Matrix-Free Edge-Domain Decomposition Method for Massively Parallel 3-D Finite Element Simulation With Field-Circuit Coupling

In this article, a novel edge-domain decomposition (EDD) method is proposed to solve 3-D nonlinear finite element (FE) problems of electromagnetic devices and transient field circuit co-simulation. The method applies reduced magnetic vector potential formulation to discretize the physical problem ba...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on magnetics Ročník 56; číslo 10; s. 1 - 9
Hlavní autori: Li, Jiacong, Liu, Peng, Dinavahi, Venkata
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9464, 1941-0069
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, a novel edge-domain decomposition (EDD) method is proposed to solve 3-D nonlinear finite element (FE) problems of electromagnetic devices and transient field circuit co-simulation. The method applies reduced magnetic vector potential formulation to discretize the physical problem based on 3-D edge elements, and the solution region is divided into many sub-domains that only contain one edge unknown. The solution of lightweight nonlinear sub-domain systems can be massively parallelized, and the neighbor-to-neighbor communication scheme eliminates the need to assemble the global FE matrix. This article also introduces an indirect coupling scheme to handle large eddy currents to interface the EDD FE system with external circuits. The abovementioned algorithms are then implemented on a many-core GPU for transient field circuit co-simulation. The result shows an auto-gauging property, and the comparison with a commercial FE software indicates a speedup of over 43 times with relative error less than 2%.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2020.3013143