Influence Maximization on Social Graphs: A Survey

Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technica...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 30; no. 10; pp. 1852 - 1872
Main Authors: Li, Yuchen, Fan, Ju, Wang, Yanhao, Tan, Kian-Lee
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.
AbstractList Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an algorithmic perspective, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.
Author Li, Yuchen
Wang, Yanhao
Fan, Ju
Tan, Kian-Lee
Author_xml – sequence: 1
  givenname: Yuchen
  orcidid: 0000-0001-9646-291X
  surname: Li
  fullname: Li, Yuchen
  email: yuchenli@smu.edu.sg
  organization: School of Information Systems, Singapore Management University, Singapore
– sequence: 2
  givenname: Ju
  orcidid: 0000-0003-4729-9903
  surname: Fan
  fullname: Fan, Ju
  email: fanj@ruc.edu.cn
  organization: Key Lab of Data Engineering and Knowledge Engineering, MOE of China, and the School of Information, Renmin University of China, Beijing, China
– sequence: 3
  givenname: Yanhao
  orcidid: 0000-0002-7661-3917
  surname: Wang
  fullname: Wang, Yanhao
  email: yanhao90@comp.nus.edu.sg
  organization: School of Computing, National University of Singapore, Singapore
– sequence: 4
  givenname: Kian-Lee
  surname: Tan
  fullname: Tan, Kian-Lee
  email: tankl@comp.nus.edu.sg
  organization: School of Computing, National University of Singapore, Singapore
BookMark eNp9kE9Lw0AQxRepYK1-APES8Jy6s3-SjbdSay1WPLSel-1mFrekSd0kYv30prZ48CAMzMC8N4_5nZNeWZVIyBXQIQDNbpdP95Mho6CGTNFUCX5C-iClihlk0OtmKiAWXKRn5Lyu15RSlSroE5iVrmixtBg9m0-_8V-m8VUZdbWorDdFNA1m-1bfRaNo0YYP3F2QU2eKGi-PfUBeHybL8WM8f5nOxqN5bFnGm9jkJs2d4GhlgtyBQZ7jylIExxF4IlbWMGkSyiBxXORSdIvc0BzFSmYp5QNyc7i7DdV7i3Wj11Ubyi5SM4AUEpFlqlPBQWVDVdcBnd4GvzFhp4HqPRm9J6P3ZPSRTOdJ_3isb37eboLxxb_O64PTI-JvkmKZZInk3zxKcdo
CODEN ITKEEH
CitedBy_id crossref_primary_10_1007_s10489_021_02266_w
crossref_primary_10_1016_j_ejor_2024_12_015
crossref_primary_10_1145_3664618
crossref_primary_10_2139_ssrn_4232670
crossref_primary_10_1016_j_knosys_2020_105502
crossref_primary_10_1109_TNSE_2023_3342197
crossref_primary_10_1080_09672559_2020_1782562
crossref_primary_10_1109_ACCESS_2020_2966056
crossref_primary_10_1109_TEVC_2024_3431928
crossref_primary_10_1109_ACCESS_2020_3029657
crossref_primary_10_1016_j_eswa_2022_118702
crossref_primary_10_1109_TCSS_2025_3528890
crossref_primary_10_1109_TCSS_2023_3263546
crossref_primary_10_1080_03088839_2023_2289493
crossref_primary_10_1109_TCNS_2022_3198856
crossref_primary_10_1109_TKDE_2019_2947421
crossref_primary_10_1016_j_ins_2020_12_048
crossref_primary_10_1016_j_omega_2021_102496
crossref_primary_10_1109_TKDE_2025_3535877
crossref_primary_10_1109_TCSS_2021_3076930
crossref_primary_10_1209_0295_5075_134_58001
crossref_primary_10_1007_s10489_022_03178_z
crossref_primary_10_1016_j_eswa_2020_114346
crossref_primary_10_1016_j_cnsns_2025_109110
crossref_primary_10_3390_math10224185
crossref_primary_10_1007_s13278_025_01459_2
crossref_primary_10_1109_TETC_2023_3292384
crossref_primary_10_1145_3616088
crossref_primary_10_1016_j_knosys_2022_109654
crossref_primary_10_1145_3653711
crossref_primary_10_1109_TKDE_2025_3569629
crossref_primary_10_1145_3604559
crossref_primary_10_1145_3674882
crossref_primary_10_1016_j_datak_2020_101852
crossref_primary_10_1109_TCYB_2020_2966593
crossref_primary_10_3390_e24050640
crossref_primary_10_3390_a16050240
crossref_primary_10_1007_s10100_022_00807_3
crossref_primary_10_1109_TKDE_2019_2934447
crossref_primary_10_1007_s13278_025_01441_y
crossref_primary_10_1109_ACCESS_2019_2917123
crossref_primary_10_1016_j_ejc_2020_103155
crossref_primary_10_1109_TKDE_2018_2854182
crossref_primary_10_1016_j_future_2021_01_025
crossref_primary_10_1016_j_asoc_2024_111343
crossref_primary_10_1016_j_comcom_2025_108045
crossref_primary_10_1145_3587100
crossref_primary_10_1142_S0217595923500343
crossref_primary_10_1109_TKDE_2021_3091503
crossref_primary_10_1016_j_ic_2024_105171
crossref_primary_10_1145_3408315
crossref_primary_10_1007_s11280_021_00927_x
crossref_primary_10_1016_j_asoc_2025_112956
crossref_primary_10_1371_journal_pone_0221271
crossref_primary_10_1109_TCSS_2021_3109043
crossref_primary_10_3233_IDA_227018
crossref_primary_10_1016_j_ins_2021_09_017
crossref_primary_10_1109_TBDATA_2024_3499345
crossref_primary_10_1007_s10618_025_01137_z
crossref_primary_10_1002_net_22161
crossref_primary_10_1038_s41598_022_06144_4
crossref_primary_10_1109_JSYST_2019_2922373
crossref_primary_10_1145_3653296
crossref_primary_10_1007_s11227_022_04418_2
crossref_primary_10_1089_big_2020_0259
crossref_primary_10_1016_j_jpdc_2024_104900
crossref_primary_10_4018_IJKSS_291977
crossref_primary_10_1016_j_ins_2022_12_071
crossref_primary_10_1007_s41019_020_00117_1
crossref_primary_10_1109_ACCESS_2020_3029442
crossref_primary_10_1109_TKDE_2025_3564283
crossref_primary_10_1007_s11280_020_00792_0
crossref_primary_10_1109_TKDE_2022_3176948
crossref_primary_10_1016_j_eswa_2024_125243
crossref_primary_10_1016_j_ins_2023_01_127
crossref_primary_10_1007_s13278_024_01357_z
crossref_primary_10_1016_j_trc_2021_103218
crossref_primary_10_1103_PhysRevE_111_034310
crossref_primary_10_1145_3768583
crossref_primary_10_1145_3702974
crossref_primary_10_1109_ACCESS_2019_2962197
crossref_primary_10_1016_j_fss_2021_07_017
crossref_primary_10_1109_TCSS_2022_3165739
crossref_primary_10_1109_JSYST_2020_2964004
crossref_primary_10_1109_TNSE_2023_3295911
crossref_primary_10_1016_j_ins_2019_11_029
crossref_primary_10_1016_j_knosys_2022_110060
crossref_primary_10_3390_electronics14071444
crossref_primary_10_1016_j_jpdc_2025_105037
crossref_primary_10_1109_JIOT_2022_3163514
crossref_primary_10_1109_ACCESS_2025_3587282
crossref_primary_10_1109_TNET_2023_3337774
crossref_primary_10_1093_comnet_cnaf003
crossref_primary_10_3390_info15020112
crossref_primary_10_1016_j_comnet_2020_107383
crossref_primary_10_1109_ACCESS_2024_3523036
crossref_primary_10_1109_TMC_2021_3090764
crossref_primary_10_1109_TETC_2022_3230933
crossref_primary_10_3390_e23111542
crossref_primary_10_1016_j_neucom_2020_05_084
crossref_primary_10_1016_j_ins_2024_121816
crossref_primary_10_1016_j_ejor_2021_05_008
crossref_primary_10_1162_neco_a_01402
crossref_primary_10_1007_s00778_020_00623_8
crossref_primary_10_1016_j_eswa_2022_118052
crossref_primary_10_1007_s41109_019_0146_z
crossref_primary_10_1080_00401706_2025_2505483
crossref_primary_10_1287_mnsc_2021_03445
crossref_primary_10_1109_TCSS_2022_3189036
crossref_primary_10_1109_TKDE_2021_3094549
crossref_primary_10_1145_3539732
crossref_primary_10_1016_j_chaos_2025_116411
crossref_primary_10_1109_TSMC_2022_3220260
crossref_primary_10_1007_s10489_021_02203_x
crossref_primary_10_1016_j_ins_2020_08_093
crossref_primary_10_1007_s13278_021_00804_5
crossref_primary_10_1016_j_jnca_2020_102973
crossref_primary_10_1007_s10115_023_01833_6
crossref_primary_10_1007_s41019_025_00306_w
crossref_primary_10_1109_TKDE_2020_2964242
crossref_primary_10_1007_s10489_023_04711_4
crossref_primary_10_1016_j_cor_2024_106675
crossref_primary_10_1007_s00607_021_00987_x
crossref_primary_10_1109_TETC_2020_3031057
crossref_primary_10_1007_s11590_022_01853_1
crossref_primary_10_1016_j_ipm_2024_103683
crossref_primary_10_1111_exsy_13649
crossref_primary_10_1016_j_knosys_2023_111118
crossref_primary_10_1109_TCSS_2022_3216587
crossref_primary_10_1145_3654982
crossref_primary_10_1016_j_eswa_2024_123429
crossref_primary_10_1145_3485273
crossref_primary_10_1016_j_artint_2020_103288
crossref_primary_10_1007_s10878_022_00852_3
crossref_primary_10_1109_TKDE_2021_3071081
crossref_primary_10_1007_s00607_021_00960_8
crossref_primary_10_1016_j_jocs_2025_102540
crossref_primary_10_1007_s10107_020_01507_z
crossref_primary_10_1016_j_eswa_2020_113642
crossref_primary_10_1111_exsy_13375
crossref_primary_10_1007_s11280_021_00996_y
crossref_primary_10_1145_3650179
crossref_primary_10_1007_s11227_022_04731_w
crossref_primary_10_3390_e23070796
crossref_primary_10_1109_TSMC_2020_3034485
crossref_primary_10_1016_j_eswa_2024_125990
crossref_primary_10_3390_math8081313
crossref_primary_10_1093_comnet_cnae008
crossref_primary_10_1145_3701737
crossref_primary_10_1109_ACCESS_2020_2988910
crossref_primary_10_1109_ACCESS_2021_3081574
crossref_primary_10_1007_s00607_024_01276_z
crossref_primary_10_1109_JIOT_2025_3542852
crossref_primary_10_1016_j_eswa_2022_118770
crossref_primary_10_1371_journal_pone_0306561
crossref_primary_10_1155_2021_1444755
crossref_primary_10_1007_s13278_021_00733_3
crossref_primary_10_1109_TKDE_2020_3040028
crossref_primary_10_1371_journal_pone_0252515
crossref_primary_10_1109_TNSE_2021_3064952
crossref_primary_10_1145_3480243
crossref_primary_10_1016_j_ejor_2020_06_028
crossref_primary_10_1007_s11590_024_02117_w
crossref_primary_10_1109_TCSS_2021_3064400
crossref_primary_10_1016_j_osnem_2023_100255
crossref_primary_10_1016_j_chaos_2024_115746
crossref_primary_10_1017_nws_2023_23
crossref_primary_10_1016_j_swevo_2022_101102
crossref_primary_10_1109_TVT_2024_3470793
crossref_primary_10_1016_j_jksuci_2024_102183
crossref_primary_10_1098_rspa_2024_0971
crossref_primary_10_1109_ACCESS_2019_2951757
crossref_primary_10_1137_24M1697013
crossref_primary_10_1016_j_eswa_2022_118087
crossref_primary_10_1007_s10115_020_01461_4
crossref_primary_10_1016_j_eswa_2022_117791
crossref_primary_10_1016_j_asoc_2023_110062
crossref_primary_10_1109_TVT_2021_3050339
crossref_primary_10_1109_TKDE_2024_3393936
crossref_primary_10_1109_ACCESS_2019_2931146
crossref_primary_10_1109_JIOT_2023_3324801
crossref_primary_10_1007_s00607_023_01159_9
crossref_primary_10_1016_j_tcs_2020_11_020
crossref_primary_10_14778_3750601_3750629
crossref_primary_10_1016_j_is_2021_101828
crossref_primary_10_1016_j_ins_2022_06_075
crossref_primary_10_1145_3461839
crossref_primary_10_3390_math11030783
crossref_primary_10_1016_j_compbiomed_2019_103362
crossref_primary_10_1016_j_eswa_2025_127568
crossref_primary_10_1287_ijoc_2021_1095
crossref_primary_10_1109_TKDE_2024_3409737
crossref_primary_10_1109_TKDE_2021_3137326
crossref_primary_10_1007_s12652_019_01308_z
crossref_primary_10_1016_j_tcs_2024_114813
crossref_primary_10_1109_TVCG_2022_3190623
crossref_primary_10_1016_j_tele_2021_101768
crossref_primary_10_3390_s22228595
crossref_primary_10_1007_s42979_023_02453_1
crossref_primary_10_1093_comjnl_bxad097
crossref_primary_10_1109_TNNLS_2024_3386168
crossref_primary_10_1016_j_chaos_2024_115045
crossref_primary_10_1016_j_physleta_2024_130058
crossref_primary_10_1016_j_neucom_2025_129687
crossref_primary_10_1109_TETCI_2021_3136643
crossref_primary_10_1007_s41109_021_00359_6
crossref_primary_10_1016_j_inffus_2025_103329
crossref_primary_10_1007_s00607_022_01125_x
crossref_primary_10_1016_j_swevo_2023_101424
crossref_primary_10_1016_j_chaos_2021_111309
crossref_primary_10_1016_j_eswa_2025_127321
crossref_primary_10_1016_j_ipm_2024_104029
crossref_primary_10_1093_comnet_cnz048
crossref_primary_10_1007_s11042_021_11606_4
crossref_primary_10_1109_TNSM_2022_3217689
crossref_primary_10_1080_10496491_2023_2189204
crossref_primary_10_1007_s10618_025_01133_3
crossref_primary_10_1016_j_knosys_2019_105008
crossref_primary_10_1016_j_neucom_2022_08_043
crossref_primary_10_1145_3465058
crossref_primary_10_3390_systems13010059
crossref_primary_10_1016_j_is_2022_102132
crossref_primary_10_1145_3589309
crossref_primary_10_1007_s10115_025_02559_3
crossref_primary_10_1007_s10878_022_00971_x
crossref_primary_10_1109_TNSE_2025_3544429
crossref_primary_10_1145_3651987
crossref_primary_10_1016_j_eswa_2019_112905
crossref_primary_10_1007_s10115_024_02314_0
crossref_primary_10_1016_j_chaos_2025_116488
crossref_primary_10_1016_j_amc_2022_127721
crossref_primary_10_1007_s00607_019_00778_5
crossref_primary_10_1287_isre_2023_1231
crossref_primary_10_1109_TKDE_2019_2922962
crossref_primary_10_3389_fpls_2019_00698
crossref_primary_10_3390_a13100251
crossref_primary_10_1016_j_orl_2025_107309
crossref_primary_10_1016_j_jksuci_2021_08_009
crossref_primary_10_1007_s10115_021_01556_6
crossref_primary_10_1016_j_physa_2025_130830
crossref_primary_10_1007_s10586_025_05202_6
crossref_primary_10_1109_TCSS_2020_3032616
crossref_primary_10_1016_j_physa_2022_128179
crossref_primary_10_1016_j_ins_2020_01_040
crossref_primary_10_1016_j_knosys_2025_113719
crossref_primary_10_1007_s10489_020_01747_8
crossref_primary_10_1002_net_21972
crossref_primary_10_1016_j_physrep_2022_05_003
crossref_primary_10_1145_3350488
crossref_primary_10_1016_j_ins_2024_121660
crossref_primary_10_1287_ijoc_2021_1144
crossref_primary_10_1109_TCSS_2019_2938575
crossref_primary_10_1038_s41598_022_27145_3
crossref_primary_10_1109_TNSE_2021_3065272
crossref_primary_10_1109_TITS_2021_3122438
crossref_primary_10_1016_j_physa_2025_130365
crossref_primary_10_1109_MCI_2022_3222050
crossref_primary_10_1016_j_artint_2023_103895
crossref_primary_10_1007_s00607_023_01207_4
crossref_primary_10_1007_s41109_024_00625_3
crossref_primary_10_1007_s00607_024_01265_2
crossref_primary_10_1145_3690644
crossref_primary_10_1177_10963480251361951
crossref_primary_10_1016_j_elerap_2021_101085
crossref_primary_10_1016_j_asoc_2023_110653
crossref_primary_10_1109_TKDE_2021_3077491
crossref_primary_10_1007_s10489_021_02403_5
crossref_primary_10_1109_ACCESS_2023_3317691
crossref_primary_10_1155_2023_2854874
crossref_primary_10_1007_s13278_021_00850_z
crossref_primary_10_1016_j_tcs_2021_03_017
crossref_primary_10_1142_S021952592540003X
crossref_primary_10_1007_s41109_023_00594_z
crossref_primary_10_1016_j_osnem_2021_100167
crossref_primary_10_1016_j_osnem_2022_100203
crossref_primary_10_1109_TCSS_2021_3120421
crossref_primary_10_1038_s41598_020_69005_y
crossref_primary_10_1109_TETC_2024_3403891
crossref_primary_10_1016_j_future_2020_02_077
crossref_primary_10_1109_TCSS_2024_3383493
crossref_primary_10_1016_j_cosrev_2021_100393
crossref_primary_10_1109_TKDE_2023_3316268
crossref_primary_10_1109_TSMC_2021_3098630
crossref_primary_10_1371_journal_pone_0331109
crossref_primary_10_1038_s41598_023_50850_6
crossref_primary_10_1007_s10489_021_02880_8
crossref_primary_10_1007_s10844_023_00776_2
crossref_primary_10_1016_j_knosys_2021_107233
crossref_primary_10_1109_ACCESS_2023_3297437
crossref_primary_10_1007_s00607_025_01541_9
crossref_primary_10_1007_s12530_024_09640_2
crossref_primary_10_1016_j_neucom_2021_04_084
crossref_primary_10_1109_TNSE_2022_3163203
crossref_primary_10_1145_3748239_3748244
crossref_primary_10_1016_j_neucom_2023_02_059
crossref_primary_10_1109_TII_2022_3203059
crossref_primary_10_1111_coin_12466
Cites_doi 10.1109/TKDE.2016.2621038
10.1145/2020408.2020492
10.1109/ICDM.2012.158
10.1145/1250790.1250811
10.1145/2983323.2983741
10.1145/1835804.1835934
10.1109/TASE.2010.2052042
10.1007/BF01588971
10.1177/002200275800200106
10.1145/1963405.1963499
10.1137/1.9781611972825.55
10.1145/2817946.2817965
10.14778/3067421.3067429
10.1007/s10115-011-0396-2
10.1007/978-3-319-46128-1_9
10.1109/TKDE.2015.2419659
10.1007/978-1-4419-8462-3_7
10.1109/INFOCOM.2016.7524377
10.1145/2983323.2983862
10.1145/1835804.1835935
10.1145/2723372.2723734
10.1007/978-3-540-77105-0_31
10.1145/2882903.2915250
10.1145/2588555.2593670
10.1109/TNET.2016.2563397
10.1109/TKDE.2016.2624734
10.1109/TC.2013.2295802
10.1145/2983323.2983724
10.1145/1281192.1281239
10.1086/226707
10.1109/ICDM.2012.40
10.1145/2487575.2487691
10.1145/2661829.2662009
10.1145/2723372.2723710
10.1109/ICDM.2013.145
10.1145/956750.956769
10.1023/A:1011122126881
10.1145/2433396.2433478
10.1109/TKDE.2016.2633472
10.1137/0208032
10.1145/2661829.2662077
10.1145/2487575.2487657
10.1137/1.9781611974010.69
10.1109/ICDM.2011.132
10.1109/ICDM.2012.79
10.14778/2850578.2850581
10.1137/1.9781611972825.40
10.1109/INFOCOM.2016.7524472
10.1145/2600428.2609592
10.1145/2063576.2063721
10.1016/0378-8733(78)90021-7
10.14778/2994509.2994525
10.1145/2783258.2783392
10.1145/1557019.1557108
10.1145/2588555.2588561
10.1145/502512.502525
10.1109/ICDM.2010.118
10.1145/2824253
10.1145/2783258.2783271
10.1137/1.9781611973402.70
10.1093/biomet/60.3.581
10.1145/1557019.1557047
10.1145/3035918.3035952
10.1109/ICDM.2012.122
10.1145/2806416.2806462
10.1145/2939672.2939760
10.1109/TKDE.2013.106
10.1145/2348283.2348373
10.1007/978-3-540-77105-0_27
10.14778/3099622.3099623
10.1145/2623330.2623728
10.1145/2318857.2254783
10.1145/2882903.2915207
10.1145/1718487.1718518
10.1109/99.660313
10.14778/2735703.2735706
10.1137/1.9781611972832.43
10.1145/2503792.2503797
10.1145/2882903.2882929
10.1145/1963192.1963217
10.1145/2939672.2939745
10.1016/S0020-0190(99)00031-9
10.1098/rspa.1927.0118
10.14778/2794367.2794376
10.1145/1282100.1282167
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2018.2807843
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1872
ExternalDocumentID 10_1109_TKDE_2018_2807843
8295265
Genre orig-research
GrantInformation_xml – fundername: Tencent Social Ads Rhino-Bird Focused Research
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 61602488; 61632016
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-ada7df43ec56e3f1ae3debc0e1f3e1364bca25a60216f34d541f3da0de4b59703
IEDL.DBID RIE
ISICitedReferencesCount 459
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444603900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 03:17:36 EDT 2025
Tue Nov 18 22:53:28 EST 2025
Sat Nov 29 04:46:44 EST 2025
Wed Aug 27 08:34:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ada7df43ec56e3f1ae3debc0e1f3e1364bca25a60216f34d541f3da0de4b59703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4729-9903
0000-0001-9646-291X
0000-0002-7661-3917
PQID 2117164998
PQPubID 85438
PageCount 21
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2018_2807843
ieee_primary_8295265
crossref_primary_10_1109_TKDE_2018_2807843
proquest_journals_2117164998
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
kimura (ref54) 2006
schelling (ref29) 1978
saito (ref22) 2008
he (ref55) 0
ref50
du (ref85) 2013; 2
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
zhang (ref11) 2014
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref34
ref37
ref30
ref32
xie (ref36) 2015
ref39
arora (ref13) 2017
narasimhan (ref26) 2015; 2
tejaswi (ref14) 2016
ref24
ref23
ref25
ref21
chen (ref77) 2015
scaman (ref38) 2015; 2
ref28
ref27
borodin (ref106) 2010
ohsaka (ref87) 2016; 9851
gomez-rodriguez (ref48) 2012
rodriguez (ref35) 2011
ref15
ref97
ref96
ref99
ref98
ref10
guo (ref75) 2013
ref17
ref16
ref19
ref18
fan (ref95) 2018
ref93
ref92
ref94
ref91
cheng (ref66) 2013
ref90
aslay (ref76) 2014
ref89
kimura (ref61) 2007; 2
ref86
ref88
kim (ref62) 2013
kempe (ref31) 2005
das (ref114) 2011
ref82
ref81
page (ref53) 1999
ref84
ref83
lu (ref20) 1705
chen (ref12) 2013
chen (ref33) 2012
ref79
ref108
ref78
ref109
ref107
ref104
ref74
ref105
ref102
ref103
ref2
krause (ref51) 2005
ref1
ohsaka (ref67) 2014
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref117
ref69
ref64
ref115
ref63
ref116
ref113
ref65
wang (ref80) 2016
ref60
jiang (ref52) 2011
References_xml – start-page: 1057
  year: 2011
  ident: ref114
  article-title: Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection
  publication-title: Proc Int Conf Int Conf Mach Learn
– ident: ref97
  doi: 10.1109/TKDE.2016.2621038
– ident: ref24
  doi: 10.1145/2020408.2020492
– ident: ref9
  doi: 10.1109/ICDM.2012.158
– start-page: 539
  year: 2010
  ident: ref106
  article-title: Threshold models for competitive influence in social networks
  publication-title: Internet Economics
– ident: ref32
  doi: 10.1145/1250790.1250811
– ident: ref92
  doi: 10.1145/2983323.2983741
– start-page: 1999
  year: 1999
  ident: ref53
  article-title: The pagerank citation ranking: Bringing order to the web
– ident: ref46
  doi: 10.1145/1835804.1835934
– ident: ref60
  doi: 10.1109/TASE.2010.2052042
– ident: ref49
  doi: 10.1007/BF01588971
– ident: ref117
  doi: 10.1177/002200275800200106
– ident: ref4
  doi: 10.1145/1963405.1963499
– start-page: 1256
  year: 0
  ident: ref55
  article-title: Stability of influence maximization
– ident: ref98
  doi: 10.1137/1.9781611972825.55
– ident: ref100
  doi: 10.1145/2817946.2817965
– year: 2018
  ident: ref95
  article-title: Octopus: An online topic-aware influence analysis system for social networks
  publication-title: Proc Int Conf Data Eng
– volume: 2
  start-page: 2026
  year: 2015
  ident: ref38
  article-title: Anytime influence bounds and the explosive behavior of continuous-time diffusion networks
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– start-page: 313
  year: 2012
  ident: ref48
  article-title: Influence maximization in continuous time diffusion networks
  publication-title: Proc 29th Int Conf Mach Learn
– year: 2013
  ident: ref12
  publication-title: Information and Influence Propagation in Social Networks
– ident: ref103
  doi: 10.14778/3067421.3067429
– ident: ref44
  doi: 10.1007/s10115-011-0396-2
– volume: 9851
  start-page: 132
  year: 2016
  ident: ref87
  article-title: Maximizing time-decaying influence in social networks
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
  doi: 10.1007/978-3-319-46128-1_9
– ident: ref57
  doi: 10.1109/TKDE.2015.2419659
– start-page: 1
  year: 2015
  ident: ref77
  article-title: Real-time topic-aware influence maximization using preprocessing
  publication-title: Proc Int Conf Comput Soc Netw
– ident: ref10
  doi: 10.1007/978-1-4419-8462-3_7
– ident: ref74
  doi: 10.1109/INFOCOM.2016.7524377
– ident: ref96
  doi: 10.1145/2983323.2983862
– ident: ref58
  doi: 10.1145/1835804.1835935
– ident: ref16
  doi: 10.1145/2723372.2723734
– ident: ref104
  doi: 10.1007/978-3-540-77105-0_31
– start-page: 127
  year: 2011
  ident: ref52
  article-title: Simulated annealing based influence maximization in social networks
  publication-title: Proc 25th AAAI Conf Artif Intell
– ident: ref109
  doi: 10.1145/2882903.2915250
– ident: ref15
  doi: 10.1145/2588555.2593670
– ident: ref102
  doi: 10.1109/TNET.2016.2563397
– ident: ref18
  doi: 10.1109/TKDE.2016.2624734
– start-page: 1345
  year: 2016
  ident: ref14
  article-title: Diffusion models and approaches for influence maximization in social networks
  publication-title: Proc Int Conf Adv Comput Commun Informat
– ident: ref43
  doi: 10.1109/TC.2013.2295802
– ident: ref82
  doi: 10.1145/2983323.2983724
– ident: ref3
  doi: 10.1145/1281192.1281239
– start-page: 67
  year: 2008
  ident: ref22
  article-title: Prediction of information diffusion probabilities for independent cascade model
  publication-title: Proc Int Conf Knowl -Based Intell Inf Eng Syst
– ident: ref28
  doi: 10.1086/226707
– volume: 2
  start-page: 3147
  year: 2013
  ident: ref85
  article-title: Scalable influence estimation in continuous-time diffusion networks
  publication-title: Proc 26th Int Conf Neural Inf Process Syst
– ident: ref34
  doi: 10.1109/ICDM.2012.40
– start-page: 295
  year: 2014
  ident: ref76
  article-title: Online topic-aware influence maximization queries
  publication-title: Proc Extending Database Technol
– start-page: 199
  year: 2013
  ident: ref75
  article-title: Personalized influence maximization on social networks
  publication-title: Proc 2nd IEEE Int Conf Ind Info
– ident: ref116
  doi: 10.1145/2487575.2487691
– ident: ref65
  doi: 10.1145/2661829.2662009
– start-page: 138
  year: 2014
  ident: ref67
  article-title: Fast and accurate influence maximization on large networks with pruned monte-carlo simulations
  publication-title: Proc 28th AAAI Conf Artif Intell
– ident: ref108
  doi: 10.1145/2723372.2723710
– start-page: 561
  year: 2011
  ident: ref35
  article-title: Uncovering the temporal dynamics of diffusion networks
  publication-title: Proc 28th Int Conf Mach Learn
– ident: ref99
  doi: 10.1109/ICDM.2013.145
– ident: ref7
  doi: 10.1145/956750.956769
– ident: ref21
  doi: 10.1023/A:1011122126881
– ident: ref112
  doi: 10.1145/2433396.2433478
– start-page: 259
  year: 2006
  ident: ref54
  article-title: Tractable models for information diffusion in social networks
  publication-title: Proc 10th Eur Conf Principle Practice Knowl Discovery Databases
– ident: ref81
  doi: 10.1109/TKDE.2016.2633472
– ident: ref47
  doi: 10.1137/0208032
– ident: ref68
  doi: 10.1145/2661829.2662077
– ident: ref25
  doi: 10.1145/2487575.2487657
– start-page: 1
  year: 2016
  ident: ref80
  article-title: Distance-aware influence maximization in geo-social network
  publication-title: Proc IEEE 32nd Int Conf Data Eng
– ident: ref88
  doi: 10.1137/1.9781611974010.69
– ident: ref30
  doi: 10.1109/ICDM.2011.132
– start-page: 1127
  year: 2005
  ident: ref31
  article-title: Influential nodes in a diffusion model for social networks
  publication-title: Proc 32nd Int Conf Automata Lang Program
– start-page: 346
  year: 2015
  ident: ref36
  article-title: Dynadiffuse: A dynamic diffusion model for continuous time constrained influence maximization
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref63
  doi: 10.1109/ICDM.2012.79
– ident: ref91
  doi: 10.14778/2850578.2850581
– ident: ref5
  doi: 10.1137/1.9781611972825.40
– ident: ref90
  doi: 10.1109/INFOCOM.2016.7524472
– ident: ref64
  doi: 10.1145/2600428.2609592
– start-page: 5
  year: 2005
  ident: ref51
  article-title: A note on the budgeted maximization of submodular functions
– ident: ref115
  doi: 10.1145/2063576.2063721
– ident: ref71
  doi: 10.1016/0378-8733(78)90021-7
– ident: ref89
  doi: 10.14778/2994509.2994525
– start-page: 651
  year: 2017
  ident: ref13
  article-title: Debunking the myths of influence maximization: An in-depth benchmarking study
  publication-title: Proc ACM Int Conf Manage Data
– ident: ref107
  doi: 10.1145/2783258.2783392
– ident: ref93
  doi: 10.1145/1557019.1557108
– start-page: 509
  year: 2013
  ident: ref66
  article-title: Staticgreedy: Solving the scalability-accuracy dilemma in influence maximization
  publication-title: Proc ACM Int Conf Inf Knowl Manag
– ident: ref79
  doi: 10.1145/2588555.2588561
– year: 1705
  ident: ref20
  article-title: Refutations on
  publication-title: CoRR
– ident: ref2
  doi: 10.1145/502512.502525
– ident: ref45
  doi: 10.1109/ICDM.2010.118
– ident: ref86
  doi: 10.1145/2824253
– ident: ref101
  doi: 10.1145/2783258.2783271
– ident: ref69
  doi: 10.1137/1.9781611973402.70
– ident: ref40
  doi: 10.1093/biomet/60.3.581
– ident: ref59
  doi: 10.1145/1557019.1557047
– start-page: 266
  year: 2013
  ident: ref62
  article-title: Scalable and parallelizable processing of influence maximization for large-scale social networks?
  publication-title: Proc IEEE 29th Int Conf Data Eng
– ident: ref78
  doi: 10.1145/3035918.3035952
– ident: ref94
  doi: 10.1109/ICDM.2012.122
– ident: ref83
  doi: 10.1145/2806416.2806462
– start-page: 592
  year: 2012
  ident: ref33
  article-title: Time-critical influence maximization in social networks with time-delayed diffusion process
  publication-title: Proc 26th AAAI Conf Artif Intell
– ident: ref110
  doi: 10.1145/2939672.2939760
– start-page: 37
  year: 2014
  ident: ref11
  article-title: Recent advances in information diffusion and influence maximization in complex social networks
  publication-title: Social Networks
– ident: ref84
  doi: 10.1109/TKDE.2013.106
– volume: 2
  start-page: 1371
  year: 2007
  ident: ref61
  article-title: Extracting influential nodes for information diffusion on a social network
  publication-title: Proc 22nd Nat Conf Artif Intell
– ident: ref6
  doi: 10.1145/2348283.2348373
– volume: 2
  start-page: 3186
  year: 2015
  ident: ref26
  article-title: Learnability of influence in networks
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– ident: ref41
  doi: 10.1007/978-3-540-77105-0_27
– ident: ref70
  doi: 10.14778/3099622.3099623
– ident: ref37
  doi: 10.1145/2623330.2623728
– ident: ref27
  doi: 10.1145/2318857.2254783
– ident: ref42
  doi: 10.1145/2433396.2433478
– ident: ref17
  doi: 10.1145/2882903.2915207
– year: 1978
  ident: ref29
  publication-title: Micromotives and Macrobehavior
– ident: ref23
  doi: 10.1145/1718487.1718518
– ident: ref72
  doi: 10.1109/99.660313
– ident: ref8
  doi: 10.14778/2735703.2735706
– ident: ref113
  doi: 10.1137/1.9781611972832.43
– ident: ref1
  doi: 10.1145/2503792.2503797
– ident: ref19
  doi: 10.1145/2882903.2882929
– ident: ref56
  doi: 10.1145/1963192.1963217
– ident: ref111
  doi: 10.1145/2939672.2939745
– ident: ref50
  doi: 10.1016/S0020-0190(99)00031-9
– ident: ref39
  doi: 10.1098/rspa.1927.0118
– ident: ref73
  doi: 10.14778/2794367.2794376
– ident: ref105
  doi: 10.1145/1282100.1282167
SSID ssj0008781
Score 2.6947114
Snippet Influence Maximization (IM), which selects a set of k users (called seed set) from a social network to maximize the expected number of influenced users (called...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1852
SubjectTerms algorithm design
Algorithms
Classification algorithms
Computational modeling
Diffusion processes
Influence maximization
information diffusion
Information dissemination
Integrated circuit modeling
Maximization
Social network services
Social networks
Stochastic processes
Taxonomy
Title Influence Maximization on Social Graphs: A Survey
URI https://ieeexplore.ieee.org/document/8295265
https://www.proquest.com/docview/2117164998
Volume 30
WOSCitedRecordID wos000444603900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MenG6K0yk9eBK7tUvatN6Gzh-IQ3DCbiVNXmCgm-wX-t-bpNlQFEHoodCklC9N3vuS994HcMoUCkyI9DvaWfUpdqTPmbTZaEwxEiORiRWbYP1-MhymjyU4X-fCIKINPsOWubVn-XIiFmarrJ10UlPNvQxlxuIiV2u96ibMCpJqdqE5EaHMnWCGQdoe3F_1TBBX0jKlXxJKvtkgK6ryYyW25uW6-r8P24Ft50Z63WLcd6GE4xpUVxINnpuxNdj6Um-wDuHdSpLEe-Dvo1eXg-npq0jT9W5M_erZhdf1nhbTJX7swfN1b3B56zvNBF9owz33udRQK0pQRBpnFXINNuYiwFARDElMc8E7EY-1aY8VoTKi-oHkgUSaa24RkH2ojCdjPABPCqLJBFcRiSQNZJormnMhtP-gzZ7CoAHBCsVMuILiRtfiJbPEIkgzA3xmgM8c8A04W3d5K6pp_NW4bpBeN3QgN6C5GqrMzbdZpmmsIX6aOx7-3usINs27izC8JlTm0wUew4ZYzkez6Yn9lT4BpbTFdw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQH7-K89sEnsVvapGvr2_C2sQuCE_ZW0uQEBJ2yG_rvTdJsKIog9KHQhJYvTc75knPOB3AWKxSYUOmH2ln1GYbS57G02WiximkNqUys2ETc7Sb9fnq_ABfzXBhEtMFnWDG39ixfvoqJ2SqrJmFqqrkvwlLEWEiKbK35upvEVpJU8wvNiiiL3RlmQNJqr3V9Y8K4koop_pIw-s0KWVmVH2uxNTC3G__7tE1Yd46kVy9GfgsWcLANGzORBs_N2W1Y-1JxcAeC5kyUxOvw96cXl4Xp6atI1PXuTAXr0aVX9x4mwyl-7MLj7U3vquE71QRfaNM99rnUYCtGUUQaaRVwDTfmgmCgKAa0xnLBw4jXtHGvKcpkxPQDyYlElmt2QegelAavA9wHTwqq6QRXEY0kIzLNFcu5ENqD0IZPISkDmaGYCVdS3ChbPGeWWpA0M8BnBvjMAV-G83mXt6Kexl-NdwzS84YO5DIczYYqczNulGkia6ifZo8Hv_c6hZVGr9PO2s1u6xBWzXuKoLwjKI2HEzyGZTEdP42GJ_a3-gQXtMi-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+Maximization+on+Social+Graphs%3A+A+Survey&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Yuchen&rft.au=Fan%2C+Ju&rft.au=Wang%2C+Yanhao&rft.au=Tan%2C+Kian-Lee&rft.date=2018-10-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=30&rft.issue=10&rft.spage=1852&rft.epage=1872&rft_id=info:doi/10.1109%2FTKDE.2018.2807843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2018_2807843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon