A Quality-Related Fault Detection Method Based on the Dynamic Data-Driven Algorithm for Industrial Systems
For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection strategies rely on static assumptions of the operating environment. In this paper, taking the time series of variables into consideration, a dynamic k...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 19; číslo 4; s. 3942 - 3952 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection strategies rely on static assumptions of the operating environment. In this paper, taking the time series of variables into consideration, a dynamic kernel entropy component regression (DKECR) framework is proposed to address the instability of quality-related fault detection due to the existing dynamic characteristics. Compared with the typical kernel entropy component analysis method, the proposed method constructs the relationship between process states and quality states to further interpret the direct effect on the product taken by the fault. In the proposed approach, process measurements are converted to a lower-dimensional subspace with a specific angular structure that is more comprehensive than traditional subspace approaches. In addition, the angular statistics and their relevant thresholds are exploited to enhance the quality-related fault detection performance. Finally, the proposed method will be compared with three methods by means of a numerical example and two industrial scenarios to demonstrate its practicality and effectiveness. Note to Practitioners-This paper studies a quality-related fault detection problem for the dynamic nonlinear industrial system. Controlling and measuring the quality state is challenging for the high-level monitoring system of the manufacturing process due to the nonlinear dynamic feature in states. This paper proposes a new data-driven method based on the kernel entropy component analysis method to assess the correlation between the quality and fault in the industrial system, reducing unnecessary overhaul and maintenance. Based on the autoregressive moving average exogenous algorithm, the proposed method captures the dynamic interaction between the process states to decrease false alarms. In the experimental section, the DKECR method outperforms the compared approaches, which can provide stable fault detection results. Additionally, the unique angle structure of the proposed method can supply more information for engineers' monitoring needs. |
|---|---|
| AbstractList | For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection strategies rely on static assumptions of the operating environment. In this paper, taking the time series of variables into consideration, a dynamic kernel entropy component regression (DKECR) framework is proposed to address the instability of quality-related fault detection due to the existing dynamic characteristics. Compared with the typical kernel entropy component analysis method, the proposed method constructs the relationship between process states and quality states to further interpret the direct effect on the product taken by the fault. In the proposed approach, process measurements are converted to a lower-dimensional subspace with a specific angular structure that is more comprehensive than traditional subspace approaches. In addition, the angular statistics and their relevant thresholds are exploited to enhance the quality-related fault detection performance. Finally, the proposed method will be compared with three methods by means of a numerical example and two industrial scenarios to demonstrate its practicality and effectiveness. Note to Practitioners-This paper studies a quality-related fault detection problem for the dynamic nonlinear industrial system. Controlling and measuring the quality state is challenging for the high-level monitoring system of the manufacturing process due to the nonlinear dynamic feature in states. This paper proposes a new data-driven method based on the kernel entropy component analysis method to assess the correlation between the quality and fault in the industrial system, reducing unnecessary overhaul and maintenance. Based on the autoregressive moving average exogenous algorithm, the proposed method captures the dynamic interaction between the process states to decrease false alarms. In the experimental section, the DKECR method outperforms the compared approaches, which can provide stable fault detection results. Additionally, the unique angle structure of the proposed method can supply more information for engineers' monitoring needs. |
| Author | Sun, Cheng-Yuan Yin, Yi-Zhen Kang, Hao-Bo Ma, Hong-Jun |
| Author_xml | – sequence: 1 givenname: Cheng-Yuan orcidid: 0000-0002-1321-3924 surname: Sun fullname: Sun, Cheng-Yuan email: chengyuansun2472@163.com organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Yi-Zhen surname: Yin fullname: Yin, Yi-Zhen email: 1900921@stu.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Hao-Bo surname: Kang fullname: Kang, Hao-Bo email: kanghaobo@sia.cn organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Liaoning, Shenyang, China – sequence: 4 givenname: Hong-Jun orcidid: 0000-0001-5739-8011 surname: Ma fullname: Ma, Hong-Jun email: mahongjun@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
| BookMark | eNp9kE9PwzAMxSMEEjD4AIhLJM4d-dMmzXGwDSaBEDDOldc6LFPXQpIi7dvTaogDB0625ff8rN8pOWzaBgm54GzMOTPXy8nrbCyY4GPJpdFKHZATnmV5InUuD4c-zZLMZNkxOQ1hw5hIc8NOyGZCnzuoXdwlL1hDxIrOoasjnWLEMrq2oY8Y121FbyD0y36Oa6TTXQNbV9IpREim3n1hQyf1e-tdXG-pbT1dNFUXondQ09ddiLgNZ-TIQh3w_KeOyNt8try9Tx6e7ha3k4ekFEbGBECDEWxlrF2lYKHKrdVolZDcMM7tSuhSasNXKoUULVeQVXlpUBmLZT_LEbna3_3w7WeHIRabtvNNH1kILVIthRGqV_G9qvRtCB5t8eHdFvyu4KwYkBYD0mJAWvwg7T36j6d0EQZI0YOr_3Ve7p0OEX-TjFL9K5n8BspUhyE |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_3390_math12243911 crossref_primary_10_1109_TASE_2024_3349387 crossref_primary_10_1016_j_jprocont_2024_103369 crossref_primary_10_1109_TASE_2023_3293931 crossref_primary_10_1109_TASE_2023_3321171 crossref_primary_10_1002_cem_3602 crossref_primary_10_1109_TASE_2024_3463650 crossref_primary_10_1109_TASE_2023_3281394 crossref_primary_10_1016_j_ins_2022_10_053 crossref_primary_10_1109_TASE_2023_3285217 crossref_primary_10_1109_TII_2024_3361024 crossref_primary_10_1109_TASE_2024_3516710 crossref_primary_10_1016_j_jprocont_2023_03_003 crossref_primary_10_1109_TII_2022_3204555 crossref_primary_10_1016_j_jfranklin_2022_04_022 crossref_primary_10_1016_j_ress_2025_111441 crossref_primary_10_1007_s10479_023_05656_0 crossref_primary_10_1109_TASE_2022_3198668 crossref_primary_10_1109_TASE_2023_3332452 crossref_primary_10_1016_j_neunet_2024_106819 crossref_primary_10_1109_TII_2022_3217832 crossref_primary_10_1002_ceat_202200577 crossref_primary_10_1016_j_isatra_2023_06_038 crossref_primary_10_1109_TASE_2024_3402653 crossref_primary_10_1016_j_psep_2024_02_070 crossref_primary_10_1016_j_eswa_2025_128699 |
| Cites_doi | 10.1002/cem.3110 10.1016/j.chemolab.2018.04.012 10.1109/TASE.2015.2493564 10.1016/j.chemolab.2016.12.013 10.1155/2013/707953 10.1016/j.chemolab.2004.05.001 10.1109/TII.2020.2989810 10.1109/TIE.2014.2301761 10.1016/j.ifacol.2020.12.108 10.1109/18.825826 10.1016/j.cherd.2015.12.015 10.1016/j.jprocont.2015.02.006 10.1002/oca.2770 10.1016/j.jprocont.2017.05.002 10.1016/j.ifacol.2018.09.255 10.1109/TASE.2015.2477272 10.1109/TIM.2020.3004681 10.1016/j.conengprac.2015.04.012 10.1109/9.763211 10.1016/j.isatra.2016.10.015 10.1111/j.2517-6161.1995.tb02052.x 10.1016/j.isatra.2020.08.017 10.1016/j.jsv.2013.07.005 10.1109/TII.2009.2032654 10.1109/TIE.2014.2301773 10.1109/TIE.2015.2497204 10.1016/j.isatra.2018.07.038 10.1109/TIE.2020.2972472 10.1016/j.isatra.2016.06.002 10.1109/TASE.2017.2713800 10.1109/TASE.2019.2892081 10.1109/TPAMI.2009.100 10.1016/j.compchemeng.2007.07.005 10.1016/S1474-6670(17)42882-5 10.1016/j.jfranklin.2016.03.021 10.1109/TII.2017.2752709 10.1080/07408170802389308 10.1109/ACCESS.2018.2864138 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2021.3139766 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 3952 |
| ExternalDocumentID | 10_1109_TASE_2021_3139766 9669265 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: N2004018 funderid: 10.13039/501100012226 – fundername: State Key Laboratory of Synthetical Automation for Process Industries grantid: SAPI2019-3; 2018ZCX19 funderid: 10.13039/501100011248 – fundername: National Science of Foundation China grantid: 61873306; U1908213; 6162100; 61420106016 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: SQ2019YFE020319 funderid: 10.13039/501100012166 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-aa7a920b9ffb4afad8ff7ef62319011fb27c3791b64a4ef16a5d8c9e69fecef13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740071900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Nov 30 04:56:14 EST 2025 Tue Nov 18 22:44:13 EST 2025 Sat Nov 29 04:12:48 EST 2025 Wed Aug 27 02:29:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-aa7a920b9ffb4afad8ff7ef62319011fb27c3791b64a4ef16a5d8c9e69fecef13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5739-8011 0000-0002-1321-3924 |
| PQID | 2724732926 |
| PQPubID | 27623 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9669265 proquest_journals_2724732926 crossref_primary_10_1109_TASE_2021_3139766 crossref_citationtrail_10_1109_TASE_2021_3139766 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1002/cem.3110 – ident: ref28 doi: 10.1016/j.chemolab.2018.04.012 – ident: ref2 doi: 10.1109/TASE.2015.2493564 – ident: ref37 doi: 10.1016/j.chemolab.2016.12.013 – ident: ref5 doi: 10.1155/2013/707953 – ident: ref6 doi: 10.1016/j.chemolab.2004.05.001 – ident: ref14 doi: 10.1109/TII.2020.2989810 – ident: ref26 doi: 10.1109/TIE.2014.2301761 – ident: ref12 doi: 10.1016/j.ifacol.2020.12.108 – ident: ref16 doi: 10.1109/18.825826 – ident: ref24 doi: 10.1016/j.cherd.2015.12.015 – ident: ref30 doi: 10.1016/j.jprocont.2015.02.006 – ident: ref29 doi: 10.1002/oca.2770 – ident: ref33 doi: 10.1016/j.jprocont.2017.05.002 – ident: ref34 doi: 10.1016/j.ifacol.2018.09.255 – ident: ref21 doi: 10.1109/TASE.2015.2477272 – ident: ref31 doi: 10.1109/TIM.2020.3004681 – ident: ref36 doi: 10.1016/j.conengprac.2015.04.012 – ident: ref18 doi: 10.1109/9.763211 – ident: ref9 doi: 10.1016/j.isatra.2016.10.015 – ident: ref19 doi: 10.1111/j.2517-6161.1995.tb02052.x – ident: ref27 doi: 10.1016/j.isatra.2020.08.017 – ident: ref15 doi: 10.1016/j.jsv.2013.07.005 – ident: ref32 doi: 10.1109/TII.2009.2032654 – ident: ref1 doi: 10.1109/TIE.2014.2301773 – ident: ref25 doi: 10.1109/TIE.2015.2497204 – ident: ref38 doi: 10.1016/j.isatra.2018.07.038 – ident: ref3 doi: 10.1109/TIE.2020.2972472 – ident: ref7 doi: 10.1016/j.isatra.2016.06.002 – ident: ref8 doi: 10.1109/TASE.2017.2713800 – ident: ref10 doi: 10.1109/TASE.2019.2892081 – ident: ref11 doi: 10.1109/TPAMI.2009.100 – ident: ref23 doi: 10.1016/j.compchemeng.2007.07.005 – ident: ref17 doi: 10.1016/S1474-6670(17)42882-5 – ident: ref13 doi: 10.1016/j.jfranklin.2016.03.021 – ident: ref4 doi: 10.1109/TII.2017.2752709 – ident: ref20 doi: 10.1080/07408170802389308 – ident: ref35 doi: 10.1109/ACCESS.2018.2864138 |
| SSID | ssj0024890 |
| Score | 2.4703631 |
| Snippet | For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3942 |
| SubjectTerms | Algorithms Autoregressive moving average DKECR Dynamic characteristics Dynamic feature Dynamic stability Dynamical systems Entropy False alarms Fault detection KECA Kernel Kernels Monitoring Nonlinear control Nonlinear dynamical systems Nonlinear dynamics Principal component analysis quality-related |
| Title | A Quality-Related Fault Detection Method Based on the Dynamic Data-Driven Algorithm for Industrial Systems |
| URI | https://ieeexplore.ieee.org/document/9669265 https://www.proquest.com/docview/2724732926 |
| Volume | 19 |
| WOSCitedRecordID | wos000740071900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4F1AMcaMtDBNLKB04Ik12v149j2iTqpVElqMRt5ScPhQSFDRL_Htu7CUVFlXpba21ptZ_t-caemQ_ghGaeFiyzWOeW4jApGBbCGMx1pokvwoLSjdgEn0zE1ZX81YGzdS6Mcy4Fn7nz-Jju8u3cLONRWT9Qc0lYuQEbnLMmV-u1rp5I5ymREeBSlmV7g5lnsn85uBgFT5DkwUGN5pe9sUFJVOWvnTiZl_HH__uwT7DT0kg0aHD_DB0324XtP4oL7sHdADUFMp5xinhzFo3VclqjoatT_NUM_Uzy0ehbsGQWhXYgg2jYSNSjoaoVHi7iZogG0-v54ra-uUeB4qJXtQ_U1jvfh9_j0eX3H7hVVsAmmPcaK8WVJJmW3muqvLLCe-58oEKRH-ReE24KLnPNqKLO50yVVhjpmPTOhHZxAJuz-cwdAnLCMy2opJZ56gupZC6UotQzawIXc13IVv-6Mm3Z8ah-Ma2S-5HJKsJTRXiqFp4unK6HPDQ1N_7VeS_ise7YQtGF3grQql2VjxXhhPKChPdH7486hi0S0xtSsF4PNuvF0n2BD-apvn1cfE0T7gVnQNRu |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0aGxLsYQMGWvcBfuAJYZY4jmM_lqXVEF2FRJH6FvkThkqLsnTS_v1sJ2tBmybtLVZsKcqxfc-1770H4D1NHM1YYrBKDcV-UjDMuda4UIkiLvMLSrViE8V4zKdT8W0DPq5yYay1MfjMfgqP8S7fLPQyHJWdeGouCMufwFZOKUnabK11ZT0eT1QCJ8C5yPPuDjNNxMmk_33gfUGSehc1GGD2nxWKsip39uJoYIa7j_u0F7DTEUnUb5F_CRt2_gq2_ykvuAe_-6gtkXGNY8ybNWgol7MGlbaJEVhzdB4FpNFnb8sM8m1PB1HZitSjUjYSl3XYDlF_9nNRXzS__iBPctFa7wN1Fc9fw4_hYHJ6hjttBay9gW-wlIUUJFHCOUWlk4Y7V1jnyVBgCKlTpNBZIVLFqKTWpUzmhmthmXBW-3b2Bjbni7ndB2S5Y4pTQQ1z1GVCipRLSaljRns2ZnuQ3P7rSneFx4P-xayKDkgiqgBPFeCpOnh68GE15G9bdeOhznsBj1XHDooeHN0CWnXr8rIiBaFFRvz7g_tHvYNnZ5PzUTX6Mv56CM9JSHaIoXtHsNnUS3sMT_VVc3FZv42T7waa8Ne1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quality-Related+Fault+Detection+Method+Based+on+the+Dynamic+Data-Driven+Algorithm+for+Industrial+Systems&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Sun%2C+Cheng-Yuan&rft.au=Yin%2C+Yi-Zhen&rft.au=Kang%2C+Hao-Bo&rft.au=Ma%2C+Hong-Jun&rft.date=2022-10-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=4&rft.spage=3942&rft.epage=3952&rft_id=info:doi/10.1109%2FTASE.2021.3139766&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2021_3139766 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |