpWcXvNyThcm9SKpII8lSF2gfxXw4jMZj8bAEl3UtjDHGJZ-ZNh66WL6eqnfcKuvYyWX5nS_DKnbO6s2rteqYASptOXXUgHnC7y1imF1fdNJBmmAaV9gOQkopY99YyLVV-bEWO4K52f7fq-3AVmVIkv4c-V1YMpM92PwiL9iAYlDrbZYkRtKqii7JtCCSYIqHl8wsfZEUG0UQlz5A4iQZ3RM50cTahmQuRUqSmXWA7ZldYF4WD-lXcuT78HhznV7delVfBU9Zci-9PMy59dIKRgNFheZG5JL5SvhFrydFQYtQowq9Md3IGnRaSRSYyZVmLA8tepoewMpkOjGHQKj2I5Nz67RQzbpMSh5qS_lY7otVt7oJ_uI7Z6oSHcfeF8-Zcz58kSE0GUKTVdA04aK-ZTZX3PhrcAOxqAdWMDShtQAzq_7Jt8zasiEX9npw9PtdZ7B-m97HWTwY3h3DRoAE7lL9WrBSvr6bE1hTH-XT2-upm3ifo5PTTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Localization+of+a+High-Speed+Train+Using+LSSVM+and+the+Online+Sparse+Optimization+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Cheng%2C+Ruijun&rft.au=Song%2C+Yongduan&rft.au=Chen%2C+Dewang&rft.au=Long%2C+Chen&rft.date=2017-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=18&rft.issue=8&rft.spage=2071&rft_id=info:doi/10.1109%2FTITS.2016.2633344&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon