Online and Offline Domain Adaptation for Reducing BCI Calibration Effort

Many real-world brain-computer interface (BCI) applications rely on single-trial classification of event-related potentials (ERPs) in EEG signals. However, because different subjects have different neural responses to even the same stimulus, it is very difficult to build a generic ERP classifier who...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on human-machine systems Vol. 47; no. 4; pp. 550 - 563
Main Author: Wu, Dongrui
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2291, 2168-2305
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many real-world brain-computer interface (BCI) applications rely on single-trial classification of event-related potentials (ERPs) in EEG signals. However, because different subjects have different neural responses to even the same stimulus, it is very difficult to build a generic ERP classifier whose parameters fit all subjects. The classifier needs to be calibrated for each individual subject, using some labeled subject-specific data. This paper proposes both online and offline weighted adaptation regularization (wAR) algorithms to reduce this calibration effort, i.e., to minimize the amount of labeled subject-specific EEG data required in BCI calibration, and hence to increase the utility of the BCI system. We demonstrate using a visually evoked potential oddball task and three different EEG headsets that both online and offline wAR algorithms significantly outperform several other algorithms. Moreover, through source domain selection, we can reduce their computational cost by about <inline-formula> <tex-math notation="LaTeX">\text{50}\%</tex-math></inline-formula>, making them more suitable for real-time applications.
AbstractList Many real-world brain–computer interface (BCI) applications rely on single-trial classification of event-related potentials (ERPs) in EEG signals. However, because different subjects have different neural responses to even the same stimulus, it is very difficult to build a generic ERP classifier whose parameters fit all subjects. The classifier needs to be calibrated for each individual subject, using some labeled subject-specific data. This paper proposes both online and offline weighted adaptation regularization (wAR) algorithms to reduce this calibration effort, i.e., to minimize the amount of labeled subject-specific EEG data required in BCI calibration, and hence to increase the utility of the BCI system. We demonstrate using a visually evoked potential oddball task and three different EEG headsets that both online and offline wAR algorithms significantly outperform several other algorithms. Moreover, through source domain selection, we can reduce their computational cost by about [Formula Omitted], making them more suitable for real-time applications.
Many real-world brain-computer interface (BCI) applications rely on single-trial classification of event-related potentials (ERPs) in EEG signals. However, because different subjects have different neural responses to even the same stimulus, it is very difficult to build a generic ERP classifier whose parameters fit all subjects. The classifier needs to be calibrated for each individual subject, using some labeled subject-specific data. This paper proposes both online and offline weighted adaptation regularization (wAR) algorithms to reduce this calibration effort, i.e., to minimize the amount of labeled subject-specific EEG data required in BCI calibration, and hence to increase the utility of the BCI system. We demonstrate using a visually evoked potential oddball task and three different EEG headsets that both online and offline wAR algorithms significantly outperform several other algorithms. Moreover, through source domain selection, we can reduce their computational cost by about <inline-formula> <tex-math notation="LaTeX">\text{50}\%</tex-math></inline-formula>, making them more suitable for real-time applications.
Author Wu, Dongrui
Author_xml – sequence: 1
  givenname: Dongrui
  surname: Wu
  fullname: Wu, Dongrui
  email: drwu09@gmail.com
  organization: DataNova, Clifton Park, NY, USA
BookMark eNp9ULFOwzAQtVCRKKUfgFgiMafYTuzEYwmFViqqBGW2zomNXKV2cdKBvychhYGBG-6e9O7d071LNHLeaYSuCZ4RgsXddvn8OqOY8BnlOBcJOUNjSnge0wSz0Q-mglygadPscFc5ZYzlY7TcuNo6HYGroo0x3_jB78G6aF7BoYXWehcZH6IXXR1L696j-2IVFVBbFQZyYTq6vULnBupGT09zgt4eF9tiGa83T6tivo5LKpI2BhCGV6AU5qVgGXCOVZbmwDMFCRMlNZoZAV1XmtNKYQGQJjrXoqKZylgyQbfD3UPwH0fdtHLnj8F1lpIIIpggKeu3yLBVBt80QRt5CHYP4VMSLPvMZJ-Z7DOTp8w6TfZHU9rh_zaArf9V3gxKq7X-dcpYjjlJky98gnrb
CODEN ITHSA6
CitedBy_id crossref_primary_10_3390_s22124470
crossref_primary_10_1109_ACCESS_2020_3045225
crossref_primary_10_1109_TNSRE_2021_3083548
crossref_primary_10_3390_s23239588
crossref_primary_10_1016_j_compeleceng_2021_107415
crossref_primary_10_1109_TNSRE_2020_2985996
crossref_primary_10_3389_fdata_2024_1359317
crossref_primary_10_1109_TIM_2018_2882115
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_1109_LSP_2020_2989663
crossref_primary_10_1016_j_jneumeth_2022_109489
crossref_primary_10_1109_TNSRE_2020_3034234
crossref_primary_10_1109_TFUZZ_2020_2968863
crossref_primary_10_1109_TNSRE_2025_3591616
crossref_primary_10_1088_1741_2552_abc528
crossref_primary_10_3390_s19081826
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1016_j_patcog_2019_107017
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1016_j_neucom_2025_130254
crossref_primary_10_1109_TNSRE_2017_2755018
crossref_primary_10_1109_TNSRE_2020_2980299
crossref_primary_10_1109_ACCESS_2021_3110882
crossref_primary_10_1088_1741_2552_addd49
crossref_primary_10_3390_bios14080368
crossref_primary_10_3390_s24237690
crossref_primary_10_3389_fnins_2021_642251
crossref_primary_10_1016_j_compbiomed_2023_107135
crossref_primary_10_1109_ACCESS_2024_3467154
crossref_primary_10_3389_frai_2022_992732
crossref_primary_10_1088_1741_2552_aaa8a4
crossref_primary_10_1109_JAS_2022_106004
crossref_primary_10_1109_TNSRE_2022_3207494
crossref_primary_10_3390_s22134939
crossref_primary_10_1109_TETCI_2018_2868326
crossref_primary_10_1016_j_aei_2022_101729
crossref_primary_10_3389_fnhum_2021_685173
crossref_primary_10_1007_s10489_022_04077_z
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_1016_j_cmpb_2021_106150
crossref_primary_10_1109_THMS_2019_2904615
crossref_primary_10_1109_TAI_2023_3296685
crossref_primary_10_1007_s11432_022_3440_5
crossref_primary_10_1016_j_jneumeth_2024_110332
crossref_primary_10_1016_j_patrec_2020_11_013
crossref_primary_10_1109_TNSRE_2022_3184402
crossref_primary_10_1109_TBME_2019_2913914
crossref_primary_10_1002_jdn_10166
crossref_primary_10_1109_TETCI_2019_2937566
crossref_primary_10_3389_fnins_2017_00103
crossref_primary_10_1109_TNSRE_2023_3241301
crossref_primary_10_1088_1741_2552_ac5eb7
crossref_primary_10_3390_s21030885
crossref_primary_10_1088_1741_2552_ac0f4c
crossref_primary_10_1016_j_bspc_2022_104540
crossref_primary_10_1016_j_bspc_2023_105138
crossref_primary_10_1088_1741_2552_ab2373
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_3390_bioengineering10060649
crossref_primary_10_1109_TFUZZ_2017_2688423
crossref_primary_10_3389_fnins_2020_629572
crossref_primary_10_1061__ASCE_CO_1943_7862_0002130
crossref_primary_10_1109_TNSRE_2019_2908955
Cites_doi 10.1016/j.visres.2012.03.014
10.7551/mitpress/9780262033589.001.0001
10.1109/ACII.2015.7344626
10.1109/TNSRE.2008.2003381
10.1109/TKDE.2009.191
10.1109/ICASSP.2010.5495183
10.1016/j.neuropsychologia.2003.07.009
10.1037/0278-7393.2.5.509
10.1109/ACII.2015.7344682
10.1109/TBME.2010.2082539
10.1037/0096-1523.21.1.109
10.1109/SMC.2016.7844328
10.1214/aoms/1177731944
10.1109/SMC.2014.6974353
10.1088/1741-2560/8/3/036025
10.1109/JPROC.2012.2185009
10.1109/TNSRE.2015.2502323
10.1109/MSP.2008.4408447
10.1109/TBME.2008.2009768
10.1109/TKDE.2013.111
10.3233/IDA-2002-6504
10.1145/1961189.1961199
10.7551/mitpress/1140.001.0001
10.1007/BF01067978
10.1111/j.2517-6161.1995.tb02031.x
10.1016/S0167-8760(02)00031-4
10.1109/TBME.2011.2172210
10.1109/SMC.2015.557
10.1109/TNSRE.2016.2544108
10.1109/JPROC.2015.2404941
10.1371/journal.pone.0056624
10.1007/s10994-007-5039-1
10.1109/JPROC.2009.2038406
10.1109/MCI.2015.2501545
10.1109/ICIST.2015.7288989
10.1080/00401706.1964.10490181
10.1162/jocn.2006.18.5.766
10.7551/mitpress/4175.001.0001
10.1109/TBME.2013.2253608
10.1016/j.jneumeth.2003.10.009
10.1166/jnsne.2014.1092
10.1109/SMC.2015.558
10.1007/978-3-540-74958-5_63
10.1088/1741-2560/8/2/025005
10.1080/01621459.1961.10482090
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2016.2608931
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 563
ExternalDocumentID 10_1109_THMS_2016_2608931
7580614
Genre orig-research
GrantInformation_xml – fundername: Army Research Laboratory; U.S. Army Research Laboratory
  grantid: W911NF-10-2-0022; W911NF-10-D-0002/TO 0023
  funderid: 10.13039/100006754
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-aa9f6dabb06c957a660b748a67ba359c2fe5f9afe5be62db09aa43e8e9d27b753
IEDL.DBID RIE
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405732000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2291
IngestDate Mon Jun 30 06:05:37 EDT 2025
Tue Nov 18 20:44:39 EST 2025
Sat Nov 29 07:48:52 EST 2025
Wed Aug 27 01:42:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-aa9f6dabb06c957a660b748a67ba359c2fe5f9afe5be62db09aa43e8e9d27b753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1919591455
PQPubID 85416
PageCount 14
ParticipantIDs crossref_primary_10_1109_THMS_2016_2608931
crossref_citationtrail_10_1109_THMS_2016_2608931
ieee_primary_7580614
proquest_journals_1919591455
PublicationCentury 2000
PublicationDate 2017-Aug.
2017-8-00
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kindermans (ref20) 2012
ref13
ref12
ref15
pohlmeyer (ref35) 2011; 8
ref14
ref53
ref52
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
settles (ref42) 2009
ref49
ref8
ref7
ref9
ref4
longadge (ref26) 2013; 2
ref6
ref5
alamgir (ref1) 2010
ref40
ref36
ref31
ref30
ref33
ref32
ref2
(ref43) 1999
ref39
ref38
vapnik (ref45) 1998
belkin (ref3) 2006; 7
ref24
ref23
ref25
ref22
ref21
(ref44) 1990
ref28
ref27
ref29
picard (ref34) 1997
scholkopf (ref41) 2001
provost (ref37) 2000
References_xml – ident: ref21
  doi: 10.1016/j.visres.2012.03.014
– ident: ref9
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: ref52
  doi: 10.1109/ACII.2015.7344626
– ident: ref5
  doi: 10.1109/TNSRE.2008.2003381
– year: 1990
  ident: ref44
  article-title: Use of volunteers as subjects of research
– ident: ref32
  doi: 10.1109/TKDE.2009.191
– ident: ref27
  doi: 10.1109/ICASSP.2010.5495183
– ident: ref17
  doi: 10.1016/j.neuropsychologia.2003.07.009
– ident: ref36
  doi: 10.1037/0278-7393.2.5.509
– ident: ref47
  doi: 10.1109/ACII.2015.7344682
– ident: ref28
  doi: 10.1109/TBME.2010.2082539
– ident: ref10
  doi: 10.1037/0096-1523.21.1.109
– ident: ref50
  doi: 10.1109/SMC.2016.7844328
– ident: ref15
  doi: 10.1214/aoms/1177731944
– ident: ref48
  doi: 10.1109/SMC.2014.6974353
– volume: 8
  year: 2011
  ident: ref35
  article-title: Closing the loop in cortically-coupled computer vision: A brain-computer interface for searching image databases
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/3/036025
– ident: ref30
  doi: 10.1109/JPROC.2012.2185009
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref3
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– ident: ref31
  doi: 10.1109/TNSRE.2015.2502323
– year: 1999
  ident: ref43
  article-title: Code of federal regulations protection of human subjects
– ident: ref33
  doi: 10.1109/MSP.2008.4408447
– ident: ref16
  doi: 10.1109/TBME.2008.2009768
– ident: ref25
  doi: 10.1109/TKDE.2013.111
– year: 2000
  ident: ref37
  article-title: Machine learning from imbalanced data sets 101
– ident: ref18
  doi: 10.3233/IDA-2002-6504
– ident: ref8
  doi: 10.1145/1961189.1961199
– year: 1997
  ident: ref34
  publication-title: Affective Computing
  doi: 10.7551/mitpress/1140.001.0001
– ident: ref7
  doi: 10.1007/BF01067978
– ident: ref4
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: ref6
  doi: 10.1016/S0167-8760(02)00031-4
– ident: ref2
  doi: 10.1109/TBME.2011.2172210
– ident: ref53
  doi: 10.1109/SMC.2015.557
– ident: ref51
  doi: 10.1109/TNSRE.2016.2544108
– ident: ref29
  doi: 10.1109/JPROC.2015.2404941
– ident: ref49
  doi: 10.1371/journal.pone.0056624
– year: 2009
  ident: ref42
  article-title: Active learning literature survey
– ident: ref23
  doi: 10.1007/s10994-007-5039-1
– ident: ref39
  doi: 10.1109/JPROC.2009.2038406
– ident: ref19
  doi: 10.1109/MCI.2015.2501545
– start-page: 719
  year: 2012
  ident: ref20
  article-title: A P300 BCI for the masses: Prior information enables instant unsupervised spelling
  publication-title: Proc Neural Inf Process Syst Conf
– ident: ref46
  doi: 10.1109/ICIST.2015.7288989
– ident: ref14
  doi: 10.1080/00401706.1964.10490181
– start-page: 17
  year: 2010
  ident: ref1
  article-title: Multitask learning for brain-computer interfaces
  publication-title: Proc 13th Int Conf Artif Intell Stat
– year: 1998
  ident: ref45
  publication-title: Statistical Learning Theory
– ident: ref11
  doi: 10.1162/jocn.2006.18.5.766
– year: 2001
  ident: ref41
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
  doi: 10.7551/mitpress/4175.001.0001
– volume: 2
  start-page: 83
  year: 2013
  ident: ref26
  article-title: Class imbalance problem in data mining: Review
  publication-title: Int J Comp Sci and Netw
– ident: ref40
  doi: 10.1109/TBME.2013.2253608
– ident: ref12
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref38
  doi: 10.1166/jnsne.2014.1092
– ident: ref22
  doi: 10.1109/SMC.2015.558
– ident: ref24
  doi: 10.1007/978-3-540-74958-5_63
– ident: ref54
  doi: 10.1088/1741-2560/8/2/025005
– ident: ref13
  doi: 10.1080/01621459.1961.10482090
SSID ssj0000825558
Score 2.5206401
Snippet Many real-world brain-computer interface (BCI) applications rely on single-trial classification of event-related potentials (ERPs) in EEG signals. However,...
Many real-world brain–computer interface (BCI) applications rely on single-trial classification of event-related potentials (ERPs) in EEG signals. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 550
SubjectTerms Adaptation
Algorithms
Brain
Brain models
Brain–computer interface (BCI)
Calibration
Classifiers
Cost engineering
Data models
domain adaptation (DA)
Earphones
EEG
Electroencephalography
event-related potential (ERP)
Headphones
Indexing
Real time
Regularization
transfer learning
Visualization
Title Online and Offline Domain Adaptation for Reducing BCI Calibration Effort
URI https://ieeexplore.ieee.org/document/7580614
https://www.proquest.com/docview/1919591455
Volume 47
WOSCitedRecordID wos000405732000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000825558
  issn: 2168-2291
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6seNCDryrWFzl4ErfdV5LNUatSDz7QCr0tSTaBgm5LXf39TrLboiiClyWwGVhmkp3vy0xmAE6SxKY0oQJpSaKC1IQ0yKjWgeZCJUlaREYUvtkEv7vLRiPxsARni7swxhiffGa6buhj-cVEv7ujsh5iW0dgWtDinNV3tRbnKY7qUN-OM44YGj8WURPEjELRGw5un1weF-sifkcXHX1zQ76vyo-fsfcw1xv_-7ZNWG-QJDmvTb8FS6bchrUv9QXbMKgLiRJZFuTeWj--nLzKcUnOCzmto_AEYSt5dBVcUYZc9G-Iu6-l6pVBriy-rnbg-fpq2B8ETeuEQKP_rgIphWWFVCpkWlAuGQsVTzPJuJJoGR1bQ62Q-FSGxYUKhZRpYjK0TMwVUphdWC4npdkDIhgiCIq4SWYqNUJnMVpU24xZzk3BeQfCuSZz3dQVd-0tXnLPL0KRO-XnTvl5o_wOnC5EpnVRjb8mt522FxMbRXfgcG6uvNl2bzmST0GFq72-_7vUAazGzi_7DL5DWK5m7-YIVvRHNX6bHfsV9QnHIccX
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WB6gH3-L6zMGTWO0rSXPUVVlRV9EVvJUkTUDQ7rIPf7-TtC6KIngpgWagzCSd78tMZgAOksSmNKECaUmigtSENMio1oHmQiVJWkRGFL7ZBO90sudncd-Ao8ldGGOMTz4zx27oY_lFT4_dUdkJYltHYKZgxnXOotVtrcmJiiM71DfkjCOG5o9FVIcxo1CcdNu3jy6Tix0jgkcnHX1zRL6zyo_fsfcxl0v_-7plWKyxJDmtjL8CDVOuwsKXCoNr0K5KiRJZFuTOWj8-773Jl5KcFrJfxeEJAlfy4Gq4ogw5a10Rd2NLVWuDXFh8PVqHp8uLbqsd1M0TAo0efBRIKSwrpFIh04JyyVioeJpJxpVE2-jYGmqFxKcyLC5UKKRME5OhbWKukMRswHTZK80mEMEQQ1BETjJTqRE6i9Gm2mbMcm4KzpsQfmoy13Vlcdfg4jX3DCMUuVN-7pSf18pvwuFEpF-V1fhr8prT9mRiregm7HyaK6833jBH-imocNXXt36X2oe5dvf2Jr-56lxvw3zsvLTP59uB6dFgbHZhVr-PXoaDPb-6PgBXfcpi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+and+Offline+Domain+Adaptation+for+Reducing+BCI+Calibration+Effort&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Wu%2C+Dongrui&rft.date=2017-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=47&rft.issue=4&rft.spage=550&rft_id=info:doi/10.1109%2FTHMS.2016.2608931&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon