A Mathematical Theory for Clustering in Metric Spaces
Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the...
Uložené v:
| Vydané v: | IEEE transactions on network science and engineering Ročník 3; číslo 1; s. 2 - 16 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4697, 2334-329X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the fundamental challenges is to address the following question: What is a cluster in a set of data points? In this paper, we make an attempt to address such a question by considering a set of data points associated with a distance measure (metric). We first propose a new cohesion measure in terms of the distance measure. Using the cohesion measure, we define a cluster as a set of points that are cohesive to themselves. For such a definition, we show there are various equivalent statements that have intuitive explanations. We then consider the second question: How do we find clusters and good partitions of clusters under such a definition? For such a question, we propose a hierarchical agglomerative algorithm and a partitional algorithm. Unlike standard hierarchical agglomerative algorithms, our hierarchical agglomerative algorithm has a specific stopping criterion and it stops with a partition of clusters. Our partitional algorithm, called the <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq1-2516339.gif"/> </inline-formula>-sets algorithm in the paper, appears to be a new iterative algorithm. Unlike the Lloyd iteration that needs two-step minimization, our <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq2-2516339.gif"/> </inline-formula>-sets algorithm only takes one-step minimization. One of the most interesting findings of our paper is the duality result between a distance measure and a cohesion measure. Such a duality result leads to a dual <inline-formula><tex-math notation="LaTeX">K </tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq3-2516339.gif"/> </inline-formula>-sets algorithm for clustering a set of data points with a cohesion measure. The dual <inline-formula> <tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq4-2516339.gif"/> </inline-formula>-sets algorithm converges in the same way as a sequential version of the classical kernel <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq5-2516339.gif"/> </inline-formula>-means algorithm. The key difference is that a cohesion measure does not need to be positive semi-definite. |
|---|---|
| AbstractList | Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the fundamental challenges is to address the following question: What is a cluster in a set of data points? In this paper, we make an attempt to address such a question by considering a set of data points associated with a distance measure (metric). We first propose a new cohesion measure in terms of the distance measure. Using the cohesion measure, we define a cluster as a set of points that are cohesive to themselves. For such a definition, we show there are various equivalent statements that have intuitive explanations. We then consider the second question: How do we find clusters and good partitions of clusters under such a definition? For such a question, we propose a hierarchical agglomerative algorithm and a partitional algorithm. Unlike standard hierarchical agglomerative algorithms, our hierarchical agglomerative algorithm has a specific stopping criterion and it stops with a partition of clusters. Our partitional algorithm, called the [Formula Omitted]-sets algorithm in the paper, appears to be a new iterative algorithm. Unlike the Lloyd iteration that needs two-step minimization, our [Formula Omitted]-sets algorithm only takes one-step minimization. One of the most interesting findings of our paper is the duality result between a distance measure and a cohesion measure. Such a duality result leads to a dual [Formula Omitted]-sets algorithm for clustering a set of data points with a cohesion measure. The dual [Formula Omitted]-sets algorithm converges in the same way as a sequential version of the classical kernel [Formula Omitted]-means algorithm. The key difference is that a cohesion measure does not need to be positive semi-definite. Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms have been proposed, clustering theories that justify the use of these clustering algorithms are still unsatisfactory. In particular, one of the fundamental challenges is to address the following question: What is a cluster in a set of data points? In this paper, we make an attempt to address such a question by considering a set of data points associated with a distance measure (metric). We first propose a new cohesion measure in terms of the distance measure. Using the cohesion measure, we define a cluster as a set of points that are cohesive to themselves. For such a definition, we show there are various equivalent statements that have intuitive explanations. We then consider the second question: How do we find clusters and good partitions of clusters under such a definition? For such a question, we propose a hierarchical agglomerative algorithm and a partitional algorithm. Unlike standard hierarchical agglomerative algorithms, our hierarchical agglomerative algorithm has a specific stopping criterion and it stops with a partition of clusters. Our partitional algorithm, called the <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq1-2516339.gif"/> </inline-formula>-sets algorithm in the paper, appears to be a new iterative algorithm. Unlike the Lloyd iteration that needs two-step minimization, our <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq2-2516339.gif"/> </inline-formula>-sets algorithm only takes one-step minimization. One of the most interesting findings of our paper is the duality result between a distance measure and a cohesion measure. Such a duality result leads to a dual <inline-formula><tex-math notation="LaTeX">K </tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq3-2516339.gif"/> </inline-formula>-sets algorithm for clustering a set of data points with a cohesion measure. The dual <inline-formula> <tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq4-2516339.gif"/> </inline-formula>-sets algorithm converges in the same way as a sequential version of the classical kernel <inline-formula><tex-math notation="LaTeX">K</tex-math> <inline-graphic xlink:type="simple" xlink:href="chang-ieq5-2516339.gif"/> </inline-formula>-means algorithm. The key difference is that a cohesion measure does not need to be positive semi-definite. |
| Author | Liao, Wanjiun Chang, Cheng-Shang Chen, Yu-Sheng Liou, Li-Heng |
| Author_xml | – sequence: 1 givenname: Cheng-Shang surname: Chang fullname: Chang, Cheng-Shang email: cschang@ee.nthu.edu.tw organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C – sequence: 2 givenname: Wanjiun surname: Liao fullname: Liao, Wanjiun email: wjliao@ntu.edu.tw organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C – sequence: 3 givenname: Yu-Sheng surname: Chen fullname: Chen, Yu-Sheng email: r01921042@ntu.edu.tw organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C – sequence: 4 givenname: Li-Heng surname: Liou fullname: Liou, Li-Heng email: dacapo1142@gmail.com organization: Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C |
| BookMark | eNp9kD1PwzAQhi1UJErpD0AskZgTbF9ix2NVlQ-phaFFYrNcc6Gu0qTY7tB_T6JWDAxMd9I9753uuSaDpm2QkFtGM8aoeli9LmcZp0xkvGACQF2QIQfIU-DqY9D3XKa5UPKKjEPYUkoZLzsOhqSYJAsTN7gz0VlTJ6sNtv6YVK1PpvUhRPSu-UpckywwemeT5d5YDDfksjJ1wPG5jsj742w1fU7nb08v08k8tVxBTNeAlUVjKynLQqkcAHOuuEHxCahKYQ2jQLtxZdfComL5mpWqEIjUKEAGI3J_2rv37fcBQ9Tb9uCb7qRmspS8ZN2zHSVPlPVtCB4rbV3s_mmb6I2rNaO616R7TbrXpM-auiT7k9x7tzP--G_m7pRxiPjLS5AlVxJ-AGdGc-c |
| CODEN | ITNSD5 |
| CitedBy_id | crossref_primary_10_1007_s11403_020_00309_y crossref_primary_10_1016_j_jebo_2022_10_029 crossref_primary_10_11648_j_engmath_20250901_11 crossref_primary_10_1007_s41109_022_00452_4 crossref_primary_10_1007_s00500_023_09456_3 crossref_primary_10_1038_s41598_017_12401_8 crossref_primary_10_1109_TNET_2017_2762403 crossref_primary_10_1016_j_trc_2018_02_011 crossref_primary_10_1109_TNSE_2018_2870671 crossref_primary_10_1109_TSP_2021_3102106 crossref_primary_10_1109_TNSE_2019_2903913 crossref_primary_10_3390_sym10100430 crossref_primary_10_1007_s10586_017_0818_3 crossref_primary_10_1109_TNSE_2018_2815686 crossref_primary_10_1109_ACCESS_2024_3355057 crossref_primary_10_1109_JIOT_2020_2993410 crossref_primary_10_1371_journal_pone_0255174 crossref_primary_10_1109_ACCESS_2024_3521383 |
| Cites_doi | 10.1515/zna-2003-9-1003 10.1140/epjst/e2010-01179-1 10.1007/978-1-4614-6729-8_7 10.1145/2450142.2450144 10.1016/S0031-3203(99)00076-X 10.1073/pnas.0903215107 10.1145/2591796.2591857 10.1073/pnas.1312486110 10.1109/TPAMI.2010.88 10.1016/j.patcog.2007.05.018 10.1007/978-3-642-38236-9_9 10.1103/PhysRevE.69.026113 10.1007/s11222-007-9033-z 10.1103/PhysRevE.69.066133 10.1109/TPAMI.2005.88 10.1109/MCSE.2011.37 10.1145/331499.331504 10.1017/nws.2015.23 10.1109/ICCV.2003.1238361 10.1088/1742-5468/2008/10/P10008 10.1073/pnas.0611034104 10.1109/TKDE.2007.190689 10.1007/s00453-004-1127-9 10.1080/0094965031000136012 10.1109/34.868688 10.5486/PMD.1959.6.3-4.12 10.1109/TPAMI.2007.1115 10.1016/0031-3203(73)90048-4 10.1109/TIT.1982.1056489 10.1073/pnas.0500334102 10.1016/j.eswa.2008.01.039 10.1371/journal.pone.0018961 10.1007/978-3-642-32512-0_50 10.1016/S0167-9473(00)00052-9 10.14778/2180912.2180915 10.1016/j.patrec.2009.09.011 10.1145/956863.956972 10.1145/1015330.1015408 10.1109/INFCOM.2011.5935256 10.1016/j.patrec.2007.12.011 10.1086/jar.33.4.3629752 10.1021/ct200463m |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2016.2516339 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 16 |
| ExternalDocumentID | 4048076111 10_1109_TNSE_2016_2516339 7378297 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Council grantid: NSC102-2221-E-002-014-MY2; 102-2221-E-007-006-MY3 funderid: 10.13039/501100001868 – fundername: Excellent Research Projects of National Taiwan University grantid: AE00-00-04 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-b3efceacf778599433e4292ae6d3e986ca1030cf7fcb6ce914b18956ee0a93e13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409670400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4697 |
| IngestDate | Mon Jun 30 10:02:21 EDT 2025 Tue Nov 18 22:11:23 EST 2025 Sat Nov 29 04:55:49 EST 2025 Wed Aug 27 03:08:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | K-sets hierarchical algorithms Clustering convergence duality partitional algorithms |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-b3efceacf778599433e4292ae6d3e986ca1030cf7fcb6ce914b18956ee0a93e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1787281339 |
| PQPubID | 2040409 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TNSE_2016_2516339 ieee_primary_7378297 crossref_citationtrail_10_1109_TNSE_2016_2516339 proquest_journals_1787281339 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Jan.-March-1 2016-1-1 20160101 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan.-March-1 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref12 csardi (ref56) 2006 ref14 ref53 ref52 ref55 ref11 ref54 ref17 ref16 jardine (ref23) 1971 lecun (ref58) 2010 ref19 ref18 dhillon (ref61) 2004 ref51 arthur (ref10) 0 ref45 saade (ref47) 0 ref42 carlsson (ref28) 0 ref41 ref43 theodoridis (ref1) 2006 ref49 ref8 ref7 ref9 ref4 ref3 rajaraman (ref2) 2012 kleinberg (ref26) 0 pedregosa (ref59) 2011; 12 ref5 ref40 ester (ref30) 0; 96 ref35 ref34 ref37 ref36 ref31 ref33 ref32 campigotto (ref63) 0 ref39 ref38 luxburg (ref22) 0 erdös (ref46) 1959; 6 ref24 ben-hur (ref15) 2002; 2 ref25 ref20 mossel (ref50) 0 ref21 kaufman (ref6) 2009; 344 ng (ref44) 0; 2 zadeh (ref27) 2009 ref60 ref62 ben-david (ref29) 0 decelle (ref48) 2012 |
| References_xml | – ident: ref55 doi: 10.1515/zna-2003-9-1003 – ident: ref53 doi: 10.1140/epjst/e2010-01179-1 – ident: ref39 doi: 10.1007/978-1-4614-6729-8_7 – volume: 2 start-page: 125 year: 2002 ident: ref15 article-title: Support vector clustering publication-title: J Mach Learn Res – ident: ref21 doi: 10.1145/2450142.2450144 – ident: ref25 doi: 10.1016/S0031-3203(99)00076-X – ident: ref40 doi: 10.1073/pnas.0903215107 – ident: ref49 doi: 10.1145/2591796.2591857 – volume: 2 start-page: 849 year: 0 ident: ref44 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Adv Neural Inf Process Syst – ident: ref57 doi: 10.1073/pnas.1312486110 – year: 2012 ident: ref48 – start-page: 121 year: 0 ident: ref29 article-title: Measures of clustering quality: A working set of axioms for clustering publication-title: Proc Adv Neural Inf Process Syst – ident: ref18 doi: 10.1109/TPAMI.2010.88 – ident: ref20 doi: 10.1016/j.patcog.2007.05.018 – ident: ref13 doi: 10.1007/978-3-642-38236-9_9 – ident: ref37 doi: 10.1103/PhysRevE.69.026113 – ident: ref19 doi: 10.1007/s11222-007-9033-z – ident: ref36 doi: 10.1103/PhysRevE.69.066133 – ident: ref17 doi: 10.1109/TPAMI.2005.88 – year: 2004 ident: ref61 article-title: A unified view of kernel k-means, spectral clustering and graph cuts – ident: ref54 doi: 10.1109/MCSE.2011.37 – year: 0 ident: ref22 article-title: Towards a statistical theory of clustering publication-title: EU-PASCAL Statistics and Optimization of Clustering Workshop – ident: ref3 doi: 10.1145/331499.331504 – ident: ref34 doi: 10.1017/nws.2015.23 – year: 2010 ident: ref58 – ident: ref43 doi: 10.1109/ICCV.2003.1238361 – ident: ref38 doi: 10.1088/1742-5468/2008/10/P10008 – ident: ref52 doi: 10.1073/pnas.0611034104 – ident: ref35 doi: 10.1109/TKDE.2007.190689 – ident: ref9 doi: 10.1007/s00453-004-1127-9 – ident: ref7 doi: 10.1080/0094965031000136012 – start-page: 406 year: 0 ident: ref47 article-title: Spectral clustering of graphs with the Bethe Hessian publication-title: Proc Adv Neural Inf Process Syst – ident: ref14 doi: 10.1109/34.868688 – volume: 6 start-page: 290 year: 1959 ident: ref46 article-title: On random graphs publication-title: Publ Math Debrecen doi: 10.5486/PMD.1959.6.3-4.12 – year: 0 ident: ref28 article-title: Hierarchical quasi-clustering methods for asymmetric networks publication-title: arXiv preprint arXiv 1404 4655 – ident: ref62 doi: 10.1109/TPAMI.2007.1115 – start-page: 639 year: 2009 ident: ref27 article-title: A uniqueness theorem for clustering publication-title: Proc 25th Conf Uncertainty Artif Intell – ident: ref24 doi: 10.1016/0031-3203(73)90048-4 – ident: ref5 doi: 10.1109/TIT.1982.1056489 – year: 0 ident: ref63 article-title: A generalized and adaptive method for community detection publication-title: arXiv preprint arXiv 1406 2518 – start-page: 1027 year: 0 ident: ref10 article-title: K-means++: The advantages of careful seeding publication-title: Proc 18th Annu ACM-SIAM Symp Discr Algorithms – year: 2012 ident: ref2 publication-title: Mining of Massive Datasets – ident: ref45 doi: 10.1073/pnas.0500334102 – ident: ref8 doi: 10.1016/j.eswa.2008.01.039 – volume: 96 start-page: 226 year: 0 ident: ref30 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining – start-page: 463 year: 0 ident: ref26 article-title: An impossibility theorem for clustering publication-title: Proc Adv Neural Inf Process Syst – start-page: 1695 year: 2006 ident: ref56 publication-title: InterJ – ident: ref51 doi: 10.1371/journal.pone.0018961 – ident: ref12 doi: 10.1007/978-3-642-32512-0_50 – ident: ref31 doi: 10.1016/S0167-9473(00)00052-9 – volume: 344 year: 2009 ident: ref6 publication-title: Finding Groups in Data An Introduction to Cluster Analysis – ident: ref11 doi: 10.14778/2180912.2180915 – ident: ref4 doi: 10.1016/j.patrec.2009.09.011 – ident: ref33 doi: 10.1145/956863.956972 – year: 2006 ident: ref1 publication-title: Pattern Recognition – ident: ref16 doi: 10.1145/1015330.1015408 – ident: ref41 doi: 10.1109/INFCOM.2011.5935256 – ident: ref32 doi: 10.1016/j.patrec.2007.12.011 – year: 0 ident: ref50 article-title: A proof of the block model threshold conjecture publication-title: arXiv preprint arXiv 1311 4115 – ident: ref42 doi: 10.1086/jar.33.4.3629752 – year: 1971 ident: ref23 publication-title: Mathematical Taxonomy – ident: ref60 doi: 10.1021/ct200463m – volume: 12 start-page: 2825 year: 2011 ident: ref59 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res |
| SSID | ssj0001286333 |
| Score | 2.1609783 |
| Snippet | Clustering is one of the most fundamental problems in data analysis and it has been studied extensively in the literature. Though many clustering algorithms... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2 |
| SubjectTerms | Algorithm design and analysis Algorithms Clustering Clustering algorithms convergence duality Extraterrestrial measurements hierarchical algorithms K-sets Kernel Minimization partitional algorithms Partitioning algorithms |
| Title | A Mathematical Theory for Clustering in Metric Spaces |
| URI | https://ieeexplore.ieee.org/document/7378297 https://www.proquest.com/docview/1787281339 |
| Volume | 3 |
| WOSCitedRecordID | wos000409670400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UemgPfdlSW1v20FNpNHGTfRxFlF6Ugha8hc1mFgSJ4qO_v7tJDJaWQm-BnQ3h283MzuzMfADPQik_NSn3jFTWQYmU8WQYhl4QBlo6diQhTU42wScTMZ_L9xq8VrUwiJgnn2HHPeZ3-elK712orMspd5WgdahzzoparaN4imCU0vLiMvBldzaZDl3uFutYG27H5DfTk3Op_FDAuVUZXfzvey7hvDw9kn6x3FdQw-wazo56CjYh6pNx1YrVyhbF98SeTclguXdtEawYWWRk7Li0NJmuXVLWDXyMhrPBm1dyI3jaGuidl1A02ipNw7mIpAwpRUc8pZClFKVgWjn-MDtsdMI0yiBMAmF9IURfSYoBvYVGtsrwDgjTUZRGPez5hoaaaplqQxNOU2ZQCem3wD_AFuuycbjjr1jGuQPhy9ghHTuk4xLpFrxUU9ZF14y_hJsO2kqwRLUF7cPaxOV_tY0Dq196wvrV8v73WQ9w6t5dBEna0Nht9vgIJ_pzt9hunvIt8wXgwr8R |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv8Xp1D74JHZrl34kj2NsTNyKsAl7C2l6gcHoxj78-03arkwUwbdCLrT8kt7lLnf3A3iiQjiJSkJbMaEdFF8om3meZ7ueK5lhR6JMZWQTYRTRyYS9V-ClrIVBxCz5DBvmMbvLT-ZyY0JlzZCEphJ0D_YNc1ZRrbUTUaEBIaS4unQd1hxHo67J3goa2orrMfbN-GRsKj9UcGZXeqf_-6IzOCnOj1Y7X_BzqGB6Acc7XQUvwW9bw7IZq5bNy-8tfTq1OrONaYygxaxpag0Nm5a0RguTlnUFH73uuNO3C3YEW2oTvbZjgkpqtanCkPqMeYSgoZ4SGCQEGQ2kMAxieljJOJDIXC92qfaGEB3BCLrkGqrpPMUbsALp-4nfwpajiCeJZIlUJA5JEigUlDk1cLawcVm0DjcMFjOeuRAO4wZpbpDmBdI1eC6nLPK-GX8JXxpoS8EC1RrUt2vDiz9rxV2tYVpUe9bs9vdZj3DYHw8HfPAavd3BkXlPHjKpQ3W93OA9HMjP9XS1fMi2zxcBZ8Ja |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mathematical+Theory+for+Clustering+in+Metric+Spaces&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Chang%2C+Cheng-Shang&rft.au=Liao%2C+Wanjiun&rft.au=Chen%2C+Yu-Sheng&rft.au=Liou%2C+Li-Heng&rft.date=2016-01-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=3&rft.issue=1&rft.spage=2&rft.epage=16&rft_id=info:doi/10.1109%2FTNSE.2016.2516339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2016_2516339 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |