A Mathematical Theory for Clustering in Metric Spaces

Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on network science and engineering Ročník 3; číslo 1; s. 2 - 16
Hlavní autori: Chang, Cheng-Shang, Liao, Wanjiun, Chen, Yu-Sheng, Liou, Li-Heng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4697, 2334-329X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the fundamental challenges is to address the following question: What is a cluster in a set of data points? In this paper, we make an attempt to address such a question by considering a set of data points associated with a distance measure (metric). We first propose a new cohesion measure in terms of the distance measure. Using the cohesion measure, we define a cluster as a set of points that are cohesive to themselves. For such a definition, we show there are various equivalent statements that have intuitive explanations. We then consider the second question: How do we find clusters and good partitions of clusters under such a definition? For such a question, we propose a hierarchical agglomerative algorithm and a partitional algorithm. Unlike standard hierarchical agglomerative algorithms, our hierarchical agglomerative algorithm has a specific stopping criterion and it stops with a partition of clusters. Our partitional algorithm, called the <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq1-2516339.gif"/> </inline-formula>-sets algorithm in the paper, appears to be a new iterative algorithm. Unlike the Lloyd iteration that needs two-step minimization, our <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq2-2516339.gif"/> </inline-formula>-sets algorithm only takes one-step minimization. One of the most interesting findings of our paper is the duality result between a distance measure and a cohesion measure. Such a duality result leads to a dual <inline-formula><tex-math notation="LaTeX">K </tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq3-2516339.gif"/> </inline-formula>-sets algorithm for clustering a set of data points with a cohesion measure. The dual <inline-formula> <tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq4-2516339.gif"/> </inline-formula>-sets algorithm converges in the same way as a sequential version of the classical kernel <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq5-2516339.gif"/> </inline-formula>-means algorithm. The key difference is that a cohesion measure does not need to be positive semi-definite.
AbstractList Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the fundamental challenges is to address the following question: What is a cluster in a set of data points? In this paper, we make an attempt to address such a question by considering a set of data points associated with a distance measure (metric). We first propose a new cohesion measure in terms of the distance measure. Using the cohesion measure, we define a cluster as a set of points that are cohesive to themselves. For such a definition, we show there are various equivalent statements that have intuitive explanations. We then consider the second question: How do we find clusters and good partitions of clusters under such a definition? For such a question, we propose a hierarchical agglomerative algorithm and a partitional algorithm. Unlike standard hierarchical agglomerative algorithms, our hierarchical agglomerative algorithm has a specific stopping criterion and it stops with a partition of clusters. Our partitional algorithm, called the [Formula Omitted]-sets algorithm in the paper, appears to be a new iterative algorithm. Unlike the Lloyd iteration that needs two-step minimization, our [Formula Omitted]-sets algorithm only takes one-step minimization. One of the most interesting findings of our paper is the duality result between a distance measure and a cohesion measure. Such a duality result leads to a dual [Formula Omitted]-sets algorithm for clustering a set of data points with a cohesion measure. The dual [Formula Omitted]-sets algorithm converges in the same way as a sequential version of the classical kernel [Formula Omitted]-means algorithm. The key difference is that a cohesion measure does not need to be positive semi-definite.
Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the fundamental challenges is to address the following question: What is a cluster in a set of data points? In this paper, we make an attempt to address such a question by considering a set of data points associated with a distance measure (metric). We first propose a new cohesion measure in terms of the distance measure. Using the cohesion measure, we define a cluster as a set of points that are cohesive to themselves. For such a definition, we show there are various equivalent statements that have intuitive explanations. We then consider the second question: How do we find clusters and good partitions of clusters under such a definition? For such a question, we propose a hierarchical agglomerative algorithm and a partitional algorithm. Unlike standard hierarchical agglomerative algorithms, our hierarchical agglomerative algorithm has a specific stopping criterion and it stops with a partition of clusters. Our partitional algorithm, called the <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq1-2516339.gif"/> </inline-formula>-sets algorithm in the paper, appears to be a new iterative algorithm. Unlike the Lloyd iteration that needs two-step minimization, our <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq2-2516339.gif"/> </inline-formula>-sets algorithm only takes one-step minimization. One of the most interesting findings of our paper is the duality result between a distance measure and a cohesion measure. Such a duality result leads to a dual <inline-formula><tex-math notation="LaTeX">K </tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq3-2516339.gif"/> </inline-formula>-sets algorithm for clustering a set of data points with a cohesion measure. The dual <inline-formula> <tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq4-2516339.gif"/> </inline-formula>-sets algorithm converges in the same way as a sequential version of the classical kernel <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq5-2516339.gif"/> </inline-formula>-means algorithm. The key difference is that a cohesion measure does not need to be positive semi-definite.
Author Liao, Wanjiun
Chang, Cheng-Shang
Chen, Yu-Sheng
Liou, Li-Heng
Author_xml – sequence: 1
  givenname: Cheng-Shang
  surname: Chang
  fullname: Chang, Cheng-Shang
  email: cschang@ee.nthu.edu.tw
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
– sequence: 2
  givenname: Wanjiun
  surname: Liao
  fullname: Liao, Wanjiun
  email: wjliao@ntu.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
– sequence: 3
  givenname: Yu-Sheng
  surname: Chen
  fullname: Chen, Yu-Sheng
  email: r01921042@ntu.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
– sequence: 4
  givenname: Li-Heng
  surname: Liou
  fullname: Liou, Li-Heng
  email: dacapo1142@gmail.com
  organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
BookMark eNp9kD1PwzAQhi1UJErpD0AskZgTbF9ix2NVlQ-phaFFYrNcc6Gu0qTY7tB_T6JWDAxMd9I9753uuSaDpm2QkFtGM8aoeli9LmcZp0xkvGACQF2QIQfIU-DqY9D3XKa5UPKKjEPYUkoZLzsOhqSYJAsTN7gz0VlTJ6sNtv6YVK1PpvUhRPSu-UpckywwemeT5d5YDDfksjJ1wPG5jsj742w1fU7nb08v08k8tVxBTNeAlUVjKynLQqkcAHOuuEHxCahKYQ2jQLtxZdfComL5mpWqEIjUKEAGI3J_2rv37fcBQ9Tb9uCb7qRmspS8ZN2zHSVPlPVtCB4rbV3s_mmb6I2rNaO616R7TbrXpM-auiT7k9x7tzP--G_m7pRxiPjLS5AlVxJ-AGdGc-c
CODEN ITNSD5
CitedBy_id crossref_primary_10_1007_s11403_020_00309_y
crossref_primary_10_1016_j_jebo_2022_10_029
crossref_primary_10_11648_j_engmath_20250901_11
crossref_primary_10_1007_s41109_022_00452_4
crossref_primary_10_1007_s00500_023_09456_3
crossref_primary_10_1038_s41598_017_12401_8
crossref_primary_10_1109_TNET_2017_2762403
crossref_primary_10_1016_j_trc_2018_02_011
crossref_primary_10_1109_TNSE_2018_2870671
crossref_primary_10_1109_TSP_2021_3102106
crossref_primary_10_1109_TNSE_2019_2903913
crossref_primary_10_3390_sym10100430
crossref_primary_10_1007_s10586_017_0818_3
crossref_primary_10_1109_TNSE_2018_2815686
crossref_primary_10_1109_ACCESS_2024_3355057
crossref_primary_10_1109_JIOT_2020_2993410
crossref_primary_10_1371_journal_pone_0255174
crossref_primary_10_1109_ACCESS_2024_3521383
Cites_doi 10.1515/zna-2003-9-1003
10.1140/epjst/e2010-01179-1
10.1007/978-1-4614-6729-8_7
10.1145/2450142.2450144
10.1016/S0031-3203(99)00076-X
10.1073/pnas.0903215107
10.1145/2591796.2591857
10.1073/pnas.1312486110
10.1109/TPAMI.2010.88
10.1016/j.patcog.2007.05.018
10.1007/978-3-642-38236-9_9
10.1103/PhysRevE.69.026113
10.1007/s11222-007-9033-z
10.1103/PhysRevE.69.066133
10.1109/TPAMI.2005.88
10.1109/MCSE.2011.37
10.1145/331499.331504
10.1017/nws.2015.23
10.1109/ICCV.2003.1238361
10.1088/1742-5468/2008/10/P10008
10.1073/pnas.0611034104
10.1109/TKDE.2007.190689
10.1007/s00453-004-1127-9
10.1080/0094965031000136012
10.1109/34.868688
10.5486/PMD.1959.6.3-4.12
10.1109/TPAMI.2007.1115
10.1016/0031-3203(73)90048-4
10.1109/TIT.1982.1056489
10.1073/pnas.0500334102
10.1016/j.eswa.2008.01.039
10.1371/journal.pone.0018961
10.1007/978-3-642-32512-0_50
10.1016/S0167-9473(00)00052-9
10.14778/2180912.2180915
10.1016/j.patrec.2009.09.011
10.1145/956863.956972
10.1145/1015330.1015408
10.1109/INFCOM.2011.5935256
10.1016/j.patrec.2007.12.011
10.1086/jar.33.4.3629752
10.1021/ct200463m
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2016.2516339
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 16
ExternalDocumentID 4048076111
10_1109_TNSE_2016_2516339
7378297
Genre orig-research
GrantInformation_xml – fundername: National Science Council
  grantid: NSC102-2221-E-002-014-MY2; 102-2221-E-007-006-MY3
  funderid: 10.13039/501100001868
– fundername: Excellent Research Projects of National Taiwan University
  grantid: AE00-00-04
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-b3efceacf778599433e4292ae6d3e986ca1030cf7fcb6ce914b18956ee0a93e13
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409670400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Mon Jun 30 10:02:21 EDT 2025
Tue Nov 18 22:11:23 EST 2025
Sat Nov 29 04:55:49 EST 2025
Wed Aug 27 03:08:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords K-sets
hierarchical algorithms
Clustering
convergence
duality
partitional algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b3efceacf778599433e4292ae6d3e986ca1030cf7fcb6ce914b18956ee0a93e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1787281339
PQPubID 2040409
PageCount 15
ParticipantIDs crossref_primary_10_1109_TNSE_2016_2516339
ieee_primary_7378297
crossref_citationtrail_10_1109_TNSE_2016_2516339
proquest_journals_1787281339
PublicationCentury 2000
PublicationDate 2016-Jan.-March-1
2016-1-1
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.-March-1
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
csardi (ref56) 2006
ref14
ref53
ref52
ref55
ref11
ref54
ref17
ref16
jardine (ref23) 1971
lecun (ref58) 2010
ref19
ref18
dhillon (ref61) 2004
ref51
arthur (ref10) 0
ref45
saade (ref47) 0
ref42
carlsson (ref28) 0
ref41
ref43
theodoridis (ref1) 2006
ref49
ref8
ref7
ref9
ref4
ref3
rajaraman (ref2) 2012
kleinberg (ref26) 0
pedregosa (ref59) 2011; 12
ref5
ref40
ester (ref30) 0; 96
ref35
ref34
ref37
ref36
ref31
ref33
ref32
campigotto (ref63) 0
ref39
ref38
luxburg (ref22) 0
erdös (ref46) 1959; 6
ref24
ben-hur (ref15) 2002; 2
ref25
ref20
mossel (ref50) 0
ref21
kaufman (ref6) 2009; 344
ng (ref44) 0; 2
zadeh (ref27) 2009
ref60
ref62
ben-david (ref29) 0
decelle (ref48) 2012
References_xml – ident: ref55
  doi: 10.1515/zna-2003-9-1003
– ident: ref53
  doi: 10.1140/epjst/e2010-01179-1
– ident: ref39
  doi: 10.1007/978-1-4614-6729-8_7
– volume: 2
  start-page: 125
  year: 2002
  ident: ref15
  article-title: Support vector clustering
  publication-title: J Mach Learn Res
– ident: ref21
  doi: 10.1145/2450142.2450144
– ident: ref25
  doi: 10.1016/S0031-3203(99)00076-X
– ident: ref40
  doi: 10.1073/pnas.0903215107
– ident: ref49
  doi: 10.1145/2591796.2591857
– volume: 2
  start-page: 849
  year: 0
  ident: ref44
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref57
  doi: 10.1073/pnas.1312486110
– year: 2012
  ident: ref48
– start-page: 121
  year: 0
  ident: ref29
  article-title: Measures of clustering quality: A working set of axioms for clustering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/TPAMI.2010.88
– ident: ref20
  doi: 10.1016/j.patcog.2007.05.018
– ident: ref13
  doi: 10.1007/978-3-642-38236-9_9
– ident: ref37
  doi: 10.1103/PhysRevE.69.026113
– ident: ref19
  doi: 10.1007/s11222-007-9033-z
– ident: ref36
  doi: 10.1103/PhysRevE.69.066133
– ident: ref17
  doi: 10.1109/TPAMI.2005.88
– year: 2004
  ident: ref61
  article-title: A unified view of kernel k-means, spectral clustering and graph cuts
– ident: ref54
  doi: 10.1109/MCSE.2011.37
– year: 0
  ident: ref22
  article-title: Towards a statistical theory of clustering
  publication-title: EU-PASCAL Statistics and Optimization of Clustering Workshop
– ident: ref3
  doi: 10.1145/331499.331504
– ident: ref34
  doi: 10.1017/nws.2015.23
– year: 2010
  ident: ref58
– ident: ref43
  doi: 10.1109/ICCV.2003.1238361
– ident: ref38
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: ref52
  doi: 10.1073/pnas.0611034104
– ident: ref35
  doi: 10.1109/TKDE.2007.190689
– ident: ref9
  doi: 10.1007/s00453-004-1127-9
– ident: ref7
  doi: 10.1080/0094965031000136012
– start-page: 406
  year: 0
  ident: ref47
  article-title: Spectral clustering of graphs with the Bethe Hessian
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1109/34.868688
– volume: 6
  start-page: 290
  year: 1959
  ident: ref46
  article-title: On random graphs
  publication-title: Publ Math Debrecen
  doi: 10.5486/PMD.1959.6.3-4.12
– year: 0
  ident: ref28
  article-title: Hierarchical quasi-clustering methods for asymmetric networks
  publication-title: arXiv preprint arXiv 1404 4655
– ident: ref62
  doi: 10.1109/TPAMI.2007.1115
– start-page: 639
  year: 2009
  ident: ref27
  article-title: A uniqueness theorem for clustering
  publication-title: Proc 25th Conf Uncertainty Artif Intell
– ident: ref24
  doi: 10.1016/0031-3203(73)90048-4
– ident: ref5
  doi: 10.1109/TIT.1982.1056489
– year: 0
  ident: ref63
  article-title: A generalized and adaptive method for community detection
  publication-title: arXiv preprint arXiv 1406 2518
– start-page: 1027
  year: 0
  ident: ref10
  article-title: K-means++: The advantages of careful seeding
  publication-title: Proc 18th Annu ACM-SIAM Symp Discr Algorithms
– year: 2012
  ident: ref2
  publication-title: Mining of Massive Datasets
– ident: ref45
  doi: 10.1073/pnas.0500334102
– ident: ref8
  doi: 10.1016/j.eswa.2008.01.039
– volume: 96
  start-page: 226
  year: 0
  ident: ref30
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining
– start-page: 463
  year: 0
  ident: ref26
  article-title: An impossibility theorem for clustering
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1695
  year: 2006
  ident: ref56
  publication-title: InterJ
– ident: ref51
  doi: 10.1371/journal.pone.0018961
– ident: ref12
  doi: 10.1007/978-3-642-32512-0_50
– ident: ref31
  doi: 10.1016/S0167-9473(00)00052-9
– volume: 344
  year: 2009
  ident: ref6
  publication-title: Finding Groups in Data An Introduction to Cluster Analysis
– ident: ref11
  doi: 10.14778/2180912.2180915
– ident: ref4
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref33
  doi: 10.1145/956863.956972
– year: 2006
  ident: ref1
  publication-title: Pattern Recognition
– ident: ref16
  doi: 10.1145/1015330.1015408
– ident: ref41
  doi: 10.1109/INFCOM.2011.5935256
– ident: ref32
  doi: 10.1016/j.patrec.2007.12.011
– year: 0
  ident: ref50
  article-title: A proof of the block model threshold conjecture
  publication-title: arXiv preprint arXiv 1311 4115
– ident: ref42
  doi: 10.1086/jar.33.4.3629752
– year: 1971
  ident: ref23
  publication-title: Mathematical Taxonomy
– ident: ref60
  doi: 10.1021/ct200463m
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref59
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
SSID ssj0001286333
Score 2.1609783
Snippet Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2
SubjectTerms Algorithm design and analysis
Algorithms
Clustering
Clustering algorithms
convergence
duality
Extraterrestrial measurements
hierarchical algorithms
K-sets
Kernel
Minimization
partitional algorithms
Partitioning algorithms
Title A Mathematical Theory for Clustering in Metric Spaces
URI https://ieeexplore.ieee.org/document/7378297
https://www.proquest.com/docview/1787281339
Volume 3
WOSCitedRecordID wos000409670400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UemgPfdlSW1v20FNpNHGTfRxFlF6Ugha8hc1mFgSJ4qO_v7tJDJaWQm-BnQ3h283MzuzMfADPQik_NSn3jFTWQYmU8WQYhl4QBlo6diQhTU42wScTMZ_L9xq8VrUwiJgnn2HHPeZ3-elK712orMspd5WgdahzzoparaN4imCU0vLiMvBldzaZDl3uFutYG27H5DfTk3Op_FDAuVUZXfzvey7hvDw9kn6x3FdQw-wazo56CjYh6pNx1YrVyhbF98SeTclguXdtEawYWWRk7Li0NJmuXVLWDXyMhrPBm1dyI3jaGuidl1A02ipNw7mIpAwpRUc8pZClFKVgWjn-MDtsdMI0yiBMAmF9IURfSYoBvYVGtsrwDgjTUZRGPez5hoaaaplqQxNOU2ZQCem3wD_AFuuycbjjr1jGuQPhy9ghHTuk4xLpFrxUU9ZF14y_hJsO2kqwRLUF7cPaxOV_tY0Dq196wvrV8v73WQ9w6t5dBEna0Nht9vgIJ_pzt9hunvIt8wXgwr8R
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv8Xp1D74JHZrl34kj2NsTNyKsAl7C2l6gcHoxj78-03arkwUwbdCLrT8kt7lLnf3A3iiQjiJSkJbMaEdFF8om3meZ7ueK5lhR6JMZWQTYRTRyYS9V-ClrIVBxCz5DBvmMbvLT-ZyY0JlzZCEphJ0D_YNc1ZRrbUTUaEBIaS4unQd1hxHo67J3goa2orrMfbN-GRsKj9UcGZXeqf_-6IzOCnOj1Y7X_BzqGB6Acc7XQUvwW9bw7IZq5bNy-8tfTq1OrONaYygxaxpag0Nm5a0RguTlnUFH73uuNO3C3YEW2oTvbZjgkpqtanCkPqMeYSgoZ4SGCQEGQ2kMAxieljJOJDIXC92qfaGEB3BCLrkGqrpPMUbsALp-4nfwpajiCeJZIlUJA5JEigUlDk1cLawcVm0DjcMFjOeuRAO4wZpbpDmBdI1eC6nLPK-GX8JXxpoS8EC1RrUt2vDiz9rxV2tYVpUe9bs9vdZj3DYHw8HfPAavd3BkXlPHjKpQ3W93OA9HMjP9XS1fMi2zxcBZ8Ja
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mathematical+Theory+for+Clustering+in+Metric+Spaces&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Chang%2C+Cheng-Shang&rft.au=Liao%2C+Wanjiun&rft.au=Chen%2C+Yu-Sheng&rft.au=Liou%2C+Li-Heng&rft.date=2016-01-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=3&rft.issue=1&rft.spage=2&rft.epage=16&rft_id=info:doi/10.1109%2FTNSE.2016.2516339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2016_2516339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon