Dynamic RAN Slicing for Service-Oriented Vehicular Networks via Constrained Learning
In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing fram...
Saved in:
| Published in: | IEEE journal on selected areas in communications Vol. 39; no. 7; pp. 2076 - 2089 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0733-8716, 1558-0008 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource, and distribute computation workloads for the slices. To obtain an optimal RAN slicing policy for accommodating the spatial-temporal dynamics of vehicle traffic density, we first formulate a constrained RAN slicing problem with the objective to minimize long-term system cost. This problem cannot be directly solved by traditional reinforcement learning (RL) algorithms due to complicated coupled constraints among decisions. Therefore, we decouple the problem into a resource allocation subproblem and a workload distribution subproblem, and propose a two-layer constrained RL algorithm, named R esource A llocation and W orkload di S tribution (RAWS) to solve them. Specifically, an outer layer first makes the resource allocation decision via an RL algorithm, and then an inner layer makes the workload distribution decision via an optimization subroutine. Extensive trace-driven simulations show that the RAWS effectively reduces the system cost while satisfying QoS requirements with a high probability, as compared with benchmarks. |
|---|---|
| AbstractList | In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource, and distribute computation workloads for the slices. To obtain an optimal RAN slicing policy for accommodating the spatial-temporal dynamics of vehicle traffic density, we first formulate a constrained RAN slicing problem with the objective to minimize long-term system cost. This problem cannot be directly solved by traditional reinforcement learning (RL) algorithms due to complicated coupled constraints among decisions. Therefore, we decouple the problem into a resource allocation subproblem and a workload distribution subproblem, and propose a two-layer constrained RL algorithm, named R esource A llocation and W orkload di S tribution (RAWS) to solve them. Specifically, an outer layer first makes the resource allocation decision via an RL algorithm, and then an inner layer makes the workload distribution decision via an optimization subroutine. Extensive trace-driven simulations show that the RAWS effectively reduces the system cost while satisfying QoS requirements with a high probability, as compared with benchmarks. |
| Author | Chen, Nan Zhou, Conghao Li, Xu Shen, Xuemin Zhuang, Weihua Li, Mushu Wu, Wen |
| Author_xml | – sequence: 1 givenname: Wen orcidid: 0000-0002-0458-1282 surname: Wu fullname: Wu, Wen email: w77wu@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Nan surname: Chen fullname: Chen, Nan email: n37chen@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 3 givenname: Conghao orcidid: 0000-0002-5727-2432 surname: Zhou fullname: Zhou, Conghao email: c89zhou@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 4 givenname: Mushu orcidid: 0000-0002-9694-3294 surname: Li fullname: Li, Mushu email: m475li@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 5 givenname: Xuemin orcidid: 0000-0002-4140-287X surname: Shen fullname: Shen, Xuemin email: sshen@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 6 givenname: Weihua orcidid: 0000-0003-0488-511X surname: Zhuang fullname: Zhuang, Weihua email: wzhuang@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 7 givenname: Xu surname: Li fullname: Li, Xu email: xu.lica@huawei.com organization: Huawei Technologies Canada Inc., Ottawa, ON, Canada |
| BookMark | eNp9kD1PwzAQQC1UJNrCD0AskZhTzvFH7LEK36paiRbWyHEdcEmdYqdF_fckasXAwHTLe3enN0A9VzuD0CWGEcYgb57n42yUQAIjAhRTYCeojxkTMQCIHupDSkgsUszP0CCEFQCmVCR9tLjdO7W2OnoZT6N5ZbV171FZ-2hu_M5qE8-8Na4xy-jNfFi9rZSPpqb5rv1niHZWRVntQuOVdS0yMcq7dsE5Oi1VFczFcQ7R6_3dInuMJ7OHp2w8iXUiSRMrUaqC60IxRRQjmBZUUGyo0FzQwsikoLQUShaQcF3KUnJQQuoSZMrxkjIyRNeHvRtff21NaPJVvfWuPZknrK2QMip5S6UHSvs6BG_KXNtGNbZ23d9VjiHvEuZdwrxLmB8Ttib-Y268XSu__9e5OjjWGPPLyyRNOVDyAyQHfeI |
| CODEN | ISACEM |
| CitedBy_id | crossref_primary_10_1109_JSAC_2021_3118352 crossref_primary_10_1145_3657284 crossref_primary_10_1007_s11277_024_11526_0 crossref_primary_10_1109_TVT_2022_3182335 crossref_primary_10_1109_COMST_2024_3443193 crossref_primary_10_1007_s00500_023_09164_y crossref_primary_10_1109_ACCESS_2024_3363162 crossref_primary_10_1109_JIOT_2023_3303480 crossref_primary_10_1109_TITS_2023_3314929 crossref_primary_10_1109_TNSM_2022_3208776 crossref_primary_10_1109_JSAC_2024_3365893 crossref_primary_10_1109_TWC_2024_3479709 crossref_primary_10_1109_TVT_2022_3190515 crossref_primary_10_1016_j_vehcom_2023_100648 crossref_primary_10_1109_LWC_2021_3123733 crossref_primary_10_1109_TVT_2024_3408756 crossref_primary_10_1109_JIOT_2023_3323817 crossref_primary_10_1109_TWC_2024_3491359 crossref_primary_10_1109_TCCN_2024_3400524 crossref_primary_10_1109_TGCN_2023_3295341 crossref_primary_10_1109_TMC_2023_3282689 crossref_primary_10_1016_j_eswa_2024_125985 crossref_primary_10_1109_JIOT_2023_3305711 crossref_primary_10_1109_TVT_2024_3467255 crossref_primary_10_1109_TCCN_2024_3524641 crossref_primary_10_1109_JIOT_2023_3326358 crossref_primary_10_1109_TWC_2024_3354507 crossref_primary_10_1109_COMST_2024_3372083 crossref_primary_10_1109_JIOT_2024_3511592 crossref_primary_10_1109_TITS_2022_3157056 crossref_primary_10_1109_TMC_2024_3473908 crossref_primary_10_1007_s11432_024_4523_1 crossref_primary_10_1109_JIOT_2023_3241925 crossref_primary_10_1109_MWC_003_2300475 crossref_primary_10_1109_JSAC_2022_3180776 crossref_primary_10_1109_MWC_001_2100338 crossref_primary_10_1109_TMC_2025_3530486 crossref_primary_10_1109_TNSM_2023_3246420 crossref_primary_10_3390_app12189315 crossref_primary_10_1109_TMC_2023_3283852 crossref_primary_10_1109_TVT_2023_3277712 crossref_primary_10_1109_TVT_2021_3138898 crossref_primary_10_1016_j_phycom_2024_102386 crossref_primary_10_1109_TII_2021_3083579 crossref_primary_10_1109_TVT_2023_3280242 crossref_primary_10_1109_TWC_2023_3337974 crossref_primary_10_1007_s11276_022_03105_7 crossref_primary_10_1109_TNSE_2022_3218313 crossref_primary_10_1109_COMST_2021_3135829 crossref_primary_10_1109_TITS_2024_3460876 crossref_primary_10_1109_TNSE_2022_3157274 crossref_primary_10_1109_MVT_2021_3114655 crossref_primary_10_1109_JIOT_2023_3262953 crossref_primary_10_3390_s24237760 crossref_primary_10_1109_JSAC_2022_3213341 crossref_primary_10_1109_TMC_2023_3273425 crossref_primary_10_1186_s13677_023_00515_6 crossref_primary_10_1109_TCCN_2023_3307929 crossref_primary_10_1109_TMC_2023_3288637 crossref_primary_10_1002_dac_6137 crossref_primary_10_1109_ACCESS_2021_3118539 crossref_primary_10_1109_JSAC_2023_3322761 crossref_primary_10_1007_s10922_023_09721_8 crossref_primary_10_1007_s12083_021_01235_x crossref_primary_10_1109_TNET_2023_3342837 crossref_primary_10_1109_JIOT_2024_3382738 crossref_primary_10_1109_TNSM_2024_3403683 crossref_primary_10_1109_JIOT_2022_3147897 crossref_primary_10_1109_TMC_2022_3199812 crossref_primary_10_1109_TVT_2021_3068255 crossref_primary_10_1016_j_comcom_2024_04_026 crossref_primary_10_1109_TETCI_2022_3193367 crossref_primary_10_1109_TITS_2024_3519528 crossref_primary_10_3390_electronics12183754 crossref_primary_10_1109_TWC_2022_3171264 crossref_primary_10_1109_JSTSP_2023_3343626 crossref_primary_10_1109_JIOT_2021_3133110 crossref_primary_10_1109_TITS_2021_3098790 crossref_primary_10_1007_s10586_025_05166_7 crossref_primary_10_1016_j_sigpro_2024_109447 crossref_primary_10_1109_ACCESS_2022_3210254 crossref_primary_10_1109_TNET_2024_3376794 crossref_primary_10_1109_JSAC_2022_3213312 crossref_primary_10_1109_LCOMM_2022_3154434 crossref_primary_10_1016_j_comnet_2025_111488 crossref_primary_10_1109_COMST_2023_3249835 crossref_primary_10_1155_2022_7444916 crossref_primary_10_1109_TVT_2024_3379742 crossref_primary_10_1109_TMC_2023_3288085 crossref_primary_10_1109_JSAC_2023_3242704 crossref_primary_10_1109_TWC_2021_3108666 crossref_primary_10_1109_TVT_2023_3278467 crossref_primary_10_1109_JIOT_2022_3166110 crossref_primary_10_1109_TVT_2021_3135885 crossref_primary_10_1109_JIOT_2021_3108145 |
| Cites_doi | 10.1109/COMST.2018.2815638 10.1007/978-1-4471-0815-3 10.1109/TWC.2019.2962798 10.1109/JIOT.2014.2327587 10.1109/MWC.2018.1700173 10.1109/JSAC.2019.2933893 10.1109/OJVT.2020.2965100 10.3141/1748-12 10.1145/3173162.3173191 10.1145/3323679.3326521 10.1109/JPROC.2019.2951169 10.1109/TVT.2017.2750903 10.1109/TVT.2018.2859740 10.1109/MWC.2017.1600408 10.1109/CloudNet.2015.7335318 10.1109/INFOCOM.2018.8485977 10.1109/ICDCS.2017.30 10.1109/TWC.2020.3017207 10.1109/TVT.2019.2947080 10.1109/JSAC.2011.110120 10.1109/TNET.2015.2487344 10.1109/TMC.2017.2742949 10.1109/TWC.2020.2965927 10.1109/JSAC.2019.2959263 10.1109/TCOMM.2016.2609905 10.1109/MCC.2014.51 10.1109/JSAC.2017.2760160 10.1145/3117811.3117831 10.1109/JSAC.2019.2959182 10.1109/JSAC.2019.2933962 10.1109/JPROC.2019.2947490 10.1109/TCCN.2020.3003036 10.1109/JSAC.2018.2871292 10.1017/CBO9780511804441 10.1109/JSAC.2019.2959181 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JSAC.2020.3041405 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0008 |
| EndPage | 2089 |
| ExternalDocumentID | 10_1109_JSAC_2020_3041405 9277604 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council (NSERC) funderid: 10.13039/501100005049 – fundername: Huawei Canada |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c293t-a8fab6cba5a3a5314b4841e48c684be92b44f8a9b026cf9f960a89cf09761d453 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663527600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0733-8716 |
| IngestDate | Wed Oct 15 13:15:48 EDT 2025 Sat Nov 29 03:23:03 EST 2025 Tue Nov 18 22:12:13 EST 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-a8fab6cba5a3a5314b4841e48c684be92b44f8a9b026cf9f960a89cf09761d453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4140-287X 0000-0003-0488-511X 0000-0002-9694-3294 0000-0002-0458-1282 0000-0002-5727-2432 |
| PQID | 2541475496 |
| PQPubID | 85481 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSAC_2020_3041405 ieee_primary_9277604 crossref_primary_10_1109_JSAC_2020_3041405 proquest_journals_2541475496 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal on selected areas in communications |
| PublicationTitleAbbrev | J-SAC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref15 ref36 ref31 ref30 ref33 ref11 ref10 li (ref19) 2020 sutton (ref40) 2018 ref2 ref1 ref17 ref16 (ref14) 2017 ref18 ref24 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ye (ref39) 2011; 44 ref22 ref44 ref21 ref43 (ref38) 2014 fujimoto (ref13) 2018 lillicrap (ref12) 2016 ref28 ref27 ref29 ref8 ref7 (ref3) 2018 ref9 ref4 grant (ref37) 2014 ref6 ref5 ma (ref32) 2020 |
| References_xml | – ident: ref15 doi: 10.1109/COMST.2018.2815638 – ident: ref43 doi: 10.1007/978-1-4471-0815-3 – start-page: 1587 year: 2018 ident: ref13 article-title: Addressing function approximation error in actor-critic methods publication-title: Proc ICML – ident: ref10 doi: 10.1109/TWC.2019.2962798 – ident: ref2 doi: 10.1109/JIOT.2014.2327587 – ident: ref7 doi: 10.1109/MWC.2018.1700173 – ident: ref24 doi: 10.1109/JSAC.2019.2933893 – ident: ref8 doi: 10.1109/OJVT.2020.2965100 – start-page: 2076 year: 2020 ident: ref32 article-title: Cooperative service caching and workload scheduling in mobile edge computing publication-title: Proc IEEE Conf Comput Commun (INFOCOM) – start-page: 1 year: 2016 ident: ref12 article-title: Continuous control with deep reinforcement learning publication-title: Proc ICLR – year: 2017 ident: ref14 publication-title: Study on Management and Orchestration of Network Slicing for Next Generation Network (Release 15) – ident: ref29 doi: 10.3141/1748-12 – ident: ref4 doi: 10.1145/3173162.3173191 – ident: ref21 doi: 10.1145/3323679.3326521 – volume: 44 year: 2011 ident: ref39 publication-title: Interior Point Algorithms Theory and Analysis – ident: ref20 doi: 10.1109/JPROC.2019.2951169 – ident: ref1 doi: 10.1109/TVT.2017.2750903 – ident: ref17 doi: 10.1109/TVT.2018.2859740 – ident: ref9 doi: 10.1109/MWC.2017.1600408 – year: 2014 ident: ref38 publication-title: Inc gurobi optimizer reference manual 2015 – ident: ref30 doi: 10.1109/CloudNet.2015.7335318 – ident: ref6 doi: 10.1109/INFOCOM.2018.8485977 – ident: ref36 doi: 10.1109/ICDCS.2017.30 – year: 2014 ident: ref37 publication-title: CVX Matlab Software for Disciplined Convex Programming Version 2 1 – ident: ref42 doi: 10.1109/TWC.2020.3017207 – year: 2018 ident: ref3 publication-title: Global autonomous driving market outlook – ident: ref28 doi: 10.1109/TVT.2019.2947080 – ident: ref27 doi: 10.1109/JSAC.2011.110120 – ident: ref34 doi: 10.1109/TNET.2015.2487344 – ident: ref41 doi: 10.1109/TMC.2017.2742949 – ident: ref26 doi: 10.1109/TWC.2020.2965927 – ident: ref25 doi: 10.1109/JSAC.2019.2959263 – ident: ref33 doi: 10.1109/TCOMM.2016.2609905 – year: 2018 ident: ref40 publication-title: Reinforcement Learning An Introduction – ident: ref35 doi: 10.1109/MCC.2014.51 – ident: ref31 doi: 10.1109/JSAC.2017.2760160 – ident: ref16 doi: 10.1145/3117811.3117831 – ident: ref23 doi: 10.1109/JSAC.2019.2959182 – ident: ref44 doi: 10.1109/JSAC.2019.2933962 – ident: ref5 doi: 10.1109/JPROC.2019.2947490 – ident: ref11 doi: 10.1109/TCCN.2020.3003036 – ident: ref18 doi: 10.1109/JSAC.2018.2871292 – ident: ref45 doi: 10.1017/CBO9780511804441 – year: 2020 ident: ref19 article-title: A hierarchical soft RAN slicing framework for differentiated service provisioning publication-title: IEEE Wireless Commun – ident: ref22 doi: 10.1109/JSAC.2019.2959181 |
| SSID | ssj0014482 |
| Score | 2.6753843 |
| Snippet | In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2076 |
| SubjectTerms | Algorithms constrained reinforcement learning Constraints coupled constraint Delays Dynamic scheduling Heuristic algorithms Internet of Vehicles Machine learning Optimization Quality of service Radio spectra RAN slicing Resource allocation Resource management Roadsides Slicing Task analysis Traffic volume Vehicle dynamics Vehicles vehicular networks Workload workload distribution Workloads |
| Title | Dynamic RAN Slicing for Service-Oriented Vehicular Networks via Constrained Learning |
| URI | https://ieeexplore.ieee.org/document/9277604 https://www.proquest.com/docview/2541475496 |
| Volume | 39 |
| WOSCitedRecordID | wos000663527600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0008 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014482 issn: 0733-8716 databaseCode: RIE dateStart: 19830101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4qHvTgrynOX-TgSYxL27RNjkMd4qGKTtmtJGkyB2OTbfr3-5LGoiiCp_aQQHhfk_e-vpf3IXSqLQU3ahmhklHCwCcRkSlOpMlTaaWlVigvNpEXBR8MxP0SOm_uwhhjfPGZuXCvPpdfTfWb-1XWEXGeZ6755zI867taTcYAaIbPGORJQhwJCBnMiIrO7WP3EphgDASVMiAU6Tcf5EVVfpzE3r30Nv-3sC20EcJI3K1x30ZLZrKD1r80F2yh_lUtNo8fugV-HLsM-hBDiIrD8UDuXItjCDjxs3kZ-XJUXNRF4XP8PpLYaXl6BQkYEtqwDnfRU--6f3lDgoYC0eDIF0RyK1WmlUxlImG_McU4iwzjOuNMGRErxiyXQgEX01ZYIDSSC0AQwpSoYmmyh1Ym04nZRziLTCwpl5lOGJM6VWkVpbqKTZVSqmTVRvTTqqUODcbdKselJxpUlA6I0gFRBiDa6KyZ8lp31_hrcMtZvhkYjN5GR5_QlWH_zcvYqZvnwH2zg99nHaK12FWn-MLbI7SymL2ZY7Sq3xej-ezEf1ofKg3LWw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgW1yfOXgSo2mbtMlx8YHPKrqKt5KkiS7IKu7q7zdJ46IogrceJhAyTWa-zOT7ALa0JS6MWoqJpARTF5OwyBXH0hRMWmmJFSqITRRlye_vxdUI7AzfwhhjQvOZ2fWfoZZfP-s3f1W2J9KiyD355xijNCXNa61hzcABjVAzKLIMexgQa5gJEXunN-19hwVTB1EJdZCCfYtCQVblx1kcAszRzP-mNgvTMZFE7cbzczBievMw9YVecAE6B43cPLpul-jmydfQH5BLUlE8IPClJzl2KSe6M4_d0JCKyqYtvI_euxJ5Nc-gIeFMIhHrwyLcHh129o9xVFHA2oXyAZbcSpVrJZnMpNtxVFFOE0O5zjlVRqSKUsulUA6NaSusgzSSC-dDl6gkNWXZEoz2nntmGVCemFQSLnOdUSo1U6xOmK5TUzNClKxbQD5XtdKRYtzP8qkKUIOIyjui8o6ooiNasD0c8tLwa_xlvOBXfmgYF70Fa5-uq-IO7Fep1zcvHPrNV34ftQkTx52L8-r8pDxbhcnU96qENtw1GB28vpl1GNfvg27_dSP8Zh_ois6i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+RAN+Slicing+for+Service-Oriented+Vehicular+Networks+via+Constrained+Learning&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Wu%2C+Wen&rft.au=Chen%2C+Nan&rft.au=Zhou%2C+Conghao&rft.au=Li%2C+Mushu&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=0733-8716&rft.volume=39&rft.issue=7&rft.spage=2076&rft.epage=2089&rft_id=info:doi/10.1109%2FJSAC.2020.3041405&rft.externalDocID=9277604 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |