Learning Locality-Constrained Sparse Coding for Spectral Enhancement of Multispectral Imagery
Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote sensing. However, the limited spectral information of MS data, to a great extent, leads to difficulties in classifying the materials more accurately...
Gespeichert in:
| Veröffentlicht in: | IEEE geoscience and remote sensing letters Jg. 19; S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote sensing. However, the limited spectral information of MS data, to a great extent, leads to difficulties in classifying the materials more accurately, particularly for those classes that have very similar visual appearances. To address this issue effectively, we attempt to enhance the spectral resolution of MS imagery, enabling the identification of materials at a more precise level by the means of richer spectral information. More specifically, we propose to learn locality-constrained sparse coding (LCSC) for short, on partially overlapped hyperspectral (HS)-MS pairs (i.e., dictionary). LCSC is capable of capturing neighboring relations well by enforcing the local constraint for each pixel. Such a strategy makes it possible to better reconstruct HS products from MS images and partially overlapped HS images. Reconstruction and unmixing are explored as potential applications to assess the performance of spectral enhancement. Extensive experiments are conducted on two HS-MS data sets in comparison with several state-of-the-art baselines, which demonstrate the effectiveness of the proposed LCSC algorithm in the task of spectral enhancement. |
|---|---|
| AbstractList | Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote sensing. However, the limited spectral information of MS data, to a great extent, leads to difficulties in classifying the materials more accurately, particularly for those classes that have very similar visual appearances. To address this issue effectively, we attempt to enhance the spectral resolution of MS imagery, enabling the identification of materials at a more precise level by the means of richer spectral information. More specifically, we propose to learn locality-constrained sparse coding (LCSC) for short, on partially overlapped hyperspectral (HS)-MS pairs (i.e., dictionary). LCSC is capable of capturing neighboring relations well by enforcing the local constraint for each pixel. Such a strategy makes it possible to better reconstruct HS products from MS images and partially overlapped HS images. Reconstruction and unmixing are explored as potential applications to assess the performance of spectral enhancement. Extensive experiments are conducted on two HS-MS data sets in comparison with several state-of-the-art baselines, which demonstrate the effectiveness of the proposed LCSC algorithm in the task of spectral enhancement. |
| Author | Gao, Lianru Chanussot, Jocelyn Wu, Xin Hong, Danfeng Zhang, Bing |
| Author_xml | – sequence: 1 givenname: Danfeng orcidid: 0000-0002-3212-9584 surname: Hong fullname: Hong, Danfeng email: danfeng.hong@dlr.de organization: Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Wessling, Germany – sequence: 2 givenname: Xin orcidid: 0000-0002-1733-3560 surname: Wu fullname: Wu, Xin email: 040251522wuxin@163.com organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Lianru orcidid: 0000-0003-3888-8124 surname: Gao fullname: Gao, Lianru email: gaolr@aircas.ac.cn organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Bing orcidid: 0000-0001-7311-9844 surname: Zhang fullname: Zhang, Bing email: zb@radi.ac.cn organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Jocelyn orcidid: 0000-0003-4817-2875 surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn@hi.is organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China |
| BookMark | eNp9kEtLw0AUhQepYFv9AeIm4Dp1nnksJdRaiAhWwY2ESXKnTkln6sx00X9vQqsLF67u5Z5z7oFvgkbGGkDomuAZITi_KxcvqxnFFM8Y5oxjeobGRIgsxiIlo2HnIhZ59n6BJt5vMKY8y9Ix-ihBOqPNOiptIzsdDnFhjQ9OagNttNpJ5yEqbDtYlHX9BZpe7aK5-ZSmgS2YEFkVPe27oP2PuNzKNbjDJTpXsvNwdZpT9PYwfy0e4_J5sSzuy7ihOQtxTVuV8IQwAorSmiieMgY1oUmLM9LUqQCWtLIGzlJF6jxPuGgprwFoVhPI2BTdHv_unP3agw_Vxu6d6SsrmhBBEsFY2rvI0dU4670DVe2c3kp3qAiuBorVQLEaKFYnin0m_ZNpdJBBWzMg6v5N3hyTGgB-m3KGBaWCfQOdRYI4 |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_TGRS_2025_3607325 |
| Cites_doi | 10.1016/j.isprsjprs.2019.09.008 10.1109/LGRS.2019.2919755 10.1109/MGRS.2016.2637824 10.1109/TGRS.2005.844293 10.1561/9781601984616 10.1109/TGRS.2020.3000684 10.1093/nsr/nwz058 10.1109/TGRS.2018.2890705 10.1109/TIP.2018.2878958 10.1109/TGRS.2020.3016820 10.1109/JSTARS.2014.2356512 10.1109/MGRS.2020.2979764 10.1109/TGRS.2020.3015157 10.1016/j.isprsjprs.2018.10.006 10.1117/12.606054 10.1109/CVPR.2010.5540018 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2020.3043402 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LGRS_2020_3043402 9305225 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41722108 funderid: 10.13039/501100001809 – fundername: AXA Research Fund funderid: 10.13039/501100001961 – fundername: National Key Research and Development Program of China grantid: 2016YFB0500502 funderid: 10.13039/501100012166 – fundername: MIAI@Grenoble Alpes grantid: ANR-19-P3IA-0003 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-b2df646131ef22b1f4733eb126d081cb75e36dabe437f1b99645d24bee28b1e83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735565000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 10:16:58 EDT 2025 Sat Nov 29 05:54:04 EST 2025 Tue Nov 18 21:59:18 EST 2025 Wed Aug 27 04:55:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-b2df646131ef22b1f4733eb126d081cb75e36dabe437f1b99645d24bee28b1e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7311-9844 0000-0003-3888-8124 0000-0003-4817-2875 0000-0002-1733-3560 0000-0002-3212-9584 |
| PQID | 2615165337 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1109_LGRS_2020_3043402 crossref_citationtrail_10_1109_LGRS_2020_3043402 ieee_primary_9305225 proquest_journals_2615165337 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Yokoya (ref12) ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.1016/j.isprsjprs.2019.09.008 – ident: ref6 doi: 10.1109/LGRS.2019.2919755 – ident: ref8 doi: 10.1109/MGRS.2016.2637824 – ident: ref17 doi: 10.1109/TGRS.2005.844293 – ident: ref15 doi: 10.1561/9781601984616 – ident: ref4 doi: 10.1109/TGRS.2020.3000684 – volume-title: Proc. WHISPERS ident: ref12 article-title: Spectral enhancement of multispectral imagery using partially overlapped hyperspectral data and sparse signal representation – ident: ref9 doi: 10.1093/nsr/nwz058 – ident: ref3 doi: 10.1109/TGRS.2018.2890705 – ident: ref7 doi: 10.1109/TIP.2018.2878958 – ident: ref5 doi: 10.1109/TGRS.2020.3016820 – ident: ref11 doi: 10.1109/JSTARS.2014.2356512 – ident: ref2 doi: 10.1109/MGRS.2020.2979764 – ident: ref14 doi: 10.1109/TGRS.2020.3015157 – ident: ref16 doi: 10.1016/j.isprsjprs.2018.10.006 – ident: ref10 doi: 10.1117/12.606054 – ident: ref13 doi: 10.1109/CVPR.2010.5540018 |
| SSID | ssj0024887 |
| Score | 2.317508 |
| Snippet | Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Coding Constraints Hyperspectral (HS) Hyperspectral imaging Image coding Image enhancement Image reconstruction Imagery locality multispectral (MS) Optimization partially Performance assessment Remote sensing remote sensing (RS) Signal resolution sparse coding Spatial resolution Spectra spectral enhancement Spectral resolution Task analysis |
| Title | Learning Locality-Constrained Sparse Coding for Spectral Enhancement of Multispectral Imagery |
| URI | https://ieeexplore.ieee.org/document/9305225 https://www.proquest.com/docview/2615165337 |
| Volume | 19 |
| WOSCitedRecordID | wos000735565000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFL34FtcXOXgSq22aNu1RxBcsIr7Yi5SmmbgH3RVfsP_emWx2PSiCt0KTtslMM99MMvMB7DbWuYwWwajOmpgclLqOihqbCFFztXONxp_yvW_ry8ui0ymvJmB_nAuDiP7wGR7wpd_Lt_3mg0NlhyUpJ-nfJExqnQ9ztb7r6hWeDI8RQZSVRSfsYCZxedg-u74hT1CSgxqrVIUIysgGeVKVHyuxNy-nC__7sEWYDzBSHA3lvgQT2FuG2cBo3h0sw8yZp-wdrMBDKKH6KNpstwh1R8zS6bkh0IqbF3JtURz32YgJgrCCKek5_iFOel3WCX636Dvhc3XfRjcvnrn6xWAV7k5Pbo_Po0CqEDVk2d8jI63LFRnxBJ2UJnFKpykt2DK3hA4aozNMc1sbVKl2iSF3SGVWKoMoC5Ngka7BVK_fw3UQSktlsUBHTyZUlZg6qW1MnYzJ0txhC-LRNFdNqDjOg3uqvOcRlxVLpmLJVEEyLdgbd3kZltv4q_EKi2LcMEihBVsjWVbhh3yrJCO3nLCt3vi91ybMSc5s8NGVLZh6f_3AbZhuPmlmX3e8rn0BWvPSOQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4tW9D2QstL3UKLD5wQgcRxXsdqxUukK8RLe0FRHI-7h7K74iXtv2fGeJcDqFJvkWInsb-J52HPfAA7jbE2oUUwqJMmJAelroO8xiZAzLjaeYbanfK9KbN-Px8MivMW7M1zYRDRHT7Dfb50e_lm3DxxqOygIOEk-VuAT8yc5bO13irr5Y4Oj22CICnygd_DjMLioDy-uCRfUJKLGqpY-RjKTAs5WpV3a7FTMEdf_u_TvsKyNyTFr1fkV6CFo1XoeE7z4XQVlo4dae90DW59EdU_omTNRXZ3wDydjh0CjbickHOLojdmNSbIiBVMSs8REHE4GrJU8LvF2AqXrfswu3l6x_UvputwfXR41TsJPK1C0JBufwy0NDZVpMYjtFLqyKosjmnJlqkh-6DRWYJxamqNKs5spMkhUomRSiPKXEeYxxvQHo1H-A2EyqQymKOlJxMika6j2oTUSeskTi12IZxNc9X4muM8uL-V8z3ComJkKkam8sh0YXfeZfJacONfjdcYinlDj0IXtmZYVv6XfKgk224pWbfZ9497bUPn5Op3WZWn_bNN-Cw5z8HFWrag_Xj_hD9gsXmmWb7_6eTuBXgj1YI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Locality-Constrained+Sparse+Coding+for+Spectral+Enhancement+of+Multispectral+Imagery&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Hong%2C+Danfeng&rft.au=Wu%2C+Xin&rft.au=Gao%2C+Lianru&rft.au=Zhang%2C+Bing&rft.date=2022&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3043402&rft.externalDocID=9305225 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |