TSPol-ASLIC: Adaptive Superpixel Generation With Local Iterative Clustering for Time-Series Quad- and Dual-Polarization SAR Data
The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar (PolSAR) superpixel generation, the traditional polarimetric similarity measure based on the joint covariance matrix has limitations in discriminati...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 60; S. 1 - 15 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar (PolSAR) superpixel generation, the traditional polarimetric similarity measure based on the joint covariance matrix has limitations in discriminating different time-series similarity sequences with different fluctuations. Besides, in the traditional time-series PolSAR superpixel generation methods, it is difficult to determine the tradeoff factor between polarimetric and spatial similarity. In this article, an adaptive time-series PolSAR superpixel generation method based on the simple local iterative clustering (SLIC) is proposed, named time-series polarimetric SAR (TSPol)-adaptive simple local iterative clustering (ASLIC). There are three main improvements. First, a novel time-series polarimetric similarity measure based on the root mean square (rms) is proposed. Multitemporal polarimetric statistical information is combined to describe the polarimetric proximity between pixels, referring to the rms of the multitemporal proximities. Second, an edge detection method based on the stacked 2-D Gaussian-shaped (s2-D GS) window is proposed to initialize the central seeds for superpixel generation. Third, an improved SLIC clustering similarity combined with the time-series polarimetric, time-series power, and spatial similarities is proposed. Meanwhile, a homogeneity factor is applied to adaptively balance the relative weights of various similarities. We use eight Radarsat-2 quad-polarization synthetic aperture radar (SAR) images and 14 Sentinel-1 dual-polarization SAR images to evaluate the effectiveness. The results show our similarity measure and superpixel generation results are superior to those of the traditional methods. For example, as for the Radarsat-2 data, the improvement of the boundary recall by the proposed similarity measure and homogeneity factor is about 4% and 10%, respectively. |
|---|---|
| AbstractList | The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar (PolSAR) superpixel generation, the traditional polarimetric similarity measure based on the joint covariance matrix has limitations in discriminating different time-series similarity sequences with different fluctuations. Besides, in the traditional time-series PolSAR superpixel generation methods, it is difficult to determine the tradeoff factor between polarimetric and spatial similarity. In this article, an adaptive time-series PolSAR superpixel generation method based on the simple local iterative clustering (SLIC) is proposed, named time-series polarimetric SAR (TSPol)-adaptive simple local iterative clustering (ASLIC). There are three main improvements. First, a novel time-series polarimetric similarity measure based on the root mean square (rms) is proposed. Multitemporal polarimetric statistical information is combined to describe the polarimetric proximity between pixels, referring to the rms of the multitemporal proximities. Second, an edge detection method based on the stacked 2-D Gaussian-shaped (s2-D GS) window is proposed to initialize the central seeds for superpixel generation. Third, an improved SLIC clustering similarity combined with the time-series polarimetric, time-series power, and spatial similarities is proposed. Meanwhile, a homogeneity factor is applied to adaptively balance the relative weights of various similarities. We use eight Radarsat-2 quad-polarization synthetic aperture radar (SAR) images and 14 Sentinel-1 dual-polarization SAR images to evaluate the effectiveness. The results show our similarity measure and superpixel generation results are superior to those of the traditional methods. For example, as for the Radarsat-2 data, the improvement of the boundary recall by the proposed similarity measure and homogeneity factor is about 4% and 10%, respectively. |
| Author | Gao, Han Wang, Guanya Ye, Jiawei Xiang, Deliang Wang, Changcheng |
| Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0002-0745-2056 surname: Gao fullname: Gao, Han email: dawnhan314@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 2 givenname: Changcheng orcidid: 0000-0003-4461-068X surname: Wang fullname: Wang, Changcheng email: wangchangcheng@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 3 givenname: Deliang orcidid: 0000-0003-0152-6621 surname: Xiang fullname: Xiang, Deliang email: xiangdeliang@gmail.com organization: Beijing Advanced Innovation Center for Soft Matter Science and Engineering and the Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing, China – sequence: 4 givenname: Jiawei surname: Ye fullname: Ye, Jiawei email: yejiawei@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 5 givenname: Guanya orcidid: 0000-0003-2837-8905 surname: Wang fullname: Wang, Guanya email: wangguanya@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China |
| BookMark | eNp9kM1Lw0AQxRdRsFb_APGy4HnrfiS7WW-lai0U_EjFY5imE12JSdxsRD35p5ta8eDB0_CG994Mvz2yXdUVEnIo-EgIbk8W09t0JLkUIyWk1tpukYGI44RxHUXbZMCF1UwmVu6SvbZ94lxEsTAD8rlIr-uSjdP5bHJKxytogntFmnYN-sa9YUmnWKGH4OqK3rvwSOd1DiWdhe9lb52UXdsLVz3QovZ04Z6Rpb3Glt50sGIUqhU966Bk_SHw7mPTlY5v6RkE2Cc7BZQtHvzMIbm7OF9MLtn8ajqbjOcsl1YFBsvEKC61KSBKLAKoYmn0kps8V4WW3KiCF2iXCZhYx8rE0SpBC5rHOQqFUg3J8aa38fVLh23InurOV_3JTGpphTSxEb3LbFy5r9vWY5HlLnw_HDy4MhM8W-PO1rizNe7sB3efFH-SjXfP4N__zRxtMg4Rf_1Wc51orb4AjUqNCQ |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3403481 crossref_primary_10_1109_LGRS_2023_3268539 crossref_primary_10_1109_LGRS_2022_3195809 crossref_primary_10_1109_JSTARS_2025_3547947 crossref_primary_10_1109_JSTARS_2021_3140101 |
| Cites_doi | 10.3390/rs10101592 10.1109/JSTARS.2021.3053161 10.1109/36.789635 10.1109/LGRS.2020.3005973 10.1080/01431161.2015.1043759 10.1109/83.725361 10.1016/j.rse.2010.12.002 10.1109/LGRS.2014.2322960 10.1109/TGRS.2013.2273664 10.1109/CVPR.2011.5995323 10.1109/TGRS.2019.2904465 10.1029/RS022i004p00529 10.1109/IGARSS.2015.7326080 10.1109/TIM.2010.2052478 10.1016/j.rse.2017.02.014 10.1109/TGRS.2009.2019269 10.1109/LGRS.2013.2292820 10.1016/j.neucom.2012.02.008 10.1109/TGRS.2002.808066 10.1109/TGRS.2018.2871504 10.1109/TGRS.2020.3047126 10.1109/TGRS.2017.2662010 10.1080/07038992.2015.1104633 10.1109/JSTARS.2017.2708418 10.1016/j.rse.2020.112232 10.1109/LGRS.2018.2833492 10.1109/PIERS-FALL.2017.8293217 10.1080/01431161.2017.1404162 10.1109/LGRS.2015.2425873 10.1109/LGRS.2021.3050675 10.1109/LGRS.2019.2943372 10.1109/36.35954 10.1029/2019JB019325 10.1109/JSTARS.2011.2106198 10.1109/LGRS.2018.2805714 10.1016/j.isprsjprs.2020.01.001 10.1109/TIP.2020.2992177 10.1109/36.789621 10.3390/rs8080619 10.1016/j.patcog.2016.11.015 10.1080/014311699211390 10.1109/TGRS.2011.2166080 10.1109/JSTARS.2020.2968966 10.3390/rs12172715 10.1109/TGRS.2019.2926434 10.1002/9781119217886.ch4 10.1016/j.measurement.2019.107432 10.1109/TPAMI.2012.120 10.1201/9781420054989 10.1109/LGRS.2012.2184521 10.1109/TGRS.2012.2203358 10.1016/j.jog.2010.01.001 10.1109/TGRS.2011.2172994 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2021.3126669 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TGRS_2021_3126669 9606866 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41671356 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities of Central South University grantid: 2020zzts173 funderid: 10.13039/501100002822 – fundername: Hunan Provincial Innovation Foundation for Postgraduate grantid: CX20200229 funderid: 10.13039/501100010083 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-ab8730267fa489eaa3fb76b07cc3f62073f0fe9b8a75653754d8e9a605ce13e23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000756892900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:27:27 EDT 2025 Sat Nov 29 02:50:17 EST 2025 Tue Nov 18 22:17:18 EST 2025 Wed Aug 27 02:49:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-ab8730267fa489eaa3fb76b07cc3f62073f0fe9b8a75653754d8e9a605ce13e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2837-8905 0000-0003-0152-6621 0000-0002-0745-2056 0000-0003-4461-068X |
| PQID | 2629127571 |
| PQPubID | 85465 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2021_3126669 crossref_primary_10_1109_TGRS_2021_3126669 proquest_journals_2629127571 ieee_primary_9606866 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 Anfingen (ref44); 7 Bouchemakh (ref40) 2012; 10 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref24 doi: 10.3390/rs10101592 – ident: ref35 doi: 10.1109/JSTARS.2021.3053161 – ident: ref54 doi: 10.1109/36.789635 – ident: ref51 doi: 10.1109/LGRS.2020.3005973 – ident: ref34 doi: 10.1080/01431161.2015.1043759 – ident: ref19 doi: 10.1109/83.725361 – ident: ref8 doi: 10.1016/j.rse.2010.12.002 – ident: ref25 doi: 10.1109/LGRS.2014.2322960 – ident: ref37 doi: 10.1109/TGRS.2013.2273664 – ident: ref55 doi: 10.1109/CVPR.2011.5995323 – ident: ref12 doi: 10.1109/TGRS.2019.2904465 – volume: 10 start-page: 113 issue: 2 year: 2012 ident: ref40 article-title: Sur le filtrage du chatoiement dans les images radar SAR polarimétriques: Étude de la région d’Alger publication-title: Teledetection – ident: ref47 doi: 10.1029/RS022i004p00529 – ident: ref33 doi: 10.1109/IGARSS.2015.7326080 – ident: ref28 doi: 10.1109/TIM.2010.2052478 – ident: ref48 doi: 10.1016/j.rse.2017.02.014 – ident: ref50 doi: 10.1109/TGRS.2009.2019269 – ident: ref17 doi: 10.1109/LGRS.2013.2292820 – volume: 7 start-page: 1 volume-title: Proc. POLinSAR ident: ref44 article-title: Spectral clustering of polarimetric SAR data with Wishart-derived distance measures – ident: ref27 doi: 10.1016/j.neucom.2012.02.008 – ident: ref43 doi: 10.1109/TGRS.2002.808066 – ident: ref3 doi: 10.1109/TGRS.2018.2871504 – ident: ref45 doi: 10.1109/TGRS.2020.3047126 – ident: ref26 doi: 10.1109/TGRS.2017.2662010 – ident: ref14 doi: 10.1080/07038992.2015.1104633 – ident: ref1 doi: 10.1109/JSTARS.2017.2708418 – ident: ref11 doi: 10.1016/j.rse.2020.112232 – ident: ref30 doi: 10.1109/LGRS.2018.2833492 – ident: ref38 doi: 10.1109/PIERS-FALL.2017.8293217 – ident: ref7 doi: 10.1080/01431161.2017.1404162 – ident: ref6 doi: 10.1109/LGRS.2015.2425873 – ident: ref9 doi: 10.1109/LGRS.2021.3050675 – ident: ref32 doi: 10.1109/LGRS.2019.2943372 – ident: ref18 doi: 10.1109/36.35954 – ident: ref15 doi: 10.1029/2019JB019325 – ident: ref36 doi: 10.1109/JSTARS.2011.2106198 – ident: ref5 doi: 10.1109/LGRS.2018.2805714 – ident: ref16 doi: 10.1016/j.isprsjprs.2020.01.001 – ident: ref20 doi: 10.1109/TIP.2020.2992177 – ident: ref42 doi: 10.1109/36.789621 – ident: ref31 doi: 10.3390/rs8080619 – ident: ref21 doi: 10.1016/j.patcog.2016.11.015 – ident: ref23 doi: 10.1080/014311699211390 – ident: ref53 doi: 10.1109/TGRS.2011.2166080 – ident: ref4 doi: 10.1109/JSTARS.2020.2968966 – ident: ref49 doi: 10.3390/rs12172715 – ident: ref2 doi: 10.1109/TGRS.2019.2926434 – ident: ref10 doi: 10.1002/9781119217886.ch4 – ident: ref22 doi: 10.1016/j.measurement.2019.107432 – ident: ref39 doi: 10.1109/TPAMI.2012.120 – ident: ref41 doi: 10.1201/9781420054989 – ident: ref52 doi: 10.1109/LGRS.2012.2184521 – ident: ref29 doi: 10.1109/TGRS.2012.2203358 – ident: ref13 doi: 10.1016/j.jog.2010.01.001 – ident: ref46 doi: 10.1109/TGRS.2011.2172994 |
| SSID | ssj0014517 |
| Score | 2.4929178 |
| Snippet | The superpixel generation is a key step for object-based classification and change detection. For the time-series polarimetric synthetic aperture radar... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering Clustering algorithms Covariance matrices Covariance matrix Detection Dual polarization radar Edge detection Fluctuations Geologic measurements Homogeneity Image segmentation Methods Polarimetric synthetic aperture radar (PolSAR) Polarimetry Polarization Radar Radar imaging Radarsat SAR (radar) Satellites Seeds Sequences Similarity Similarity measures simple local iterative clustering (SLIC) superpixel generation Synthetic aperture radar Time series time-series polarimetric SAR (TSPol)-adaptive simple local iterative clustering (ASLIC) |
| Title | TSPol-ASLIC: Adaptive Superpixel Generation With Local Iterative Clustering for Time-Series Quad- and Dual-Polarization SAR Data |
| URI | https://ieeexplore.ieee.org/document/9606866 https://www.proquest.com/docview/2629127571 |
| Volume | 60 |
| WOSCitedRecordID | wos000756892900049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEB2SkEJ7SNKkpc4XOuRUqka7a0ur3ozTfIAJbtaluS36WmJYbGPvlhzz06uRFRNoKeS2B2lZeKt5M5LeG4AztAHLpelRKQWj3Uwbqo1mtGetlp4gVFYFofBQ3N7m9_dytAFf1loY51y4fOa-4mM4y7cz0-JW2Tlm2znnm7ApBF9ptdYnBt1eEqXRnPoiIo0nmAmT5-Oru8JXgmniC1TPR3i3-QUHhaYqf0XiQC-Xu6_7sD3YiWkk6a9wfw8bbroP716YC-7Dm3C50ywP4GlcjGY17RfDm8E30rdqjjGOFO3cLeaTR1eTlfk0YkR-TZoHMkSGIzfBcRmHDuoWDRX8e4lPcgnqRijuq7kl-dEqS4maWnLRqpqOsFSO2k5S9O_IhWrUB_h5-X08uKax8wI1nv4bqnTuV37KRaW6uXTKI6YF10wYk1U89WGhYpWTOlfCJ4TYRdfmTipfGhmXZC7NPsLWdDZ1n4DwnhDOykxJUXUTzZSSzJhcKk8SSjDbAfaMRWmiLTl2x6jLUJ4wWSJ8JcJXRvg68Hk9Zb7y5Pjf4APEaz0wQtWB42fAy7hql2XKU4mG9yI5_PesI3ibovwhbMEcw1azaN0JbJvfzWS5OA0_5B_sl91U |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aGwg4jLExrTCYD5wQZk7SxjG3qttYtawqSxG7Rf4VUSlqqzZBHPnT8XO9ahITErccnqNIX_x-2d_3AN6jDFgmdI8KwRntJkpTpRWjPWOUcAFCJpUnCud8NMpub8V4Cz5uuDDWWn_5zH7CR3-Wb-a6xVbZKWbbWZo-gh2cnBXYWpszg24vCuTolLoyIg5nmBETp5MvN4WrBePIlaguIuHt5ntRyI9V-csX-wBz8eL_Pm0PdkMiSfpr5F_Clp3tw_N78oL78MRf79SrA_g9KcbzmvaLfDj4TPpGLtDLkaJd2OVi-svWZC0_jSiR79PmB8kxxpGh11xG00HdoqSCey9xaS5B5gjFzppdka-tNJTImSFnrazpGIvlwO4kRf-GnMlGvoJvF-eTwSUNsxeodglAQ6XK3N6PU17JbiasdJgpnirGtU6qNHaOoWKVFSqT3KWEOEfXZFZIVxxpGyU2Tg5hezaf2SMgaY9za0QiBa-6kWJSCqZ1JqQLE5Iz0wF2h0WpgzA5zseoS1-gMFEifCXCVwb4OvBhs2SxVuX4l_EB4rUxDFB14PgO8DLs21UZp7FAyXsevX541Qk8vZxc52U-HF29gWcxkiF8Q-YYtptla9_CY_2zma6W7_zP-QebyeCd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSPol-ASLIC%3A+Adaptive+Superpixel+Generation+With+Local+Iterative+Clustering+for+Time-Series+Quad-+and+Dual-Polarization+SAR+Data&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Gao%2C+Han&rft.au=Wang%2C+Changcheng&rft.au=Xiang%2C+Deliang&rft.au=Ye%2C+Jiawei&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2021.3126669&rft.externalDocID=9606866 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |