TSPol-ASLIC: Adaptive Superpixel Generation With Local Iterative Clustering for Time-Series Quad- and Dual-Polarization SAR Data

The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar (PolSAR) superpixel generation, the traditional polarimetric similarity measure based on the joint covariance matrix has limitations in discriminati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 15
Hlavní autoři: Gao, Han, Wang, Changcheng, Xiang, Deliang, Ye, Jiawei, Wang, Guanya
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar (PolSAR) superpixel generation, the traditional polarimetric similarity measure based on the joint covariance matrix has limitations in discriminating different time-series similarity sequences with different fluctuations. Besides, in the traditional time-series PolSAR superpixel generation methods, it is difficult to determine the tradeoff factor between polarimetric and spatial similarity. In this article, an adaptive time-series PolSAR superpixel generation method based on the simple local iterative clustering (SLIC) is proposed, named time-series polarimetric SAR (TSPol)-adaptive simple local iterative clustering (ASLIC). There are three main improvements. First, a novel time-series polarimetric similarity measure based on the root mean square (rms) is proposed. Multitemporal polarimetric statistical information is combined to describe the polarimetric proximity between pixels, referring to the rms of the multitemporal proximities. Second, an edge detection method based on the stacked 2-D Gaussian-shaped (s2-D GS) window is proposed to initialize the central seeds for superpixel generation. Third, an improved SLIC clustering similarity combined with the time-series polarimetric, time-series power, and spatial similarities is proposed. Meanwhile, a homogeneity factor is applied to adaptively balance the relative weights of various similarities. We use eight Radarsat-2 quad-polarization synthetic aperture radar (SAR) images and 14 Sentinel-1 dual-polarization SAR images to evaluate the effectiveness. The results show our similarity measure and superpixel generation results are superior to those of the traditional methods. For example, as for the Radarsat-2 data, the improvement of the boundary recall by the proposed similarity measure and homogeneity factor is about 4% and 10%, respectively.
AbstractList The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar (PolSAR) superpixel generation, the traditional polarimetric similarity measure based on the joint covariance matrix has limitations in discriminating different time-series similarity sequences with different fluctuations. Besides, in the traditional time-series PolSAR superpixel generation methods, it is difficult to determine the tradeoff factor between polarimetric and spatial similarity. In this article, an adaptive time-series PolSAR superpixel generation method based on the simple local iterative clustering (SLIC) is proposed, named time-series polarimetric SAR (TSPol)-adaptive simple local iterative clustering (ASLIC). There are three main improvements. First, a novel time-series polarimetric similarity measure based on the root mean square (rms) is proposed. Multitemporal polarimetric statistical information is combined to describe the polarimetric proximity between pixels, referring to the rms of the multitemporal proximities. Second, an edge detection method based on the stacked 2-D Gaussian-shaped (s2-D GS) window is proposed to initialize the central seeds for superpixel generation. Third, an improved SLIC clustering similarity combined with the time-series polarimetric, time-series power, and spatial similarities is proposed. Meanwhile, a homogeneity factor is applied to adaptively balance the relative weights of various similarities. We use eight Radarsat-2 quad-polarization synthetic aperture radar (SAR) images and 14 Sentinel-1 dual-polarization SAR images to evaluate the effectiveness. The results show our similarity measure and superpixel generation results are superior to those of the traditional methods. For example, as for the Radarsat-2 data, the improvement of the boundary recall by the proposed similarity measure and homogeneity factor is about 4% and 10%, respectively.
Author Gao, Han
Wang, Guanya
Ye, Jiawei
Xiang, Deliang
Wang, Changcheng
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0002-0745-2056
  surname: Gao
  fullname: Gao, Han
  email: dawnhan314@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 2
  givenname: Changcheng
  orcidid: 0000-0003-4461-068X
  surname: Wang
  fullname: Wang, Changcheng
  email: wangchangcheng@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 3
  givenname: Deliang
  orcidid: 0000-0003-0152-6621
  surname: Xiang
  fullname: Xiang, Deliang
  email: xiangdeliang@gmail.com
  organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering and the Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, China
– sequence: 4
  givenname: Jiawei
  surname: Ye
  fullname: Ye, Jiawei
  email: yejiawei@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
– sequence: 5
  givenname: Guanya
  orcidid: 0000-0003-2837-8905
  surname: Wang
  fullname: Wang, Guanya
  email: wangguanya@csu.edu.cn
  organization: School of Geosciences and Info-Physics, Central South University, Changsha, China
BookMark eNp9kM1Lw0AQxRdRsFb_APGy4HnrfiS7WW-lai0U_EjFY5imE12JSdxsRD35p5ta8eDB0_CG994Mvz2yXdUVEnIo-EgIbk8W09t0JLkUIyWk1tpukYGI44RxHUXbZMCF1UwmVu6SvbZ94lxEsTAD8rlIr-uSjdP5bHJKxytogntFmnYN-sa9YUmnWKGH4OqK3rvwSOd1DiWdhe9lb52UXdsLVz3QovZ04Z6Rpb3Glt50sGIUqhU966Bk_SHw7mPTlY5v6RkE2Cc7BZQtHvzMIbm7OF9MLtn8ajqbjOcsl1YFBsvEKC61KSBKLAKoYmn0kps8V4WW3KiCF2iXCZhYx8rE0SpBC5rHOQqFUg3J8aa38fVLh23InurOV_3JTGpphTSxEb3LbFy5r9vWY5HlLnw_HDy4MhM8W-PO1rizNe7sB3efFH-SjXfP4N__zRxtMg4Rf_1Wc51orb4AjUqNCQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2024_3403481
crossref_primary_10_1109_LGRS_2023_3268539
crossref_primary_10_1109_LGRS_2022_3195809
crossref_primary_10_1109_JSTARS_2025_3547947
crossref_primary_10_1109_JSTARS_2021_3140101
Cites_doi 10.3390/rs10101592
10.1109/JSTARS.2021.3053161
10.1109/36.789635
10.1109/LGRS.2020.3005973
10.1080/01431161.2015.1043759
10.1109/83.725361
10.1016/j.rse.2010.12.002
10.1109/LGRS.2014.2322960
10.1109/TGRS.2013.2273664
10.1109/CVPR.2011.5995323
10.1109/TGRS.2019.2904465
10.1029/RS022i004p00529
10.1109/IGARSS.2015.7326080
10.1109/TIM.2010.2052478
10.1016/j.rse.2017.02.014
10.1109/TGRS.2009.2019269
10.1109/LGRS.2013.2292820
10.1016/j.neucom.2012.02.008
10.1109/TGRS.2002.808066
10.1109/TGRS.2018.2871504
10.1109/TGRS.2020.3047126
10.1109/TGRS.2017.2662010
10.1080/07038992.2015.1104633
10.1109/JSTARS.2017.2708418
10.1016/j.rse.2020.112232
10.1109/LGRS.2018.2833492
10.1109/PIERS-FALL.2017.8293217
10.1080/01431161.2017.1404162
10.1109/LGRS.2015.2425873
10.1109/LGRS.2021.3050675
10.1109/LGRS.2019.2943372
10.1109/36.35954
10.1029/2019JB019325
10.1109/JSTARS.2011.2106198
10.1109/LGRS.2018.2805714
10.1016/j.isprsjprs.2020.01.001
10.1109/TIP.2020.2992177
10.1109/36.789621
10.3390/rs8080619
10.1016/j.patcog.2016.11.015
10.1080/014311699211390
10.1109/TGRS.2011.2166080
10.1109/JSTARS.2020.2968966
10.3390/rs12172715
10.1109/TGRS.2019.2926434
10.1002/9781119217886.ch4
10.1016/j.measurement.2019.107432
10.1109/TPAMI.2012.120
10.1201/9781420054989
10.1109/LGRS.2012.2184521
10.1109/TGRS.2012.2203358
10.1016/j.jog.2010.01.001
10.1109/TGRS.2011.2172994
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3126669
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 15
ExternalDocumentID 10_1109_TGRS_2021_3126669
9606866
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41671356
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities of Central South University
  grantid: 2020zzts173
  funderid: 10.13039/501100002822
– fundername: Hunan Provincial Innovation Foundation for Postgraduate
  grantid: CX20200229
  funderid: 10.13039/501100010083
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-ab8730267fa489eaa3fb76b07cc3f62073f0fe9b8a75653754d8e9a605ce13e23
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000756892900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:27:27 EDT 2025
Sat Nov 29 02:50:17 EST 2025
Tue Nov 18 22:17:18 EST 2025
Wed Aug 27 02:49:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ab8730267fa489eaa3fb76b07cc3f62073f0fe9b8a75653754d8e9a605ce13e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2837-8905
0000-0003-0152-6621
0000-0002-0745-2056
0000-0003-4461-068X
PQID 2629127571
PQPubID 85465
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3126669
crossref_primary_10_1109_TGRS_2021_3126669
proquest_journals_2629127571
ieee_primary_9606866
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Anfingen (ref44); 7
Bouchemakh (ref40) 2012; 10
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref24
  doi: 10.3390/rs10101592
– ident: ref35
  doi: 10.1109/JSTARS.2021.3053161
– ident: ref54
  doi: 10.1109/36.789635
– ident: ref51
  doi: 10.1109/LGRS.2020.3005973
– ident: ref34
  doi: 10.1080/01431161.2015.1043759
– ident: ref19
  doi: 10.1109/83.725361
– ident: ref8
  doi: 10.1016/j.rse.2010.12.002
– ident: ref25
  doi: 10.1109/LGRS.2014.2322960
– ident: ref37
  doi: 10.1109/TGRS.2013.2273664
– ident: ref55
  doi: 10.1109/CVPR.2011.5995323
– ident: ref12
  doi: 10.1109/TGRS.2019.2904465
– volume: 10
  start-page: 113
  issue: 2
  year: 2012
  ident: ref40
  article-title: Sur le filtrage du chatoiement dans les images radar SAR polarimétriques: Étude de la région d’Alger
  publication-title: Teledetection
– ident: ref47
  doi: 10.1029/RS022i004p00529
– ident: ref33
  doi: 10.1109/IGARSS.2015.7326080
– ident: ref28
  doi: 10.1109/TIM.2010.2052478
– ident: ref48
  doi: 10.1016/j.rse.2017.02.014
– ident: ref50
  doi: 10.1109/TGRS.2009.2019269
– ident: ref17
  doi: 10.1109/LGRS.2013.2292820
– volume: 7
  start-page: 1
  volume-title: Proc. POLinSAR
  ident: ref44
  article-title: Spectral clustering of polarimetric SAR data with Wishart-derived distance measures
– ident: ref27
  doi: 10.1016/j.neucom.2012.02.008
– ident: ref43
  doi: 10.1109/TGRS.2002.808066
– ident: ref3
  doi: 10.1109/TGRS.2018.2871504
– ident: ref45
  doi: 10.1109/TGRS.2020.3047126
– ident: ref26
  doi: 10.1109/TGRS.2017.2662010
– ident: ref14
  doi: 10.1080/07038992.2015.1104633
– ident: ref1
  doi: 10.1109/JSTARS.2017.2708418
– ident: ref11
  doi: 10.1016/j.rse.2020.112232
– ident: ref30
  doi: 10.1109/LGRS.2018.2833492
– ident: ref38
  doi: 10.1109/PIERS-FALL.2017.8293217
– ident: ref7
  doi: 10.1080/01431161.2017.1404162
– ident: ref6
  doi: 10.1109/LGRS.2015.2425873
– ident: ref9
  doi: 10.1109/LGRS.2021.3050675
– ident: ref32
  doi: 10.1109/LGRS.2019.2943372
– ident: ref18
  doi: 10.1109/36.35954
– ident: ref15
  doi: 10.1029/2019JB019325
– ident: ref36
  doi: 10.1109/JSTARS.2011.2106198
– ident: ref5
  doi: 10.1109/LGRS.2018.2805714
– ident: ref16
  doi: 10.1016/j.isprsjprs.2020.01.001
– ident: ref20
  doi: 10.1109/TIP.2020.2992177
– ident: ref42
  doi: 10.1109/36.789621
– ident: ref31
  doi: 10.3390/rs8080619
– ident: ref21
  doi: 10.1016/j.patcog.2016.11.015
– ident: ref23
  doi: 10.1080/014311699211390
– ident: ref53
  doi: 10.1109/TGRS.2011.2166080
– ident: ref4
  doi: 10.1109/JSTARS.2020.2968966
– ident: ref49
  doi: 10.3390/rs12172715
– ident: ref2
  doi: 10.1109/TGRS.2019.2926434
– ident: ref10
  doi: 10.1002/9781119217886.ch4
– ident: ref22
  doi: 10.1016/j.measurement.2019.107432
– ident: ref39
  doi: 10.1109/TPAMI.2012.120
– ident: ref41
  doi: 10.1201/9781420054989
– ident: ref52
  doi: 10.1109/LGRS.2012.2184521
– ident: ref29
  doi: 10.1109/TGRS.2012.2203358
– ident: ref13
  doi: 10.1016/j.jog.2010.01.001
– ident: ref46
  doi: 10.1109/TGRS.2011.2172994
SSID ssj0014517
Score 2.4929917
Snippet The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Clustering
Clustering algorithms
Covariance matrices
Covariance matrix
Detection
Dual polarization radar
Edge detection
Fluctuations
Geologic measurements
Homogeneity
Image segmentation
Methods
Polarimetric synthetic aperture radar (PolSAR)
Polarimetry
Polarization
Radar
Radar imaging
Radarsat
SAR (radar)
Satellites
Seeds
Sequences
Similarity
Similarity measures
simple local iterative clustering (SLIC)
superpixel generation
Synthetic aperture radar
Time series
time-series polarimetric SAR (TSPol)-adaptive simple local iterative clustering (ASLIC)
Title TSPol-ASLIC: Adaptive Superpixel Generation With Local Iterative Clustering for Time-Series Quad- and Dual-Polarization SAR Data
URI https://ieeexplore.ieee.org/document/9606866
https://www.proquest.com/docview/2629127571
Volume 60
WOSCitedRecordID wos000756892900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB21FUhw4KMFESjIB04I013vxh_copRCpagK3QC9rfy1ItIqiZLdqkd-Oh7HjSqBkLjtwbYsvbXfPNvzBuCtEDp3gclp4RpJS6clDasoSJUhd4w7YUz0Kfg-ERcX8upKTffg_S4XxnsfH5_5D_gZ7_Ld0vZ4VHaC0bbkfB_2heDbXK3djUE5zFNqNKdBRLB0g5ln6mT2-bIKSpDlQaAGPsK3zXc4KBZV-WMnjvRy9vj_JvYEHqUwkoy2uD-FPb84hId3zAUP4X583Gk3R_BrVk2XLR1Vk_PxRzJyeoV7HKn6lV-v5je-JVvzacSI_Jh3P8kEGY6cR8dlbDpuezRUCOOSEOQSzBuheK7mN-Rrrx0leuHIaa9bOkWpnHI7STW6JKe608_g29mn2fgLTZUXqA3031FtZFj5jItGl1J5rYvGCG4yYW3RcBa2hSZrvDJSixAQYhVdJ73SQRpZnxeeFc_hYLFc-BdATKGGpjRWGmtLHwZUVjWZz7QtAncaMYDsFovaJltyrI7R1lGeZKpG-GqEr07wDeDdrstq68nxr8ZHiNeuYYJqAMe3gNdp1W5qxplCw3uRv_x7r1fwgGH6QzyCOYaDbt3713DPXnfzzfpN_CF_A-vF3eY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aAwQ78GMDUTbAB04Is8RJ43i3qmOsIlRlKWy3yL8iKkVt1SaII386fq5XTRpC4pbDs2Xpi_3e9-z3PYC3nMvYOE9OE1PnNDUyp24XOarSzwzLDFfK6xR8L_h4nF9dickOvN_Wwlhr_eMz-wE__V2-WegOU2XHGG3nWXYH7mLnrFCttb0zSPtxKI7OqKMRLNxhxpE4nn66KB0XZLGjqM4j4evmG17It1W5dRZ7B3P2-P-W9gQehUCSDDbIP4UdO9-HvRvygvtw3z_v1OsD-D0tJ4uGDspiNDwhAyOXeMqRslva1XL2yzZkIz-NKJHLWfuDFOjjyMhrLqPpsOlQUsHNS1yYS7ByhGJmza7J104aSuTckNNONnSCZDlUd5JycEFOZSufwbezj9PhOQ29F6h2AUBLpcrd3mcZr2WaCytlUiueqYhrndQZcwdDHdVWqFxyFxJiH12TWyEdOdI2TixLnsPufDG3L4CoRPRVqnSutE6tm1BoUUc2kjpx3lPxHkTXWFQ6CJNjf4ym8gQlEhXCVyF8VYCvB--2Q5YbVY5_GR8gXlvDAFUPjq4Br8K-XVcsYwIl73n88u-j3sCD8-mXoipG48-H8JBhMYRPyBzBbrvq7Cu4p3-2s_Xqtf85_wCiOeEv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSPol-ASLIC%3A+Adaptive+Superpixel+Generation+With+Local+Iterative+Clustering+for+Time-Series+Quad-+and+Dual-Polarization+SAR+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Gao%2C+Han&rft.au=Wang%2C+Changcheng&rft.au=Xiang%2C+Deliang&rft.au=Ye%2C+Jiawei&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2021.3126669&rft.externalDocID=9606866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon