A Quality-Related Fault Detection Method Based on the Dynamic Data-Driven Algorithm for Industrial Systems

For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection strategies rely on static assumptions of the operating environment. In this paper, taking the time series of variables into consideration, a dynamic k...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 19; no. 4; pp. 3942 - 3952
Main Authors: Sun, Cheng-Yuan, Yin, Yi-Zhen, Kang, Hao-Bo, Ma, Hong-Jun
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection strategies rely on static assumptions of the operating environment. In this paper, taking the time series of variables into consideration, a dynamic kernel entropy component regression (DKECR) framework is proposed to address the instability of quality-related fault detection due to the existing dynamic characteristics. Compared with the typical kernel entropy component analysis method, the proposed method constructs the relationship between process states and quality states to further interpret the direct effect on the product taken by the fault. In the proposed approach, process measurements are converted to a lower-dimensional subspace with a specific angular structure that is more comprehensive than traditional subspace approaches. In addition, the angular statistics and their relevant thresholds are exploited to enhance the quality-related fault detection performance. Finally, the proposed method will be compared with three methods by means of a numerical example and two industrial scenarios to demonstrate its practicality and effectiveness. Note to Practitioners-This paper studies a quality-related fault detection problem for the dynamic nonlinear industrial system. Controlling and measuring the quality state is challenging for the high-level monitoring system of the manufacturing process due to the nonlinear dynamic feature in states. This paper proposes a new data-driven method based on the kernel entropy component analysis method to assess the correlation between the quality and fault in the industrial system, reducing unnecessary overhaul and maintenance. Based on the autoregressive moving average exogenous algorithm, the proposed method captures the dynamic interaction between the process states to decrease false alarms. In the experimental section, the DKECR method outperforms the compared approaches, which can provide stable fault detection results. Additionally, the unique angle structure of the proposed method can supply more information for engineers' monitoring needs.
AbstractList For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection strategies rely on static assumptions of the operating environment. In this paper, taking the time series of variables into consideration, a dynamic kernel entropy component regression (DKECR) framework is proposed to address the instability of quality-related fault detection due to the existing dynamic characteristics. Compared with the typical kernel entropy component analysis method, the proposed method constructs the relationship between process states and quality states to further interpret the direct effect on the product taken by the fault. In the proposed approach, process measurements are converted to a lower-dimensional subspace with a specific angular structure that is more comprehensive than traditional subspace approaches. In addition, the angular statistics and their relevant thresholds are exploited to enhance the quality-related fault detection performance. Finally, the proposed method will be compared with three methods by means of a numerical example and two industrial scenarios to demonstrate its practicality and effectiveness. Note to Practitioners-This paper studies a quality-related fault detection problem for the dynamic nonlinear industrial system. Controlling and measuring the quality state is challenging for the high-level monitoring system of the manufacturing process due to the nonlinear dynamic feature in states. This paper proposes a new data-driven method based on the kernel entropy component analysis method to assess the correlation between the quality and fault in the industrial system, reducing unnecessary overhaul and maintenance. Based on the autoregressive moving average exogenous algorithm, the proposed method captures the dynamic interaction between the process states to decrease false alarms. In the experimental section, the DKECR method outperforms the compared approaches, which can provide stable fault detection results. Additionally, the unique angle structure of the proposed method can supply more information for engineers' monitoring needs.
Author Sun, Cheng-Yuan
Yin, Yi-Zhen
Kang, Hao-Bo
Ma, Hong-Jun
Author_xml – sequence: 1
  givenname: Cheng-Yuan
  orcidid: 0000-0002-1321-3924
  surname: Sun
  fullname: Sun, Cheng-Yuan
  email: chengyuansun2472@163.com
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Yi-Zhen
  surname: Yin
  fullname: Yin, Yi-Zhen
  email: 1900921@stu.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Hao-Bo
  surname: Kang
  fullname: Kang, Hao-Bo
  email: kanghaobo@sia.cn
  organization: Shenyang Institute of Automation, Chinese Academy of Sciences, Liaoning, Shenyang, China
– sequence: 4
  givenname: Hong-Jun
  orcidid: 0000-0001-5739-8011
  surname: Ma
  fullname: Ma, Hong-Jun
  email: mahongjun@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNp9kE9PwzAMxSMEEjD4AIhLJM4d-dMmzXGwDSaBEDDOldc6LFPXQpIi7dvTaogDB0625ff8rN8pOWzaBgm54GzMOTPXy8nrbCyY4GPJpdFKHZATnmV5InUuD4c-zZLMZNkxOQ1hw5hIc8NOyGZCnzuoXdwlL1hDxIrOoasjnWLEMrq2oY8Y121FbyD0y36Oa6TTXQNbV9IpREim3n1hQyf1e-tdXG-pbT1dNFUXondQ09ddiLgNZ-TIQh3w_KeOyNt8try9Tx6e7ha3k4ekFEbGBECDEWxlrF2lYKHKrdVolZDcMM7tSuhSasNXKoUULVeQVXlpUBmLZT_LEbna3_3w7WeHIRabtvNNH1kILVIthRGqV_G9qvRtCB5t8eHdFvyu4KwYkBYD0mJAWvwg7T36j6d0EQZI0YOr_3Ve7p0OEX-TjFL9K5n8BspUhyE
CODEN ITASC7
CitedBy_id crossref_primary_10_3390_math12243911
crossref_primary_10_1109_TASE_2024_3349387
crossref_primary_10_1016_j_jprocont_2024_103369
crossref_primary_10_1109_TASE_2023_3293931
crossref_primary_10_1109_TASE_2023_3321171
crossref_primary_10_1002_cem_3602
crossref_primary_10_1109_TASE_2024_3463650
crossref_primary_10_1109_TASE_2023_3281394
crossref_primary_10_1016_j_ins_2022_10_053
crossref_primary_10_1109_TASE_2023_3285217
crossref_primary_10_1109_TII_2024_3361024
crossref_primary_10_1109_TASE_2024_3516710
crossref_primary_10_1016_j_jprocont_2023_03_003
crossref_primary_10_1109_TII_2022_3204555
crossref_primary_10_1016_j_jfranklin_2022_04_022
crossref_primary_10_1016_j_ress_2025_111441
crossref_primary_10_1007_s10479_023_05656_0
crossref_primary_10_1109_TASE_2022_3198668
crossref_primary_10_1109_TASE_2023_3332452
crossref_primary_10_1016_j_neunet_2024_106819
crossref_primary_10_1109_TII_2022_3217832
crossref_primary_10_1002_ceat_202200577
crossref_primary_10_1016_j_isatra_2023_06_038
crossref_primary_10_1109_TASE_2024_3402653
crossref_primary_10_1016_j_psep_2024_02_070
crossref_primary_10_1016_j_eswa_2025_128699
Cites_doi 10.1002/cem.3110
10.1016/j.chemolab.2018.04.012
10.1109/TASE.2015.2493564
10.1016/j.chemolab.2016.12.013
10.1155/2013/707953
10.1016/j.chemolab.2004.05.001
10.1109/TII.2020.2989810
10.1109/TIE.2014.2301761
10.1016/j.ifacol.2020.12.108
10.1109/18.825826
10.1016/j.cherd.2015.12.015
10.1016/j.jprocont.2015.02.006
10.1002/oca.2770
10.1016/j.jprocont.2017.05.002
10.1016/j.ifacol.2018.09.255
10.1109/TASE.2015.2477272
10.1109/TIM.2020.3004681
10.1016/j.conengprac.2015.04.012
10.1109/9.763211
10.1016/j.isatra.2016.10.015
10.1111/j.2517-6161.1995.tb02052.x
10.1016/j.isatra.2020.08.017
10.1016/j.jsv.2013.07.005
10.1109/TII.2009.2032654
10.1109/TIE.2014.2301773
10.1109/TIE.2015.2497204
10.1016/j.isatra.2018.07.038
10.1109/TIE.2020.2972472
10.1016/j.isatra.2016.06.002
10.1109/TASE.2017.2713800
10.1109/TASE.2019.2892081
10.1109/TPAMI.2009.100
10.1016/j.compchemeng.2007.07.005
10.1016/S1474-6670(17)42882-5
10.1016/j.jfranklin.2016.03.021
10.1109/TII.2017.2752709
10.1080/07408170802389308
10.1109/ACCESS.2018.2864138
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2021.3139766
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 3952
ExternalDocumentID 10_1109_TASE_2021_3139766
9669265
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: N2004018
  funderid: 10.13039/501100012226
– fundername: State Key Laboratory of Synthetical Automation for Process Industries
  grantid: SAPI2019-3; 2018ZCX19
  funderid: 10.13039/501100011248
– fundername: National Science of Foundation China
  grantid: 61873306; U1908213; 6162100; 61420106016
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: SQ2019YFE020319
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-aa7a920b9ffb4afad8ff7ef62319011fb27c3791b64a4ef16a5d8c9e69fecef13
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740071900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Nov 30 04:56:14 EST 2025
Tue Nov 18 22:44:13 EST 2025
Sat Nov 29 04:12:48 EST 2025
Wed Aug 27 02:29:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-aa7a920b9ffb4afad8ff7ef62319011fb27c3791b64a4ef16a5d8c9e69fecef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5739-8011
0000-0002-1321-3924
PQID 2724732926
PQPubID 27623
PageCount 11
ParticipantIDs ieee_primary_9669265
proquest_journals_2724732926
crossref_primary_10_1109_TASE_2021_3139766
crossref_citationtrail_10_1109_TASE_2021_3139766
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1002/cem.3110
– ident: ref28
  doi: 10.1016/j.chemolab.2018.04.012
– ident: ref2
  doi: 10.1109/TASE.2015.2493564
– ident: ref37
  doi: 10.1016/j.chemolab.2016.12.013
– ident: ref5
  doi: 10.1155/2013/707953
– ident: ref6
  doi: 10.1016/j.chemolab.2004.05.001
– ident: ref14
  doi: 10.1109/TII.2020.2989810
– ident: ref26
  doi: 10.1109/TIE.2014.2301761
– ident: ref12
  doi: 10.1016/j.ifacol.2020.12.108
– ident: ref16
  doi: 10.1109/18.825826
– ident: ref24
  doi: 10.1016/j.cherd.2015.12.015
– ident: ref30
  doi: 10.1016/j.jprocont.2015.02.006
– ident: ref29
  doi: 10.1002/oca.2770
– ident: ref33
  doi: 10.1016/j.jprocont.2017.05.002
– ident: ref34
  doi: 10.1016/j.ifacol.2018.09.255
– ident: ref21
  doi: 10.1109/TASE.2015.2477272
– ident: ref31
  doi: 10.1109/TIM.2020.3004681
– ident: ref36
  doi: 10.1016/j.conengprac.2015.04.012
– ident: ref18
  doi: 10.1109/9.763211
– ident: ref9
  doi: 10.1016/j.isatra.2016.10.015
– ident: ref19
  doi: 10.1111/j.2517-6161.1995.tb02052.x
– ident: ref27
  doi: 10.1016/j.isatra.2020.08.017
– ident: ref15
  doi: 10.1016/j.jsv.2013.07.005
– ident: ref32
  doi: 10.1109/TII.2009.2032654
– ident: ref1
  doi: 10.1109/TIE.2014.2301773
– ident: ref25
  doi: 10.1109/TIE.2015.2497204
– ident: ref38
  doi: 10.1016/j.isatra.2018.07.038
– ident: ref3
  doi: 10.1109/TIE.2020.2972472
– ident: ref7
  doi: 10.1016/j.isatra.2016.06.002
– ident: ref8
  doi: 10.1109/TASE.2017.2713800
– ident: ref10
  doi: 10.1109/TASE.2019.2892081
– ident: ref11
  doi: 10.1109/TPAMI.2009.100
– ident: ref23
  doi: 10.1016/j.compchemeng.2007.07.005
– ident: ref17
  doi: 10.1016/S1474-6670(17)42882-5
– ident: ref13
  doi: 10.1016/j.jfranklin.2016.03.021
– ident: ref4
  doi: 10.1109/TII.2017.2752709
– ident: ref20
  doi: 10.1080/07408170802389308
– ident: ref35
  doi: 10.1109/ACCESS.2018.2864138
SSID ssj0024890
Score 2.4703631
Snippet For nearly a decade, quality-related fault detection algorithms have been widely used in industrial systems. However, the majority of these detection...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3942
SubjectTerms Algorithms
Autoregressive moving average
DKECR
Dynamic characteristics
Dynamic feature
Dynamic stability
Dynamical systems
Entropy
False alarms
Fault detection
KECA
Kernel
Kernels
Monitoring
Nonlinear control
Nonlinear dynamical systems
Nonlinear dynamics
Principal component analysis
quality-related
Title A Quality-Related Fault Detection Method Based on the Dynamic Data-Driven Algorithm for Industrial Systems
URI https://ieeexplore.ieee.org/document/9669265
https://www.proquest.com/docview/2724732926
Volume 19
WOSCitedRecordID wos000740071900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8B4kEPfqERRdODJ2OFdR9dj1MgHpSYiAm3peuHYhAMDBP_e9tugkZj4m3N2mXpb-v7vdfX3wM4DULJVSg1znwqccA8gllIqY02cZ0JFinuJPNvaL8fD4fsrgLny7MwSimXfKYu7KXby5dTsbChspah5oxEYRWqlEbFWa2Vrl7s4imWEeCQhWG5g-m1WWuQ3HeNJ0g846Ba8xt9s0GuqMqPldiZl97W_15sGzZLGomSAvcdqKjJLmx8EResw3OCCoGMd-wy3pREPb4Y56ijcpd_NUG3rnw0ujSWTCLTNmQQdYoS9ajDc447M7sYomT8OJ2N8qcXZCguWlX7QKXe-R489LqDq2tcVlbAwpj3HHNOOSPtjGmdGUy4jLWmShsqZPmBpzNChU-Zl0UBD5T2Ih7KWDAVMa2Eafv7UJtMJ-oAENOZjLhPhacCuweYCSHMw2IRuPxUvwHtz7lORSk7bqtfjFPnfrRZauFJLTxpCU8DzpZDXgvNjb861y0ey44lFA1ofgKaln_lPCWUBNQn5v7h76OOYJ3Y4w0uWa8JtXy2UMewJt7y0Xx24j64D7XY1HY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL3qCtLGAx_rJgpl-IEnhLfEseP4sdBWnWgrJIrUt8jxx9aptKhNJ-3fYztpCwIh8RYrdhT5JL7nXl-fC_COMi0N0xYXCdeYiphgwTj30SZpCyVSI4Nk_ohPJtlsJr404MP-LIwxJiSfmUt_Gfby9UptfajsylFzQVJ2BI8YpSSqTmsdlPWyEFHxnAAzwVi9hxlH4mra_dp3viCJnYvqDXD6mxUKZVX-WIuDgRk8-79Xew5PayKJuhXyL6Bhlqfw5Bd5wRbcdVElkfGAQ86b0Wggt4sS9UwZMrCWaBwKSKOPzpZp5NqODqJeVaQe9WQpcW_tl0PUXdys1vPy9jtyJBcd6n2gWvH8DL4N-tNPQ1zXVsDKGfgSS8mlIFEhrC0cKlJn1nJjHRnyDCG2BeEq4SIuUiqpsXEqmc6UMKmwRrl2cg7N5WppXgISttCpTLiKDfW7gIVSyj0sUzRkqCZtiHZznataeNzXv1jkwQGJRO7hyT08eQ1PG97vh_yoVDf-1bnl8dh3rKFoQ2cHaF7_l5uccEJ5Qtz9V38f9RaOh9PxKB9dTz6_hhPiDzuE1L0ONMv11ryBx-q-nG_WF-Hj-wnqINe9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quality-Related+Fault+Detection+Method+Based+on+the+Dynamic+Data-Driven+Algorithm+for+Industrial+Systems&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Sun%2C+Cheng-Yuan&rft.au=Yin%2C+Yi-Zhen&rft.au=Kang%2C+Hao-Bo&rft.au=Ma%2C+Hong-Jun&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=19&rft.issue=4&rft.spage=3942&rft.epage=3952&rft_id=info:doi/10.1109%2FTASE.2021.3139766&rft.externalDocID=9669265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon