CSCAD: Correlation Structure-Based Collective Anomaly Detection in Complex System

Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth labels or prior knowledge for anomalies is hard in real-world systems, which often lead to limited or no anomaly labels in the dataset. Second,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 35; H. 5; S. 4634 - 4645
Hauptverfasser: Qin, Huiling, Zhan, Xianyuan, Zheng, Yu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth labels or prior knowledge for anomalies is hard in real-world systems, which often lead to limited or no anomaly labels in the dataset. Second, anomalies in large systems usually occur in a collective manner due to the underlying dependency structure among devices or sensors. Lastly, real-time anomaly detection for high-dimensional data requires efficient algorithms that are capable of handling different types of data (i.e. continuous and discrete). We propose a correlation structure-based collective anomaly detection (CSCAD) model for high-dimensional anomaly detection problem in large systems, which is also generalizable to semi-supervised or supervised settings. Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples to perform anomaly detection. We propose an extended mutual information (EMI) metric to mine the internal correlation structure among different data features, which enhances the data reconstruction capability of CSCAD. The reconstruction loss and latent standard deviation vector of a sample obtained from reconstruction network can be perceived as two natural anomalous degree measures. An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples. Experimental results on five public datasets demonstrate that our approach consistently outperforms all the competing baselines.
AbstractList Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth labels or prior knowledge for anomalies is hard in real-world systems, which often lead to limited or no anomaly labels in the dataset. Second, anomalies in large systems usually occur in a collective manner due to the underlying dependency structure among devices or sensors. Lastly, real-time anomaly detection for high-dimensional data requires efficient algorithms that are capable of handling different types of data (i.e. continuous and discrete). We propose a correlation structure-based collective anomaly detection (CSCAD) model for high-dimensional anomaly detection problem in large systems, which is also generalizable to semi-supervised or supervised settings. Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples to perform anomaly detection. We propose an extended mutual information (EMI) metric to mine the internal correlation structure among different data features, which enhances the data reconstruction capability of CSCAD. The reconstruction loss and latent standard deviation vector of a sample obtained from reconstruction network can be perceived as two natural anomalous degree measures. An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples. Experimental results on five public datasets demonstrate that our approach consistently outperforms all the competing baselines.
Author Zhan, Xianyuan
Qin, Huiling
Zheng, Yu
Author_xml – sequence: 1
  givenname: Huiling
  orcidid: 0000-0002-4045-6091
  surname: Qin
  fullname: Qin, Huiling
  email: orekinana@gmail.com
  organization: Xidian University and JD iCity, JD Technology, Beijing, China
– sequence: 2
  givenname: Xianyuan
  orcidid: 0000-0002-3683-0554
  surname: Zhan
  fullname: Zhan, Xianyuan
  email: zhanxianyuan@gmail.com
  organization: Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-5224-4344
  surname: Zheng
  fullname: Zheng, Yu
  email: msyuzheng@outlook.com
  organization: Xidian University and JD iCity, JD Technology, Beijing, China
BookMark eNp9kMtOwzAQRS1UJErhAxCbSKxT7LEdx-xKWh6iEkIt68hJJlKqPIrtIvr3JLRiwYLVjObeM6O552TUdi0ScsXolDGqb9cv88UUKMCUMylYFJ2QMZMyDoFpNup7KlgouFBn5Ny5DaU0VjEbk7dklczmd0HSWYu18VXXBitvd7nfWQzvjcOi1-oac199YjBru8bU-2COfpj05qrt9WZb41ew2juPzQU5LU3t8PJYJ-T9YbFOnsLl6-NzMluGOWjuQ1PIiHFRoIYyYyozUMhcYKR1ITMFqDMeZ5JqCahEZAA5CDBU5Qp0qRjwCbk57N3a7mOHzqebbmfb_mQKSsuYQqR571IHV2475yyWaV75nze9NVWdMpoO-aVDfumQX3rMryfZH3Jrq8bY_b_M9YGpEPHXr5WglMf8G8aGfCk
CODEN ITKEEH
CitedBy_id crossref_primary_10_4018_IJDWM_327363
crossref_primary_10_1109_TKDE_2024_3488375
crossref_primary_10_1016_j_resconrec_2023_107239
crossref_primary_10_1109_TKDE_2023_3250523
crossref_primary_10_3389_frai_2024_1508821
crossref_primary_10_1155_2023_2332669
crossref_primary_10_1016_j_mlwa_2025_100728
Cites_doi 10.1007/978-3-319-48057-2_9
10.1007/978-3-030-10925-7_1
10.1109/ICDM.2008.17
10.1145/3191786
10.1145/3178876.3185996
10.1109/65.283931
10.1109/IJCNN.2016.7727242
10.1007/s10955-006-9131-x
10.1016/j.jnca.2015.11.016
10.1007/978-3-030-10925-7_11
10.1109/TBDATA.2020.2991008
10.1609/aaai.v33i01.33015167
10.1145/3292500.3330672
10.1145/3292500.3330871
10.1214/aoms/1177704472
10.1109/ICASSP.2008.4518376
10.1145/335191.335388
10.1145/1970392.1970395
10.1145/3292500.3330932
10.1007/s10994-020-05877-5
10.1145/3097983.3098052
10.1016/j.sigpro.2013.12.026
10.1007/978-3-319-59050-9_12
10.1145/1150402.1150459
10.1145/3097983.3098144
10.1145/3292500.3330680
10.1145/3292500.3330748
10.3156/jsoft.29.5_177_2
10.1145/2820783.2820813
10.1007/springerreference_205676
10.1109/ICIP.2001.958946
10.1145/1541880.1541882
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3154166
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 4645
ExternalDocumentID 10_1109_TKDE_2022_3154166
9740038
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2019YFB2101801
– fundername: Public Service Platform for Industrial Technology
  grantid: 2021-0166-1-1
– fundername: National Natural Science Foundation of China
  grantid: 62076191
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ad56134de92fb17ba2d5c4e699d5b72e9b38b50952e746a2e3242a07c729f7123
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964880800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 04:14:17 EDT 2025
Sat Nov 29 02:36:05 EST 2025
Tue Nov 18 21:01:00 EST 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ad56134de92fb17ba2d5c4e699d5b72e9b38b50952e746a2e3242a07c729f7123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5224-4344
0000-0002-4045-6091
0000-0002-3683-0554
PQID 2795802693
PQPubID 85438
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2022_3154166
crossref_primary_10_1109_TKDE_2022_3154166
ieee_primary_9740038
proquest_journals_2795802693
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
Ikeda (ref19) 2018
ref30
ref33
ref10
Kingma (ref35) 2014
ref2
ref1
ref17
ref39
ref16
ref38
Dua (ref11) 2017
Zong (ref5) 2018
Defferrard (ref36) 2016
Zhai (ref4) 2016
Li (ref32) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
An (ref18) 2015; 2
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref40
References_xml – ident: ref7
  doi: 10.1007/978-3-319-48057-2_9
– ident: ref31
  doi: 10.1007/978-3-030-10925-7_1
– ident: ref39
  doi: 10.1109/ICDM.2008.17
– ident: ref10
  doi: 10.1145/3191786
– ident: ref20
  doi: 10.1145/3178876.3185996
– ident: ref1
  doi: 10.1109/65.283931
– year: 2018
  ident: ref32
  article-title: Anomaly detection with generative adversarial networks for multivariate time series
– ident: ref8
  doi: 10.1109/IJCNN.2016.7727242
– ident: ref34
  doi: 10.1007/s10955-006-9131-x
– ident: ref12
  doi: 10.1016/j.jnca.2015.11.016
– ident: ref29
  doi: 10.1007/978-3-030-10925-7_11
– ident: ref15
  doi: 10.1109/TBDATA.2020.2991008
– ident: ref6
  doi: 10.1609/aaai.v33i01.33015167
– ident: ref23
  doi: 10.1145/3292500.3330672
– ident: ref25
  doi: 10.1145/3292500.3330871
– ident: ref16
  doi: 10.1214/aoms/1177704472
– ident: ref17
  doi: 10.1109/ICASSP.2008.4518376
– ident: ref38
  doi: 10.1145/335191.335388
– ident: ref3
  doi: 10.1145/1970392.1970395
– year: 2018
  ident: ref19
  article-title: Estimation of dimensions contributing to detected anomalies with variational autoencoders
– ident: ref21
  doi: 10.1145/3292500.3330932
– ident: ref37
  doi: 10.1007/s10994-020-05877-5
– ident: ref28
  doi: 10.1145/3097983.3098052
– ident: ref14
  doi: 10.1016/j.sigpro.2013.12.026
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref5
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
– ident: ref33
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref2
  doi: 10.1145/1150402.1150459
– year: 2017
  ident: ref11
  article-title: UCI machine learning repository
– ident: ref24
  doi: 10.1145/3097983.3098144
– ident: ref26
  doi: 10.1145/3292500.3330680
– start-page: 3844
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2016
  ident: ref36
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– volume: 2
  start-page: 1
  year: 2015
  ident: ref18
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Special Lecture IE
– ident: ref22
  doi: 10.1145/3292500.3330748
– year: 2014
  ident: ref35
  article-title: Auto-encoding variational bayes
– ident: ref30
  doi: 10.3156/jsoft.29.5_177_2
– ident: ref9
  doi: 10.1145/2820783.2820813
– ident: ref27
  doi: 10.1007/springerreference_205676
– ident: ref40
  doi: 10.1109/ICIP.2001.958946
– ident: ref13
  doi: 10.1145/1541880.1541882
– start-page: 1100
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2016
  ident: ref4
  article-title: Deep structured energy based models for anomaly detection
SSID ssj0008781
Score 2.451345
Snippet Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4634
SubjectTerms Algorithms
Anomalies
Anomaly detection
complex system
Complex systems
Correlation
correlation mining
Data models
Datasets
Feature extraction
Labels
Loss measurement
Reconstruction
Sensors
unsupervised learning
urban computing
variational autoencoder
Title CSCAD: Correlation Structure-Based Collective Anomaly Detection in Complex System
URI https://ieeexplore.ieee.org/document/9740038
https://www.proquest.com/docview/2795802693
Volume 35
WOSCitedRecordID wos000964880800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library Online
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnG6K0yl58EmM69KPNL7NfSAoQ9mEvZU2yWAwO9mH6H_vJe2Kogi-FZrQcr_m7n7N5X4AF7LFJa4_ST3fiak3CQVNlB9S11NMyVj7IrAHhR_4YBCOx-KxBFfFWRittS0-09fm0u7lq7lcm19lTcx9zU7WFmxxzrOzWoXXDbkVJEV2gZzI9Xi-g9lyRHN03-0hE2QMCaqPCUjwLQZZUZUfntiGl37lfy-2D3t5GknaGe4HUNJpFSobiQaSr9gq7H7pN1iDp84QLX9DOkaSIyuCI0PbQHa90PQWA5oi9k-CdYKknc5f4tkH6eqVLdhKyTQl5hkz_U6yVueH8NzvjTp3NNdUoBID-4rGyjAGT2nBJkmLJzFTvvR0IITyE860SNwwwSTCZ5p7Qcy0Sbhih0tMwiccw9wRlNN5qo-B4I0wQYeBeEqPTUTMAyfB7NHFiRINXQdnY-VI5g3Hje7FLLLEwxGRASYywEQ5MHW4LKa8Zt02_hpcM0gUA3MQ6tDYQBnl63EZMS78EOmmcE9-n3UKO0ZIPitlbEAZba_PYFu-rabLxbn91D4B5gLOkg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC6gPXjbFec2DT2JdlyZN45tuE8U5FCfsrbRJBsLsxG2i_96TtBuKIvhWaEJLvuSc70tOzgE4UnWhcP0pj3E_8Vg_kl6qeeQFTFOtEsNl6C4Kt0WnE_V68q4EJ7O7MMYYF3xmTu2jO8vXQzWxW2U15L72JGsOFjhjtJ7f1prZ3Ui4kqSoL1AVBUwUZ5h1X9a6N80WakFKUaJypCDhNy_kyqr8sMXOwVyu_e_X1mG1IJLkPEd-A0omK8PatEgDKdZsGVa-ZByswH3jAcf-jDRsUY48DI48uBSyk1fjXaBL08TtJTgzSM6z4XMy-CBNM3YhWxl5yoj9xsC8kzzZ-SY8Xra6jSuvqKrgKXTtYy_RVjMwbSTtp3WRJlRzxUwopeapoEamQZQijeDUCBYm1FjKlfhCIQ3vC3R0WzCfDTOzDQRfRCmaDERUMdqXiQj9FPljgB0VDnQV_Okox6pIOW4rXwxiJz18GVtgYgtMXABTheNZl5c838ZfjSsWiVnDAoQq7E2hjIsVOYqpkDxCwSmDnd97HcLSVfe2HbevOze7sGzLyueBjXswjziYfVhUb-On0euBm3af0RTR2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSCAD%3A+Correlation+Structure-Based+Collective+Anomaly+Detection+in+Complex+System&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Qin%2C+Huiling&rft.au=Zhan%2C+Xianyuan&rft.au=Zheng%2C+Yu&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=5&rft.spage=4634&rft_id=info:doi/10.1109%2FTKDE.2022.3154166&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon