Deep Joint Source-Channel Coding for CSI Feedback: An End-to-End Approach

The increased throughput brought by MIMO technology relies on the knowledge of channel state information (CSI) acquired in the base station (BS). To make the CSI feedback overhead affordable for the evolution of MIMO technology (e.g., massive MIMO and ultra-massive MIMO), deep learning (DL) is intro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal on selected areas in communications Ročník 41; číslo 1; s. 1
Hlavní autoři: Xu, Jialong, Ai, Bo, Wang, Ning, Chen, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0733-8716, 1558-0008
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The increased throughput brought by MIMO technology relies on the knowledge of channel state information (CSI) acquired in the base station (BS). To make the CSI feedback overhead affordable for the evolution of MIMO technology (e.g., massive MIMO and ultra-massive MIMO), deep learning (DL) is introduced to deal with the CSI compression task. In traditional communication systems, the compressed CSI bits is treated equally and expected to be transmitted accurately over the noisy channel. While the errors occur due to the limited bandwidth or low signal-to-noise ratios (SNRs), the reconstruction performance of the CSI degrades drastically. As a branch of semantic communications, deep joint source-channel coding (DJSCC) scheme performs better than the separate source-channel coding (SSCC) scheme-the cornerstone of traditional communication systems-in the limited bandwidth and low SNRs. In this paper, we propose a DJSCC based framework for the CSI feedback task. In particular, the proposed method can simultaneously learn from the CSI source and the wireless channel. Instead of truncating CSI via Fourier transform in the delay domain in existing methods, we apply non-linear transform networks to compress the CSI. Furthermore, we adopt an SNR adaption mechanism to deal with wireless channel variations. The extensive experiments demonstrate the validity, adaptability, and generality of the proposed framework.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2022.3221963