CSCAD: Correlation Structure-Based Collective Anomaly Detection in Complex System
Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth labels or prior knowledge for anomalies is hard in real-world systems, which often lead to limited or no anomaly labels in the dataset. Second,...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on knowledge and data engineering Jg. 35; H. 5; S. 4634 - 4645 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth labels or prior knowledge for anomalies is hard in real-world systems, which often lead to limited or no anomaly labels in the dataset. Second, anomalies in large systems usually occur in a collective manner due to the underlying dependency structure among devices or sensors. Lastly, real-time anomaly detection for high-dimensional data requires efficient algorithms that are capable of handling different types of data (i.e. continuous and discrete). We propose a correlation structure-based collective anomaly detection (CSCAD) model for high-dimensional anomaly detection problem in large systems, which is also generalizable to semi-supervised or supervised settings. Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples to perform anomaly detection. We propose an extended mutual information (EMI) metric to mine the internal correlation structure among different data features, which enhances the data reconstruction capability of CSCAD. The reconstruction loss and latent standard deviation vector of a sample obtained from reconstruction network can be perceived as two natural anomalous degree measures. An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples. Experimental results on five public datasets demonstrate that our approach consistently outperforms all the competing baselines. |
|---|---|
| AbstractList | Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth labels or prior knowledge for anomalies is hard in real-world systems, which often lead to limited or no anomaly labels in the dataset. Second, anomalies in large systems usually occur in a collective manner due to the underlying dependency structure among devices or sensors. Lastly, real-time anomaly detection for high-dimensional data requires efficient algorithms that are capable of handling different types of data (i.e. continuous and discrete). We propose a correlation structure-based collective anomaly detection (CSCAD) model for high-dimensional anomaly detection problem in large systems, which is also generalizable to semi-supervised or supervised settings. Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples to perform anomaly detection. We propose an extended mutual information (EMI) metric to mine the internal correlation structure among different data features, which enhances the data reconstruction capability of CSCAD. The reconstruction loss and latent standard deviation vector of a sample obtained from reconstruction network can be perceived as two natural anomalous degree measures. An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples. Experimental results on five public datasets demonstrate that our approach consistently outperforms all the competing baselines. |
| Author | Zhan, Xianyuan Qin, Huiling Zheng, Yu |
| Author_xml | – sequence: 1 givenname: Huiling orcidid: 0000-0002-4045-6091 surname: Qin fullname: Qin, Huiling email: orekinana@gmail.com organization: Xidian University and JD iCity, JD Technology, Beijing, China – sequence: 2 givenname: Xianyuan orcidid: 0000-0002-3683-0554 surname: Zhan fullname: Zhan, Xianyuan email: zhanxianyuan@gmail.com organization: Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China – sequence: 3 givenname: Yu orcidid: 0000-0002-5224-4344 surname: Zheng fullname: Zheng, Yu email: msyuzheng@outlook.com organization: Xidian University and JD iCity, JD Technology, Beijing, China |
| BookMark | eNp9kMtOwzAQRS1UJErhAxCbSKxT7LEdx-xKWh6iEkIt68hJJlKqPIrtIvr3JLRiwYLVjObeM6O552TUdi0ScsXolDGqb9cv88UUKMCUMylYFJ2QMZMyDoFpNup7KlgouFBn5Ny5DaU0VjEbk7dklczmd0HSWYu18VXXBitvd7nfWQzvjcOi1-oac199YjBru8bU-2COfpj05qrt9WZb41ew2juPzQU5LU3t8PJYJ-T9YbFOnsLl6-NzMluGOWjuQ1PIiHFRoIYyYyozUMhcYKR1ITMFqDMeZ5JqCahEZAA5CDBU5Qp0qRjwCbk57N3a7mOHzqebbmfb_mQKSsuYQqR571IHV2475yyWaV75nze9NVWdMpoO-aVDfumQX3rMryfZH3Jrq8bY_b_M9YGpEPHXr5WglMf8G8aGfCk |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_4018_IJDWM_327363 crossref_primary_10_1109_TKDE_2024_3488375 crossref_primary_10_1016_j_resconrec_2023_107239 crossref_primary_10_1109_TKDE_2023_3250523 crossref_primary_10_3389_frai_2024_1508821 crossref_primary_10_1155_2023_2332669 crossref_primary_10_1016_j_mlwa_2025_100728 |
| Cites_doi | 10.1007/978-3-319-48057-2_9 10.1007/978-3-030-10925-7_1 10.1109/ICDM.2008.17 10.1145/3191786 10.1145/3178876.3185996 10.1109/65.283931 10.1109/IJCNN.2016.7727242 10.1007/s10955-006-9131-x 10.1016/j.jnca.2015.11.016 10.1007/978-3-030-10925-7_11 10.1109/TBDATA.2020.2991008 10.1609/aaai.v33i01.33015167 10.1145/3292500.3330672 10.1145/3292500.3330871 10.1214/aoms/1177704472 10.1109/ICASSP.2008.4518376 10.1145/335191.335388 10.1145/1970392.1970395 10.1145/3292500.3330932 10.1007/s10994-020-05877-5 10.1145/3097983.3098052 10.1016/j.sigpro.2013.12.026 10.1007/978-3-319-59050-9_12 10.1145/1150402.1150459 10.1145/3097983.3098144 10.1145/3292500.3330680 10.1145/3292500.3330748 10.3156/jsoft.29.5_177_2 10.1145/2820783.2820813 10.1007/springerreference_205676 10.1109/ICIP.2001.958946 10.1145/1541880.1541882 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2022.3154166 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 4645 |
| ExternalDocumentID | 10_1109_TKDE_2022_3154166 9740038 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2019YFB2101801 – fundername: Public Service Platform for Industrial Technology grantid: 2021-0166-1-1 – fundername: National Natural Science Foundation of China grantid: 62076191 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-ad56134de92fb17ba2d5c4e699d5b72e9b38b50952e746a2e3242a07c729f7123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964880800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Mon Jun 30 04:14:17 EDT 2025 Sat Nov 29 02:36:05 EST 2025 Tue Nov 18 21:01:00 EST 2025 Wed Aug 27 02:14:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-ad56134de92fb17ba2d5c4e699d5b72e9b38b50952e746a2e3242a07c729f7123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5224-4344 0000-0002-4045-6091 0000-0002-3683-0554 |
| PQID | 2795802693 |
| PQPubID | 85438 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2022_3154166 crossref_primary_10_1109_TKDE_2022_3154166 ieee_primary_9740038 proquest_journals_2795802693 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref31 Ikeda (ref19) 2018 ref30 ref33 ref10 Kingma (ref35) 2014 ref2 ref1 ref17 ref39 ref16 ref38 Dua (ref11) 2017 Zong (ref5) 2018 Defferrard (ref36) 2016 Zhai (ref4) 2016 Li (ref32) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 An (ref18) 2015; 2 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref40 |
| References_xml | – ident: ref7 doi: 10.1007/978-3-319-48057-2_9 – ident: ref31 doi: 10.1007/978-3-030-10925-7_1 – ident: ref39 doi: 10.1109/ICDM.2008.17 – ident: ref10 doi: 10.1145/3191786 – ident: ref20 doi: 10.1145/3178876.3185996 – ident: ref1 doi: 10.1109/65.283931 – year: 2018 ident: ref32 article-title: Anomaly detection with generative adversarial networks for multivariate time series – ident: ref8 doi: 10.1109/IJCNN.2016.7727242 – ident: ref34 doi: 10.1007/s10955-006-9131-x – ident: ref12 doi: 10.1016/j.jnca.2015.11.016 – ident: ref29 doi: 10.1007/978-3-030-10925-7_11 – ident: ref15 doi: 10.1109/TBDATA.2020.2991008 – ident: ref6 doi: 10.1609/aaai.v33i01.33015167 – ident: ref23 doi: 10.1145/3292500.3330672 – ident: ref25 doi: 10.1145/3292500.3330871 – ident: ref16 doi: 10.1214/aoms/1177704472 – ident: ref17 doi: 10.1109/ICASSP.2008.4518376 – ident: ref38 doi: 10.1145/335191.335388 – ident: ref3 doi: 10.1145/1970392.1970395 – year: 2018 ident: ref19 article-title: Estimation of dimensions contributing to detected anomalies with variational autoencoders – ident: ref21 doi: 10.1145/3292500.3330932 – ident: ref37 doi: 10.1007/s10994-020-05877-5 – ident: ref28 doi: 10.1145/3097983.3098052 – ident: ref14 doi: 10.1016/j.sigpro.2013.12.026 – volume-title: Proc. Int. Conf. Learn. Representations year: 2018 ident: ref5 article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection – ident: ref33 doi: 10.1007/978-3-319-59050-9_12 – ident: ref2 doi: 10.1145/1150402.1150459 – year: 2017 ident: ref11 article-title: UCI machine learning repository – ident: ref24 doi: 10.1145/3097983.3098144 – ident: ref26 doi: 10.1145/3292500.3330680 – start-page: 3844 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2016 ident: ref36 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – volume: 2 start-page: 1 year: 2015 ident: ref18 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Special Lecture IE – ident: ref22 doi: 10.1145/3292500.3330748 – year: 2014 ident: ref35 article-title: Auto-encoding variational bayes – ident: ref30 doi: 10.3156/jsoft.29.5_177_2 – ident: ref9 doi: 10.1145/2820783.2820813 – ident: ref27 doi: 10.1007/springerreference_205676 – ident: ref40 doi: 10.1109/ICIP.2001.958946 – ident: ref13 doi: 10.1145/1541880.1541882 – start-page: 1100 volume-title: Proc. Int. Conf. Mach. Learn. year: 2016 ident: ref4 article-title: Deep structured energy based models for anomaly detection |
| SSID | ssj0008781 |
| Score | 2.451345 |
| Snippet | Detecting anomalies in large complex systems is a critical and challenging task. The difficulties arise from several aspects. First, collecting ground truth... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4634 |
| SubjectTerms | Algorithms Anomalies Anomaly detection complex system Complex systems Correlation correlation mining Data models Datasets Feature extraction Labels Loss measurement Reconstruction Sensors unsupervised learning urban computing variational autoencoder |
| Title | CSCAD: Correlation Structure-Based Collective Anomaly Detection in Complex System |
| URI | https://ieeexplore.ieee.org/document/9740038 https://www.proquest.com/docview/2795802693 |
| Volume | 35 |
| WOSCitedRecordID | wos000964880800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library Online customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnG6K0yl58EmM69KPNL7NfSAoQ9mEvZU2yWAwO9mH6H_vJe2Kogi-FZrQcr_m7n7N5X4AF7LFJa4_ST3fiak3CQVNlB9S11NMyVj7IrAHhR_4YBCOx-KxBFfFWRittS0-09fm0u7lq7lcm19lTcx9zU7WFmxxzrOzWoXXDbkVJEV2gZzI9Xi-g9lyRHN03-0hE2QMCaqPCUjwLQZZUZUfntiGl37lfy-2D3t5GknaGe4HUNJpFSobiQaSr9gq7H7pN1iDp84QLX9DOkaSIyuCI0PbQHa90PQWA5oi9k-CdYKknc5f4tkH6eqVLdhKyTQl5hkz_U6yVueH8NzvjTp3NNdUoBID-4rGyjAGT2nBJkmLJzFTvvR0IITyE860SNwwwSTCZ5p7Qcy0Sbhih0tMwiccw9wRlNN5qo-B4I0wQYeBeEqPTUTMAyfB7NHFiRINXQdnY-VI5g3Hje7FLLLEwxGRASYywEQ5MHW4LKa8Zt02_hpcM0gUA3MQ6tDYQBnl63EZMS78EOmmcE9-n3UKO0ZIPitlbEAZba_PYFu-rabLxbn91D4B5gLOkg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC6gPXjbFec2DT2JdlyZN45tuE8U5FCfsrbRJBsLsxG2i_96TtBuKIvhWaEJLvuSc70tOzgE4UnWhcP0pj3E_8Vg_kl6qeeQFTFOtEsNl6C4Kt0WnE_V68q4EJ7O7MMYYF3xmTu2jO8vXQzWxW2U15L72JGsOFjhjtJ7f1prZ3Ui4kqSoL1AVBUwUZ5h1X9a6N80WakFKUaJypCDhNy_kyqr8sMXOwVyu_e_X1mG1IJLkPEd-A0omK8PatEgDKdZsGVa-ZByswH3jAcf-jDRsUY48DI48uBSyk1fjXaBL08TtJTgzSM6z4XMy-CBNM3YhWxl5yoj9xsC8kzzZ-SY8Xra6jSuvqKrgKXTtYy_RVjMwbSTtp3WRJlRzxUwopeapoEamQZQijeDUCBYm1FjKlfhCIQ3vC3R0WzCfDTOzDQRfRCmaDERUMdqXiQj9FPljgB0VDnQV_Okox6pIOW4rXwxiJz18GVtgYgtMXABTheNZl5c838ZfjSsWiVnDAoQq7E2hjIsVOYqpkDxCwSmDnd97HcLSVfe2HbevOze7sGzLyueBjXswjziYfVhUb-On0euBm3af0RTR2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSCAD%3A+Correlation+Structure-Based+Collective+Anomaly+Detection+in+Complex+System&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Qin%2C+Huiling&rft.au=Zhan%2C+Xianyuan&rft.au=Zheng%2C+Yu&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=5&rft.spage=4634&rft_id=info:doi/10.1109%2FTKDE.2022.3154166&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |