Learning Locality-Constrained Sparse Coding for Spectral Enhancement of Multispectral Imagery

Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote sensing. However, the limited spectral information of MS data, to a great extent, leads to difficulties in classifying the materials more accurately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters Jg. 19; S. 1 - 5
Hauptverfasser: Hong, Danfeng, Wu, Xin, Gao, Lianru, Zhang, Bing, Chanussot, Jocelyn
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-598X, 1558-0571
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote sensing. However, the limited spectral information of MS data, to a great extent, leads to difficulties in classifying the materials more accurately, particularly for those classes that have very similar visual appearances. To address this issue effectively, we attempt to enhance the spectral resolution of MS imagery, enabling the identification of materials at a more precise level by the means of richer spectral information. More specifically, we propose to learn locality-constrained sparse coding (LCSC) for short, on partially overlapped hyperspectral (HS)-MS pairs (i.e., dictionary). LCSC is capable of capturing neighboring relations well by enforcing the local constraint for each pixel. Such a strategy makes it possible to better reconstruct HS products from MS images and partially overlapped HS images. Reconstruction and unmixing are explored as potential applications to assess the performance of spectral enhancement. Extensive experiments are conducted on two HS-MS data sets in comparison with several state-of-the-art baselines, which demonstrate the effectiveness of the proposed LCSC algorithm in the task of spectral enhancement.
AbstractList Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote sensing. However, the limited spectral information of MS data, to a great extent, leads to difficulties in classifying the materials more accurately, particularly for those classes that have very similar visual appearances. To address this issue effectively, we attempt to enhance the spectral resolution of MS imagery, enabling the identification of materials at a more precise level by the means of richer spectral information. More specifically, we propose to learn locality-constrained sparse coding (LCSC) for short, on partially overlapped hyperspectral (HS)-MS pairs (i.e., dictionary). LCSC is capable of capturing neighboring relations well by enforcing the local constraint for each pixel. Such a strategy makes it possible to better reconstruct HS products from MS images and partially overlapped HS images. Reconstruction and unmixing are explored as potential applications to assess the performance of spectral enhancement. Extensive experiments are conducted on two HS-MS data sets in comparison with several state-of-the-art baselines, which demonstrate the effectiveness of the proposed LCSC algorithm in the task of spectral enhancement.
Author Gao, Lianru
Chanussot, Jocelyn
Wu, Xin
Hong, Danfeng
Zhang, Bing
Author_xml – sequence: 1
  givenname: Danfeng
  orcidid: 0000-0002-3212-9584
  surname: Hong
  fullname: Hong, Danfeng
  email: danfeng.hong@dlr.de
  organization: Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Wessling, Germany
– sequence: 2
  givenname: Xin
  orcidid: 0000-0002-1733-3560
  surname: Wu
  fullname: Wu, Xin
  email: 040251522wuxin@163.com
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Lianru
  orcidid: 0000-0003-3888-8124
  surname: Gao
  fullname: Gao, Lianru
  email: gaolr@aircas.ac.cn
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Bing
  orcidid: 0000-0001-7311-9844
  surname: Zhang
  fullname: Zhang, Bing
  email: zb@radi.ac.cn
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Jocelyn
  orcidid: 0000-0003-4817-2875
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn@hi.is
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kEtLw0AUhQepYFv9AeIm4Dp1nnksJdRaiAhWwY2ESXKnTkln6sx00X9vQqsLF67u5Z5z7oFvgkbGGkDomuAZITi_KxcvqxnFFM8Y5oxjeobGRIgsxiIlo2HnIhZ59n6BJt5vMKY8y9Ix-ihBOqPNOiptIzsdDnFhjQ9OagNttNpJ5yEqbDtYlHX9BZpe7aK5-ZSmgS2YEFkVPe27oP2PuNzKNbjDJTpXsvNwdZpT9PYwfy0e4_J5sSzuy7ihOQtxTVuV8IQwAorSmiieMgY1oUmLM9LUqQCWtLIGzlJF6jxPuGgprwFoVhPI2BTdHv_unP3agw_Vxu6d6SsrmhBBEsFY2rvI0dU4670DVe2c3kp3qAiuBorVQLEaKFYnin0m_ZNpdJBBWzMg6v5N3hyTGgB-m3KGBaWCfQOdRYI4
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TGRS_2025_3607325
Cites_doi 10.1016/j.isprsjprs.2019.09.008
10.1109/LGRS.2019.2919755
10.1109/MGRS.2016.2637824
10.1109/TGRS.2005.844293
10.1561/9781601984616
10.1109/TGRS.2020.3000684
10.1093/nsr/nwz058
10.1109/TGRS.2018.2890705
10.1109/TIP.2018.2878958
10.1109/TGRS.2020.3016820
10.1109/JSTARS.2014.2356512
10.1109/MGRS.2020.2979764
10.1109/TGRS.2020.3015157
10.1016/j.isprsjprs.2018.10.006
10.1117/12.606054
10.1109/CVPR.2010.5540018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2020.3043402
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2020_3043402
9305225
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41722108
  funderid: 10.13039/501100001809
– fundername: AXA Research Fund
  funderid: 10.13039/501100001961
– fundername: National Key Research and Development Program of China
  grantid: 2016YFB0500502
  funderid: 10.13039/501100012166
– fundername: MIAI@Grenoble Alpes
  grantid: ANR-19-P3IA-0003
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-b2df646131ef22b1f4733eb126d081cb75e36dabe437f1b99645d24bee28b1e83
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735565000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 10:16:58 EDT 2025
Sat Nov 29 05:54:04 EST 2025
Tue Nov 18 21:59:18 EST 2025
Wed Aug 27 04:55:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b2df646131ef22b1f4733eb126d081cb75e36dabe437f1b99645d24bee28b1e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7311-9844
0000-0003-3888-8124
0000-0003-4817-2875
0000-0002-1733-3560
0000-0002-3212-9584
PQID 2615165337
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2020_3043402
crossref_citationtrail_10_1109_LGRS_2020_3043402
ieee_primary_9305225
proquest_journals_2615165337
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Yokoya (ref12)
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1016/j.isprsjprs.2019.09.008
– ident: ref6
  doi: 10.1109/LGRS.2019.2919755
– ident: ref8
  doi: 10.1109/MGRS.2016.2637824
– ident: ref17
  doi: 10.1109/TGRS.2005.844293
– ident: ref15
  doi: 10.1561/9781601984616
– ident: ref4
  doi: 10.1109/TGRS.2020.3000684
– volume-title: Proc. WHISPERS
  ident: ref12
  article-title: Spectral enhancement of multispectral imagery using partially overlapped hyperspectral data and sparse signal representation
– ident: ref9
  doi: 10.1093/nsr/nwz058
– ident: ref3
  doi: 10.1109/TGRS.2018.2890705
– ident: ref7
  doi: 10.1109/TIP.2018.2878958
– ident: ref5
  doi: 10.1109/TGRS.2020.3016820
– ident: ref11
  doi: 10.1109/JSTARS.2014.2356512
– ident: ref2
  doi: 10.1109/MGRS.2020.2979764
– ident: ref14
  doi: 10.1109/TGRS.2020.3015157
– ident: ref16
  doi: 10.1016/j.isprsjprs.2018.10.006
– ident: ref10
  doi: 10.1117/12.606054
– ident: ref13
  doi: 10.1109/CVPR.2010.5540018
SSID ssj0024887
Score 2.317508
Snippet Owing to easy acquisition and large coverage from the space, multispectral (MS) imaging has garnered growing interest in various applications of remote...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Coding
Constraints
Hyperspectral (HS)
Hyperspectral imaging
Image coding
Image enhancement
Image reconstruction
Imagery
locality
multispectral (MS)
Optimization
partially
Performance assessment
Remote sensing
remote sensing (RS)
Signal resolution
sparse coding
Spatial resolution
Spectra
spectral enhancement
Spectral resolution
Task analysis
Title Learning Locality-Constrained Sparse Coding for Spectral Enhancement of Multispectral Imagery
URI https://ieeexplore.ieee.org/document/9305225
https://www.proquest.com/docview/2615165337
Volume 19
WOSCitedRecordID wos000735565000038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFL34FtcXOXgSq22aNu1RxBcsIr7Yi5SmmbgH3RVfsP_emWx2PSiCt0KTtslMM99MMvMB7DbWuYwWwajOmpgclLqOihqbCFFztXONxp_yvW_ry8ui0ymvJmB_nAuDiP7wGR7wpd_Lt_3mg0NlhyUpJ-nfJExqnQ9ztb7r6hWeDI8RQZSVRSfsYCZxedg-u74hT1CSgxqrVIUIysgGeVKVHyuxNy-nC__7sEWYDzBSHA3lvgQT2FuG2cBo3h0sw8yZp-wdrMBDKKH6KNpstwh1R8zS6bkh0IqbF3JtURz32YgJgrCCKek5_iFOel3WCX636Dvhc3XfRjcvnrn6xWAV7k5Pbo_Po0CqEDVk2d8jI63LFRnxBJ2UJnFKpykt2DK3hA4aozNMc1sbVKl2iSF3SGVWKoMoC5Ngka7BVK_fw3UQSktlsUBHTyZUlZg6qW1MnYzJ0txhC-LRNFdNqDjOg3uqvOcRlxVLpmLJVEEyLdgbd3kZltv4q_EKi2LcMEihBVsjWVbhh3yrJCO3nLCt3vi91ybMSc5s8NGVLZh6f_3AbZhuPmlmX3e8rn0BWvPSOQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4tW9D2QstL3UKLD5wQgcRxXsdqxUukK8RLe0FRHI-7h7K74iXtv2fGeJcDqFJvkWInsb-J52HPfAA7jbE2oUUwqJMmJAelroO8xiZAzLjaeYbanfK9KbN-Px8MivMW7M1zYRDRHT7Dfb50e_lm3DxxqOygIOEk-VuAT8yc5bO13irr5Y4Oj22CICnygd_DjMLioDy-uCRfUJKLGqpY-RjKTAs5WpV3a7FTMEdf_u_TvsKyNyTFr1fkV6CFo1XoeE7z4XQVlo4dae90DW59EdU_omTNRXZ3wDydjh0CjbickHOLojdmNSbIiBVMSs8REHE4GrJU8LvF2AqXrfswu3l6x_UvputwfXR41TsJPK1C0JBufwy0NDZVpMYjtFLqyKosjmnJlqkh-6DRWYJxamqNKs5spMkhUomRSiPKXEeYxxvQHo1H-A2EyqQymKOlJxMika6j2oTUSeskTi12IZxNc9X4muM8uL-V8z3ComJkKkam8sh0YXfeZfJacONfjdcYinlDj0IXtmZYVv6XfKgk224pWbfZ9497bUPn5Op3WZWn_bNN-Cw5z8HFWrag_Xj_hD9gsXmmWb7_6eTuBXgj1YI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Locality-Constrained+Sparse+Coding+for+Spectral+Enhancement+of+Multispectral+Imagery&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Hong%2C+Danfeng&rft.au=Wu%2C+Xin&rft.au=Gao%2C+Lianru&rft.au=Zhang%2C+Bing&rft.date=2022&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3043402&rft.externalDocID=9305225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon