Distributed deep learning for cooperative computation offloading in low earth orbit satellite networks

Low earth orbit (LEO) satellite network is an important development trend for future mobile communication systems, which can truly realize the "ubiquitous connection" of the whole world. In this paper, we present a cooperative computation offloading in the LEO satellite network with a thre...

Full description

Saved in:
Bibliographic Details
Published in:China communications Vol. 19; no. 4; pp. 230 - 243
Main Authors: Tang, Qingqing, Fei, Zesong, Li, Bin
Format: Journal Article
Language:English
Published: China Institute of Communications 01.04.2022
School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China%School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China
Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China
Subjects:
ISSN:1673-5447
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Low earth orbit (LEO) satellite network is an important development trend for future mobile communication systems, which can truly realize the "ubiquitous connection" of the whole world. In this paper, we present a cooperative computation offloading in the LEO satellite network with a three-tier computation architecture by leveraging the vertical cooperation among ground users, LEO satellites, and the cloud server, and the horizontal cooperation between LEO satellites. To improve the quality of service for ground users, we optimize the computation offloading decisions to minimize the total execution delay for ground users subject to the limited battery capacity of ground users and the computation capability of each LEO satellite. However, the formulated problem is a large-scale nonlinear integer programming problem as the number of ground users and LEO satellites increases, which is difficult to solve with general optimization algorithms. To address this challenging problem, we propose a distributed deep learning-based cooperative computation offloading (DDLCCO) algorithm, where multiple parallel deep neural networks (DNNs) are adopted to learn the computation offloading strategy dynamically. Simulation results show that the proposed algorithm can achieve near-optimal performance with low computational complexity compared with other computation offloading strategies.
AbstractList Low earth orbit (LEO) satellite network is an important development trend for future mobile communication systems, which can truly realize the "ubiquitous connection" of the whole world. In this paper, we present a cooperative computation offloading in the LEO satellite network with a three-tier computation architecture by leveraging the vertical cooperation among ground users, LEO satellites, and the cloud server, and the horizontal cooperation between LEO satellites. To improve the quality of service for ground users, we optimize the computation offloading decisions to minimize the total execution delay for ground users subject to the limited battery capacity of ground users and the computation capability of each LEO satellite. However, the formulated problem is a large-scale nonlinear integer programming problem as the number of ground users and LEO satellites increases, which is difficult to solve with general optimization algorithms. To address this challenging problem, we propose a distributed deep learning-based cooperative computation offloading (DDLCCO) algorithm, where multiple parallel deep neural networks (DNNs) are adopted to learn the computation offloading strategy dynamically. Simulation results show that the proposed algorithm can achieve near-optimal performance with low computational complexity compared with other computation offloading strategies.
Low earth orbit(LEO)satellite network is an important development trend for future mobile communication systems,which can truly realize the"ubiquitous connection"of the whole world.In this paper,we present a cooperative computation offload-ing in the LEO satellite network with a three-tier com-putation architecture by leveraging the vertical coop-eration among ground users,LEO satellites,and the cloud server,and the horizontal cooperation between LEO satellites.To improve the quality of service for ground users,we optimize the computation offload-ing decisions to minimize the total execution delay for ground users subject to the limited battery capac-ity of ground users and the computation capability of each LEO satellite.However,the formulated problem is a large-scale nonlinear integer programming prob-lem as the number of ground users and LEO satel-lites increases,which is difficult to solve with general optimization algorithms.To address this challenging problem,we propose a distributed deep learning-based cooperative computation offloading(DDLCCO)algo-rithm,where multiple parallel deep neural networks(DNNs)are adopted to learn the computation offload-ing strategy dynamically.Simulation results show that the proposed algorithm can achieve near-optimal per-formance with low computational complexity com-pared with other computation offloading strategies.
Author Li, Bin
Tang, Qingqing
Fei, Zesong
AuthorAffiliation School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China%School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China
AuthorAffiliation_xml – name: School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China%School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China
Author_xml – sequence: 1
  givenname: Qingqing
  surname: Tang
  fullname: Tang, Qingqing
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Zesong
  surname: Fei
  fullname: Fei, Zesong
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China
BookMark eNp9kL1PwzAQxT0UiQLdkVi8MCbYjuvUIwrfqsQCs-Uk5-KS2pHjUuCvxyWIgYFb7un0fne6d4QmzjtA6JSSnBWSyouHqsoZYSwnPCe0nKApFWWRzTkvD9FsGNYk1UKIQrApMld2iMHW2wgtbgF63IEOzroVNj7gxvsego72DZLe9NuYtHfYG9N53e5t1uHO73Ci4gv2obYRDzpC19kI2EHc-fA6nKADo7sBZj_9GD3fXD9Vd9ny8fa-ulxmDZNFzGpB53oOtDScUl4bYoBxImhDZduWRhoijJFELwiDAto0oLqWrZRNzY3hujhG5-PenXZGu5Va-21w6aL6XMX3fSqEE7pIPjH6muCHIYBRjR1fi0HbTlGivsNUKUy1xxThKoWZQPIH7IPd6PDxH3I2IhYAfu2yFEyUovgCLz-GNw
CODEN CCHOBE
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e32071
crossref_primary_10_1109_JIOT_2023_3299950
crossref_primary_10_23919_JSEE_2024_000037
crossref_primary_10_1109_JSAC_2024_3492720
crossref_primary_10_1109_JIOT_2024_3404830
crossref_primary_10_1109_TNSE_2024_3368086
crossref_primary_10_1109_JIOT_2024_3498322
crossref_primary_10_1109_TVT_2024_3483203
crossref_primary_10_1109_JIOT_2023_3307707
crossref_primary_10_32604_cmc_2024_057353
crossref_primary_10_3390_jsan11040057
crossref_primary_10_1109_JIOT_2023_3287737
crossref_primary_10_1109_COMST_2023_3347145
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.2022.04.017
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 243
ExternalDocumentID zgtx202204018
10_23919_JCC_2022_04_017
9762676
Genre orig-research
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
2B.
4A8
93N
PSX
RIG
ID FETCH-LOGICAL-c293t-b615a5e17f4114bf0fe24061c19dd7f9f06ff90a802e3edf9f1ab9d99cb4ff4a3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795991500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1673-5447
IngestDate Thu May 29 03:54:26 EDT 2025
Sat Nov 29 06:38:55 EST 2025
Tue Nov 18 21:32:42 EST 2025
Wed Aug 27 02:07:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords LEO satellite networks
computation of-floading
deep neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b615a5e17f4114bf0fe24061c19dd7f9f06ff90a802e3edf9f1ab9d99cb4ff4a3
PageCount 14
ParticipantIDs crossref_citationtrail_10_23919_JCC_2022_04_017
crossref_primary_10_23919_JCC_2022_04_017
wanfang_journals_zgtx202204018
ieee_primary_9762676
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2022
Publisher China Institute of Communications
School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China%School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China
Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China
Publisher_xml – name: China Institute of Communications
– name: Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China
– name: School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China%School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China
SSID ssj0000866362
Score 2.337479
Snippet Low earth orbit (LEO) satellite network is an important development trend for future mobile communication systems, which can truly realize the "ubiquitous...
Low earth orbit(LEO)satellite network is an important development trend for future mobile communication systems,which can truly realize the"ubiquitous...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 230
SubjectTerms computation offloading
Computational modeling
deep neural networks
Delays
LEO satellite networks
Low earth orbit satellites
Optimization
Satellites
Servers
Task analysis
Title Distributed deep learning for cooperative computation offloading in low earth orbit satellite networks
URI https://ieeexplore.ieee.org/document/9762676
https://d.wanfangdata.com.cn/periodical/zgtx202204018
Volume 19
WOSCitedRecordID wos000795991500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1673-5447
  databaseCode: RIE
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0000866362
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UhPWy65Od9UEfvAgbJ-n0dKePy6iIiHjQxVvoR_XswJAMk_hgf73dnTjrQRa8hVAFIV_SX1V3VX0Ax0glmsIUic2tSxhymmhPpImiWnmGYELH9ujf1-Lmpnh4kLcr8HPZC4OIsfgMT8NlPMu3tXkMW2VDT52UC74Kq0LwrldruZ_iQ3OeR_3QjItw3s9EdypJc5nJ4dV47JNBSuNc06hO9o-FoqxKbNqpnKom7_jl4tvnnmwTvvZxJPnVAb8FK1htw5e3NuNmB9xZGIkb1KzQEos4J71AxIT4OJWYup5jN_WbmKjsECEitXOzOtbVk2lFZvUz8V7tH1Iv9LQljYoDPFskVVc-3uzC_cX53fgy6UUVEuOZvQ1IjNQIM-GYT4W0Sx1GUjeZtFY46VLunExVkVLM0fobmdLSSmk0c46pfA_WqrrC70A8kkz79Um4XDHGsNAjg5xJm7mRplwOYPj2kkvTTxwPwhez0mceEZbSw1IGWMqUlR6WAZwsPebdtI3_2O4EHJZ2PQQDOOpxLPu_sSn_TtqX4OkXrKz48bHfPmwEk64o5wDW2sUjHsK6eWqnzeIofmuvuM_TfA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VgNReeAXUFCh74IJUN_Z6_dgjSqkChIhDQbmt9jEbIkV2FDtt1V_P7toNHBASN8uakSx_9n4zuzPzAbxDylGXuoxMamzEMKeRckQaSaqkYwhWqNAe_WNWzOflYsG_HcDZvhcGEUPxGZ77y3CWb2q981tlY0edNC_yB_AwY4zGXbfWfkfFBed5GhREk7zwJ_6s6M4lacoTPv48mbh0kNIw2TTok_3moSCsEtp2Kiur5R8Mc_nk_57tKTzuI0nyoYP-GRxg9RwO7xuNmyHYCz8U1-tZoSEGcUN6iYglcZEq0XW9wW7uN9FB2yGARGpr13WorCeriqzrG-K82p-k3qpVSxoZRni2SKqugLx5Ad8vP15NplEvqxBpx-2txyKTGSaFZS4ZUja2GGhdJ9yYwnIb59byWJYxxRSNu5FIxQ3nWjFrmUxfwqCqKzwG4rBkyq1QhU0lYwxLlWnMGTeJzRTN-QjG9y9Z6H7muJe-WAuXewRYhINFeFhEzISDZQTv9x6bbt7GP2yHHoe9XQ_BCE57HEX_Pzbibtneek-3ZCXlyd_93sLh9OrrTMw-zb-8giNv3pXovIZBu93hG3ikr9tVsz0N390v31jWww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+deep+learning+for+cooperative+computation+offloading+in+low+earth+orbit+satellite+networks&rft.jtitle=China+communications&rft.au=Tang%2C+Qingqing&rft.au=Fei%2C+Zesong&rft.au=Li%2C+Bin&rft.date=2022-04-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=19&rft.issue=4&rft.spage=230&rft.epage=243&rft_id=info:doi/10.23919%2FJCC.2022.04.017&rft.externalDocID=9762676
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg