Dynamic RAN Slicing for Service-Oriented Vehicular Networks via Constrained Learning

In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing fram...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 39; no. 7; pp. 2076 - 2089
Main Authors: Wu, Wen, Chen, Nan, Zhou, Conghao, Li, Mushu, Shen, Xuemin, Zhuang, Weihua, Li, Xu
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource, and distribute computation workloads for the slices. To obtain an optimal RAN slicing policy for accommodating the spatial-temporal dynamics of vehicle traffic density, we first formulate a constrained RAN slicing problem with the objective to minimize long-term system cost. This problem cannot be directly solved by traditional reinforcement learning (RL) algorithms due to complicated coupled constraints among decisions. Therefore, we decouple the problem into a resource allocation subproblem and a workload distribution subproblem, and propose a two-layer constrained RL algorithm, named R esource A llocation and W orkload di S tribution (RAWS) to solve them. Specifically, an outer layer first makes the resource allocation decision via an RL algorithm, and then an inner layer makes the workload distribution decision via an optimization subroutine. Extensive trace-driven simulations show that the RAWS effectively reduces the system cost while satisfying QoS requirements with a high probability, as compared with benchmarks.
AbstractList In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource, and distribute computation workloads for the slices. To obtain an optimal RAN slicing policy for accommodating the spatial-temporal dynamics of vehicle traffic density, we first formulate a constrained RAN slicing problem with the objective to minimize long-term system cost. This problem cannot be directly solved by traditional reinforcement learning (RL) algorithms due to complicated coupled constraints among decisions. Therefore, we decouple the problem into a resource allocation subproblem and a workload distribution subproblem, and propose a two-layer constrained RL algorithm, named R esource A llocation and W orkload di S tribution (RAWS) to solve them. Specifically, an outer layer first makes the resource allocation decision via an RL algorithm, and then an inner layer makes the workload distribution decision via an optimization subroutine. Extensive trace-driven simulations show that the RAWS effectively reduces the system cost while satisfying QoS requirements with a high probability, as compared with benchmarks.
Author Chen, Nan
Zhou, Conghao
Li, Xu
Shen, Xuemin
Zhuang, Weihua
Li, Mushu
Wu, Wen
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0002-0458-1282
  surname: Wu
  fullname: Wu, Wen
  email: w77wu@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Nan
  surname: Chen
  fullname: Chen, Nan
  email: n37chen@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 3
  givenname: Conghao
  orcidid: 0000-0002-5727-2432
  surname: Zhou
  fullname: Zhou, Conghao
  email: c89zhou@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 4
  givenname: Mushu
  orcidid: 0000-0002-9694-3294
  surname: Li
  fullname: Li, Mushu
  email: m475li@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 5
  givenname: Xuemin
  orcidid: 0000-0002-4140-287X
  surname: Shen
  fullname: Shen, Xuemin
  email: sshen@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 6
  givenname: Weihua
  orcidid: 0000-0003-0488-511X
  surname: Zhuang
  fullname: Zhuang, Weihua
  email: wzhuang@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 7
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  email: xu.lica@huawei.com
  organization: Huawei Technologies Canada Inc., Ottawa, ON, Canada
BookMark eNp9kD1PwzAQQC1UJNrCD0AskZhTzvFH7LEK36paiRbWyHEdcEmdYqdF_fckasXAwHTLe3enN0A9VzuD0CWGEcYgb57n42yUQAIjAhRTYCeojxkTMQCIHupDSkgsUszP0CCEFQCmVCR9tLjdO7W2OnoZT6N5ZbV171FZ-2hu_M5qE8-8Na4xy-jNfFi9rZSPpqb5rv1niHZWRVntQuOVdS0yMcq7dsE5Oi1VFczFcQ7R6_3dInuMJ7OHp2w8iXUiSRMrUaqC60IxRRQjmBZUUGyo0FzQwsikoLQUShaQcF3KUnJQQuoSZMrxkjIyRNeHvRtff21NaPJVvfWuPZknrK2QMip5S6UHSvs6BG_KXNtGNbZ23d9VjiHvEuZdwrxLmB8Ttib-Y268XSu__9e5OjjWGPPLyyRNOVDyAyQHfeI
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_JSAC_2021_3118352
crossref_primary_10_1145_3657284
crossref_primary_10_1007_s11277_024_11526_0
crossref_primary_10_1109_TVT_2022_3182335
crossref_primary_10_1109_COMST_2024_3443193
crossref_primary_10_1007_s00500_023_09164_y
crossref_primary_10_1109_ACCESS_2024_3363162
crossref_primary_10_1109_JIOT_2023_3303480
crossref_primary_10_1109_TITS_2023_3314929
crossref_primary_10_1109_TNSM_2022_3208776
crossref_primary_10_1109_JSAC_2024_3365893
crossref_primary_10_1109_TWC_2024_3479709
crossref_primary_10_1109_TVT_2022_3190515
crossref_primary_10_1016_j_vehcom_2023_100648
crossref_primary_10_1109_LWC_2021_3123733
crossref_primary_10_1109_TVT_2024_3408756
crossref_primary_10_1109_JIOT_2023_3323817
crossref_primary_10_1109_TWC_2024_3491359
crossref_primary_10_1109_TCCN_2024_3400524
crossref_primary_10_1109_TGCN_2023_3295341
crossref_primary_10_1109_TMC_2023_3282689
crossref_primary_10_1016_j_eswa_2024_125985
crossref_primary_10_1109_JIOT_2023_3305711
crossref_primary_10_1109_TVT_2024_3467255
crossref_primary_10_1109_TCCN_2024_3524641
crossref_primary_10_1109_JIOT_2023_3326358
crossref_primary_10_1109_TWC_2024_3354507
crossref_primary_10_1109_COMST_2024_3372083
crossref_primary_10_1109_JIOT_2024_3511592
crossref_primary_10_1109_TITS_2022_3157056
crossref_primary_10_1109_TMC_2024_3473908
crossref_primary_10_1007_s11432_024_4523_1
crossref_primary_10_1109_JIOT_2023_3241925
crossref_primary_10_1109_MWC_003_2300475
crossref_primary_10_1109_JSAC_2022_3180776
crossref_primary_10_1109_MWC_001_2100338
crossref_primary_10_1109_TMC_2025_3530486
crossref_primary_10_1109_TNSM_2023_3246420
crossref_primary_10_3390_app12189315
crossref_primary_10_1109_TMC_2023_3283852
crossref_primary_10_1109_TVT_2023_3277712
crossref_primary_10_1109_TVT_2021_3138898
crossref_primary_10_1016_j_phycom_2024_102386
crossref_primary_10_1109_TII_2021_3083579
crossref_primary_10_1109_TVT_2023_3280242
crossref_primary_10_1109_TWC_2023_3337974
crossref_primary_10_1007_s11276_022_03105_7
crossref_primary_10_1109_TNSE_2022_3218313
crossref_primary_10_1109_COMST_2021_3135829
crossref_primary_10_1109_TITS_2024_3460876
crossref_primary_10_1109_TNSE_2022_3157274
crossref_primary_10_1109_MVT_2021_3114655
crossref_primary_10_1109_JIOT_2023_3262953
crossref_primary_10_3390_s24237760
crossref_primary_10_1109_JSAC_2022_3213341
crossref_primary_10_1109_TMC_2023_3273425
crossref_primary_10_1186_s13677_023_00515_6
crossref_primary_10_1109_TCCN_2023_3307929
crossref_primary_10_1109_TMC_2023_3288637
crossref_primary_10_1002_dac_6137
crossref_primary_10_1109_ACCESS_2021_3118539
crossref_primary_10_1109_JSAC_2023_3322761
crossref_primary_10_1007_s10922_023_09721_8
crossref_primary_10_1007_s12083_021_01235_x
crossref_primary_10_1109_TNET_2023_3342837
crossref_primary_10_1109_JIOT_2024_3382738
crossref_primary_10_1109_TNSM_2024_3403683
crossref_primary_10_1109_JIOT_2022_3147897
crossref_primary_10_1109_TMC_2022_3199812
crossref_primary_10_1109_TVT_2021_3068255
crossref_primary_10_1016_j_comcom_2024_04_026
crossref_primary_10_1109_TETCI_2022_3193367
crossref_primary_10_1109_TITS_2024_3519528
crossref_primary_10_3390_electronics12183754
crossref_primary_10_1109_TWC_2022_3171264
crossref_primary_10_1109_JSTSP_2023_3343626
crossref_primary_10_1109_JIOT_2021_3133110
crossref_primary_10_1109_TITS_2021_3098790
crossref_primary_10_1007_s10586_025_05166_7
crossref_primary_10_1016_j_sigpro_2024_109447
crossref_primary_10_1109_ACCESS_2022_3210254
crossref_primary_10_1109_TNET_2024_3376794
crossref_primary_10_1109_JSAC_2022_3213312
crossref_primary_10_1109_LCOMM_2022_3154434
crossref_primary_10_1016_j_comnet_2025_111488
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1155_2022_7444916
crossref_primary_10_1109_TVT_2024_3379742
crossref_primary_10_1109_TMC_2023_3288085
crossref_primary_10_1109_JSAC_2023_3242704
crossref_primary_10_1109_TWC_2021_3108666
crossref_primary_10_1109_TVT_2023_3278467
crossref_primary_10_1109_JIOT_2022_3166110
crossref_primary_10_1109_TVT_2021_3135885
crossref_primary_10_1109_JIOT_2021_3108145
Cites_doi 10.1109/COMST.2018.2815638
10.1007/978-1-4471-0815-3
10.1109/TWC.2019.2962798
10.1109/JIOT.2014.2327587
10.1109/MWC.2018.1700173
10.1109/JSAC.2019.2933893
10.1109/OJVT.2020.2965100
10.3141/1748-12
10.1145/3173162.3173191
10.1145/3323679.3326521
10.1109/JPROC.2019.2951169
10.1109/TVT.2017.2750903
10.1109/TVT.2018.2859740
10.1109/MWC.2017.1600408
10.1109/CloudNet.2015.7335318
10.1109/INFOCOM.2018.8485977
10.1109/ICDCS.2017.30
10.1109/TWC.2020.3017207
10.1109/TVT.2019.2947080
10.1109/JSAC.2011.110120
10.1109/TNET.2015.2487344
10.1109/TMC.2017.2742949
10.1109/TWC.2020.2965927
10.1109/JSAC.2019.2959263
10.1109/TCOMM.2016.2609905
10.1109/MCC.2014.51
10.1109/JSAC.2017.2760160
10.1145/3117811.3117831
10.1109/JSAC.2019.2959182
10.1109/JSAC.2019.2933962
10.1109/JPROC.2019.2947490
10.1109/TCCN.2020.3003036
10.1109/JSAC.2018.2871292
10.1017/CBO9780511804441
10.1109/JSAC.2019.2959181
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2020.3041405
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 2089
ExternalDocumentID 10_1109_JSAC_2020_3041405
9277604
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council (NSERC)
  funderid: 10.13039/501100005049
– fundername: Huawei Canada
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-a8fab6cba5a3a5314b4841e48c684be92b44f8a9b026cf9f960a89cf09761d453
IEDL.DBID RIE
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663527600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Wed Oct 15 13:15:48 EDT 2025
Sat Nov 29 03:23:03 EST 2025
Tue Nov 18 22:12:13 EST 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a8fab6cba5a3a5314b4841e48c684be92b44f8a9b026cf9f960a89cf09761d453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4140-287X
0000-0003-0488-511X
0000-0002-9694-3294
0000-0002-0458-1282
0000-0002-5727-2432
PQID 2541475496
PQPubID 85481
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_JSAC_2020_3041405
ieee_primary_9277604
crossref_primary_10_1109_JSAC_2020_3041405
proquest_journals_2541475496
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref36
ref31
ref30
ref33
ref11
ref10
li (ref19) 2020
sutton (ref40) 2018
ref2
ref1
ref17
ref16
(ref14) 2017
ref18
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ye (ref39) 2011; 44
ref22
ref44
ref21
ref43
(ref38) 2014
fujimoto (ref13) 2018
lillicrap (ref12) 2016
ref28
ref27
ref29
ref8
ref7
(ref3) 2018
ref9
ref4
grant (ref37) 2014
ref6
ref5
ma (ref32) 2020
References_xml – ident: ref15
  doi: 10.1109/COMST.2018.2815638
– ident: ref43
  doi: 10.1007/978-1-4471-0815-3
– start-page: 1587
  year: 2018
  ident: ref13
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: Proc ICML
– ident: ref10
  doi: 10.1109/TWC.2019.2962798
– ident: ref2
  doi: 10.1109/JIOT.2014.2327587
– ident: ref7
  doi: 10.1109/MWC.2018.1700173
– ident: ref24
  doi: 10.1109/JSAC.2019.2933893
– ident: ref8
  doi: 10.1109/OJVT.2020.2965100
– start-page: 2076
  year: 2020
  ident: ref32
  article-title: Cooperative service caching and workload scheduling in mobile edge computing
  publication-title: Proc IEEE Conf Comput Commun (INFOCOM)
– start-page: 1
  year: 2016
  ident: ref12
  article-title: Continuous control with deep reinforcement learning
  publication-title: Proc ICLR
– year: 2017
  ident: ref14
  publication-title: Study on Management and Orchestration of Network Slicing for Next Generation Network (Release 15)
– ident: ref29
  doi: 10.3141/1748-12
– ident: ref4
  doi: 10.1145/3173162.3173191
– ident: ref21
  doi: 10.1145/3323679.3326521
– volume: 44
  year: 2011
  ident: ref39
  publication-title: Interior Point Algorithms Theory and Analysis
– ident: ref20
  doi: 10.1109/JPROC.2019.2951169
– ident: ref1
  doi: 10.1109/TVT.2017.2750903
– ident: ref17
  doi: 10.1109/TVT.2018.2859740
– ident: ref9
  doi: 10.1109/MWC.2017.1600408
– year: 2014
  ident: ref38
  publication-title: Inc gurobi optimizer reference manual 2015
– ident: ref30
  doi: 10.1109/CloudNet.2015.7335318
– ident: ref6
  doi: 10.1109/INFOCOM.2018.8485977
– ident: ref36
  doi: 10.1109/ICDCS.2017.30
– year: 2014
  ident: ref37
  publication-title: CVX Matlab Software for Disciplined Convex Programming Version 2 1
– ident: ref42
  doi: 10.1109/TWC.2020.3017207
– year: 2018
  ident: ref3
  publication-title: Global autonomous driving market outlook
– ident: ref28
  doi: 10.1109/TVT.2019.2947080
– ident: ref27
  doi: 10.1109/JSAC.2011.110120
– ident: ref34
  doi: 10.1109/TNET.2015.2487344
– ident: ref41
  doi: 10.1109/TMC.2017.2742949
– ident: ref26
  doi: 10.1109/TWC.2020.2965927
– ident: ref25
  doi: 10.1109/JSAC.2019.2959263
– ident: ref33
  doi: 10.1109/TCOMM.2016.2609905
– year: 2018
  ident: ref40
  publication-title: Reinforcement Learning An Introduction
– ident: ref35
  doi: 10.1109/MCC.2014.51
– ident: ref31
  doi: 10.1109/JSAC.2017.2760160
– ident: ref16
  doi: 10.1145/3117811.3117831
– ident: ref23
  doi: 10.1109/JSAC.2019.2959182
– ident: ref44
  doi: 10.1109/JSAC.2019.2933962
– ident: ref5
  doi: 10.1109/JPROC.2019.2947490
– ident: ref11
  doi: 10.1109/TCCN.2020.3003036
– ident: ref18
  doi: 10.1109/JSAC.2018.2871292
– ident: ref45
  doi: 10.1017/CBO9780511804441
– year: 2020
  ident: ref19
  article-title: A hierarchical soft RAN slicing framework for differentiated service provisioning
  publication-title: IEEE Wireless Commun
– ident: ref22
  doi: 10.1109/JSAC.2019.2959181
SSID ssj0014482
Score 2.6753843
Snippet In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2076
SubjectTerms Algorithms
constrained reinforcement learning
Constraints
coupled constraint
Delays
Dynamic scheduling
Heuristic algorithms
Internet of Vehicles
Machine learning
Optimization
Quality of service
Radio spectra
RAN slicing
Resource allocation
Resource management
Roadsides
Slicing
Task analysis
Traffic volume
Vehicle dynamics
Vehicles
vehicular networks
Workload
workload distribution
Workloads
Title Dynamic RAN Slicing for Service-Oriented Vehicular Networks via Constrained Learning
URI https://ieeexplore.ieee.org/document/9277604
https://www.proquest.com/docview/2541475496
Volume 39
WOSCitedRecordID wos000663527600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4qHvTgrynOX-TgSYxL27RNjkMd4qGKTtmtJGkyB2OTbfr3-5LGoiiCp_aQQHhfk_e-vpf3IXSqLQU3ahmhklHCwCcRkSlOpMlTaaWlVigvNpEXBR8MxP0SOm_uwhhjfPGZuXCvPpdfTfWb-1XWEXGeZ6755zI867taTcYAaIbPGORJQhwJCBnMiIrO7WP3EphgDASVMiAU6Tcf5EVVfpzE3r30Nv-3sC20EcJI3K1x30ZLZrKD1r80F2yh_lUtNo8fugV-HLsM-hBDiIrD8UDuXItjCDjxs3kZ-XJUXNRF4XP8PpLYaXl6BQkYEtqwDnfRU--6f3lDgoYC0eDIF0RyK1WmlUxlImG_McU4iwzjOuNMGRErxiyXQgEX01ZYIDSSC0AQwpSoYmmyh1Ym04nZRziLTCwpl5lOGJM6VWkVpbqKTZVSqmTVRvTTqqUODcbdKselJxpUlA6I0gFRBiDa6KyZ8lp31_hrcMtZvhkYjN5GR5_QlWH_zcvYqZvnwH2zg99nHaK12FWn-MLbI7SymL2ZY7Sq3xej-ezEf1ofKg3LWw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgW1yfOXgSo2mbtMlx8YHPKrqKt5KkiS7IKu7q7zdJ46IogrceJhAyTWa-zOT7ALa0JS6MWoqJpARTF5OwyBXH0hRMWmmJFSqITRRlye_vxdUI7AzfwhhjQvOZ2fWfoZZfP-s3f1W2J9KiyD355xijNCXNa61hzcABjVAzKLIMexgQa5gJEXunN-19hwVTB1EJdZCCfYtCQVblx1kcAszRzP-mNgvTMZFE7cbzczBievMw9YVecAE6B43cPLpul-jmydfQH5BLUlE8IPClJzl2KSe6M4_d0JCKyqYtvI_euxJ5Nc-gIeFMIhHrwyLcHh129o9xVFHA2oXyAZbcSpVrJZnMpNtxVFFOE0O5zjlVRqSKUsulUA6NaSusgzSSC-dDl6gkNWXZEoz2nntmGVCemFQSLnOdUSo1U6xOmK5TUzNClKxbQD5XtdKRYtzP8qkKUIOIyjui8o6ooiNasD0c8tLwa_xlvOBXfmgYF70Fa5-uq-IO7Fep1zcvHPrNV34ftQkTx52L8-r8pDxbhcnU96qENtw1GB28vpl1GNfvg27_dSP8Zh_ois6i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+RAN+Slicing+for+Service-Oriented+Vehicular+Networks+via+Constrained+Learning&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Wu%2C+Wen&rft.au=Chen%2C+Nan&rft.au=Zhou%2C+Conghao&rft.au=Li%2C+Mushu&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=0733-8716&rft.volume=39&rft.issue=7&rft.spage=2076&rft.epage=2089&rft_id=info:doi/10.1109%2FJSAC.2020.3041405&rft.externalDocID=9277604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon