Effective Communications: A Joint Learning and Communication Framework for Multi-Agent Reinforcement Learning Over Noisy Channels

We propose a novel formulation of the "effectiveness problem" in communications, put forth by Shannon and Weaver in their seminal work " The Mathematical Theory of Communication ", by considering multiple agents communicating over a noisy channel in order to achieve better coordi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 39; no. 8; pp. 2590 - 2603
Main Authors: Tung, Tze-Yang, Kobus, Szymon, Roig, Joan Pujol, Gunduz, Deniz
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a novel formulation of the "effectiveness problem" in communications, put forth by Shannon and Weaver in their seminal work " The Mathematical Theory of Communication ", by considering multiple agents communicating over a noisy channel in order to achieve better coordination and cooperation in a multi-agent reinforcement learning (MARL) framework. Specifically, we consider a multi-agent partially observable Markov decision process (MA-POMDP), in which the agents, in addition to interacting with the environment, can also communicate with each other over a noisy communication channel. The noisy communication channel is considered explicitly as part of the dynamics of the environment, and the message each agent sends is part of the action that the agent can take. As a result, the agents learn not only to collaborate with each other but also to communicate "effectively" over a noisy channel. This framework generalizes both the traditional communication problem, where the main goal is to convey a message reliably over a noisy channel, and the "learning to communicate" framework that has received recent attention in the MARL literature, where the underlying communication channels are assumed to be error-free. We show via examples that the joint policy learned using the proposed framework is superior to that where the communication is considered separately from the underlying MA-POMDP. This is a very powerful framework, which has many real world applications, from autonomous vehicle planning to drone swarm control, and opens up the rich toolbox of deep reinforcement learning for the design of multi-user communication systems.
AbstractList We propose a novel formulation of the "effectiveness problem" in communications, put forth by Shannon and Weaver in their seminal work " The Mathematical Theory of Communication ", by considering multiple agents communicating over a noisy channel in order to achieve better coordination and cooperation in a multi-agent reinforcement learning (MARL) framework. Specifically, we consider a multi-agent partially observable Markov decision process (MA-POMDP), in which the agents, in addition to interacting with the environment, can also communicate with each other over a noisy communication channel. The noisy communication channel is considered explicitly as part of the dynamics of the environment, and the message each agent sends is part of the action that the agent can take. As a result, the agents learn not only to collaborate with each other but also to communicate "effectively" over a noisy channel. This framework generalizes both the traditional communication problem, where the main goal is to convey a message reliably over a noisy channel, and the "learning to communicate" framework that has received recent attention in the MARL literature, where the underlying communication channels are assumed to be error-free. We show via examples that the joint policy learned using the proposed framework is superior to that where the communication is considered separately from the underlying MA-POMDP. This is a very powerful framework, which has many real world applications, from autonomous vehicle planning to drone swarm control, and opens up the rich toolbox of deep reinforcement learning for the design of multi-user communication systems.
Author Roig, Joan Pujol
Tung, Tze-Yang
Kobus, Szymon
Gunduz, Deniz
Author_xml – sequence: 1
  givenname: Tze-Yang
  orcidid: 0000-0003-2716-5211
  surname: Tung
  fullname: Tung, Tze-Yang
  email: tze-yang.tung14@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Information Processing and Communications Laboratory (IPC-Lab), Imperial College London, London, U.K
– sequence: 2
  givenname: Szymon
  surname: Kobus
  fullname: Kobus, Szymon
  organization: Department of Electrical and Electronic Engineering, Information Processing and Communications Laboratory (IPC-Lab), Imperial College London, London, U.K
– sequence: 3
  givenname: Joan Pujol
  surname: Roig
  fullname: Roig, Joan Pujol
  organization: Samsung Electronics Research and Development Institute UK, Staines-upon-Thames, U.K
– sequence: 4
  givenname: Deniz
  surname: Gunduz
  fullname: Gunduz, Deniz
  organization: Department of Electrical and Electronic Engineering, Information Processing and Communications Laboratory (IPC-Lab), Imperial College London, London, U.K
BookMark eNp9kE1PGzEURS0UpIaPH1CxsdT1BD97xvZ0F40IBQUi0bIeeZw31DRjU3uSiiX_nAlBCLpg9aSne-6VzgEZ-eCRkK_AJgCsPL38Oa0mnHGYCKYVz_UeGUNR6IwxpkdkzJQQmVYgv5CDlO4ZgzzXfEyeztoWbe82SKvQdWvvrOld8Ok7ndLL4HxP52iid_6OGr_8GKKzaDr8F-If2oZIr9ar3mXTOxygG3R--Fns8H3FYoORXgeXHmn123iPq3RE9luzSnj8eg_J7ezsV_Ujmy_OL6rpPLO8FH1mdG5NY2QLEhiyctmCNVAY1RTLpVRWgLYATWFVKRqhVIOgpSwVN7JsmUJxSL7teh9i-LvG1Nf3YR39MFnzouAgmSj5kIJdysaQUsS2foiuM_GxBlZvTddb0_XWdP1qemDUf4x1_YugPhq3-pQ82ZEOEd-WylzKgoF4Bl6PjvE
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3385922
crossref_primary_10_1016_j_knosys_2024_112714
crossref_primary_10_1109_ACCESS_2022_3231039
crossref_primary_10_3390_electronics12234845
crossref_primary_10_1109_JSAC_2022_3221950
crossref_primary_10_1109_TMC_2024_3478048
crossref_primary_10_1016_j_oceaneng_2024_118225
crossref_primary_10_1109_JIOT_2024_3469279
crossref_primary_10_1109_TCOMM_2024_3487513
crossref_primary_10_1109_JIOT_2023_3312553
crossref_primary_10_1109_LCOMM_2022_3214792
crossref_primary_10_1109_TWC_2025_3543373
crossref_primary_10_1109_TCOMM_2023_3244958
crossref_primary_10_1109_TVT_2022_3195202
crossref_primary_10_1016_j_comcom_2023_12_002
crossref_primary_10_1109_TWC_2024_3464639
crossref_primary_10_1109_TCOMM_2023_3282256
crossref_primary_10_1109_TRO_2024_3431829
crossref_primary_10_1016_j_ins_2022_07_052
crossref_primary_10_1109_TMC_2024_3406375
crossref_primary_10_1109_TCOMM_2024_3365520
crossref_primary_10_1002_aaai_70023
crossref_primary_10_1016_j_jfranklin_2024_107032
crossref_primary_10_1109_JSAC_2022_3223408
crossref_primary_10_1109_ACCESS_2023_3269848
crossref_primary_10_1007_s10462_025_11166_1
crossref_primary_10_1109_MWC_003_2200469
crossref_primary_10_1109_TIFS_2024_3423428
crossref_primary_10_1007_s10462_025_11317_4
crossref_primary_10_1109_JSAC_2025_3559152
crossref_primary_10_1109_TWC_2024_3478232
crossref_primary_10_1109_JSAC_2025_3574624
crossref_primary_10_1109_TWC_2023_3314930
crossref_primary_10_1109_COMST_2023_3333342
crossref_primary_10_1109_TWC_2024_3392608
crossref_primary_10_1016_j_comnet_2025_111270
crossref_primary_10_1007_s10922_025_09927_y
crossref_primary_10_1109_MCOM_004_2200819
crossref_primary_10_1109_JSAC_2025_3574587
crossref_primary_10_1109_TCOMM_2024_3416898
crossref_primary_10_1109_TCCN_2024_3384492
crossref_primary_10_1109_TWC_2023_3306342
crossref_primary_10_1016_j_comcom_2022_09_005
crossref_primary_10_1016_j_engappai_2024_108677
crossref_primary_10_1109_TWC_2024_3512663
crossref_primary_10_1109_ACCESS_2024_3360003
crossref_primary_10_1109_JIOT_2025_3527016
crossref_primary_10_1016_j_trc_2025_105164
crossref_primary_10_1109_COMST_2022_3199901
crossref_primary_10_1109_LCOMM_2025_3587319
crossref_primary_10_1049_cmu2_12557
crossref_primary_10_1109_MBITS_2023_3322667
crossref_primary_10_1109_ACCESS_2024_3381967
Cites_doi 10.18653/v1/2020.acl-main.685
10.1109/JSAIT.2020.2987203
10.1109/ACSSC.2017.8335670
10.1109/COMST.2018.2888904
10.1007/s41745-020-00165-6
10.1007/BF00735341
10.1109/JSAC.2019.2933891
10.1109/TCCN.2018.2872596
10.1109/MCOM.001.2000394
10.1109/PIMRC.2019.8904190
10.1109/SPAWC.2018.8445920
10.1162/neco.1997.9.8.1735
10.1007/BF00992696
10.1109/JSAC.2020.3036955
10.1145/375735.376455
10.1038/nature14236
10.1139/juvs-2018-0009
10.1109/LCOMM.2018.2877316
10.1109/TIT.2019.2953750
10.1177/10597123030111003
10.1103/PhysRev.36.823
10.1109/JSTSP.2017.2788405
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2021.3087248
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 2603
ExternalDocumentID 10_1109_JSAC_2021_3087248
9466501
Genre orig-research
GrantInformation_xml – fundername: U.K. Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/T023600/1
  funderid: 10.13039/501100000266
– fundername: European Research Council (ERC) Starting Grant BEACON
  grantid: 677854
  funderid: 10.13039/501100000781
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-a84caba6f1610e09df1ca15a7b5dd67c318c11b5c793b377be1866972a69f07e3
IEDL.DBID RIE
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673624000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Mon Jun 30 10:20:28 EDT 2025
Tue Nov 18 21:25:27 EST 2025
Sat Nov 29 03:23:03 EST 2025
Wed Aug 27 02:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a84caba6f1610e09df1ca15a7b5dd67c318c11b5c793b377be1866972a69f07e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2716-5211
PQID 2552160392
PQPubID 85481
PageCount 14
ParticipantIDs crossref_primary_10_1109_JSAC_2021_3087248
crossref_citationtrail_10_1109_JSAC_2021_3087248
proquest_journals_2552160392
ieee_primary_9466501
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref14
ref31
ref30
wang (ref37) 2020
sukhbaatar (ref35) 2016
havrylov (ref36) 2017
xie (ref9) 2020
jaques (ref20) 2018
ref32
strinati (ref10) 2020
ref17
tomasello (ref3) 2010
silver (ref42) 2014
jiang (ref19) 2018
kingma (ref45) 2014
lowe (ref38) 2017; 30
foerster (ref18) 2016
ref46
ref23
ref26
bourtsoulatze (ref11) 2018
ref25
lazaridou (ref24) 2016
konda (ref33) 2000; 12
das (ref21) 2019
ref41
ref22
ref44
ref43
shannon (ref2) 1949
ref28
lillicrap (ref27) 2015
ref29
ref7
roig (ref1) 2020
ref6
peng (ref39) 2017
ref5
weng (ref12) 2020
ref40
ackley (ref4) 1994
kountouris (ref8) 2020
lanctot (ref16) 2017
References_xml – year: 2016
  ident: ref24
  article-title: Multi-agent cooperation and the emergence of (Natural) language
  publication-title: arXiv 1612 07182
– ident: ref25
  doi: 10.18653/v1/2020.acl-main.685
– year: 2020
  ident: ref9
  article-title: Deep learning enabled semantic communication systems
  publication-title: arXiv 2006 10685
– ident: ref31
  doi: 10.1109/JSAIT.2020.2987203
– start-page: 40
  year: 1994
  ident: ref4
  article-title: Altruism in the evolution of communication
  publication-title: Proc 4th Int Workshop Synth Simul Living Syst (Artificial Life IV)
– ident: ref29
  doi: 10.1109/ACSSC.2017.8335670
– year: 2017
  ident: ref16
  article-title: A unified game-theoretic approach to multiagent reinforcement learning
  publication-title: arXiv 1711 00832
– start-page: 387
  year: 2014
  ident: ref42
  article-title: Deterministic policy gradient algorithms
  publication-title: Proc Int Conf Mach Learn
– year: 2020
  ident: ref37
  article-title: R-MADDPG for partially observable environments and limited communication
  publication-title: arXiv 2002 06684
– year: 1949
  ident: ref2
  publication-title: The Mathematical Theory of Communication
– volume: 30
  start-page: 6379
  year: 2017
  ident: ref38
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2020
  ident: ref12
  article-title: Semantic communications for speech signals
  publication-title: arXiv 2012 05369
– ident: ref22
  doi: 10.1109/COMST.2018.2888904
– start-page: 1
  year: 2020
  ident: ref1
  article-title: Remote reinforcement learning over a noisy channel
  publication-title: Proc IEEE Globecom
– ident: ref7
  doi: 10.1007/s41745-020-00165-6
– year: 2017
  ident: ref39
  article-title: Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning to play StarCraft combat games
  publication-title: arXiv 1703 10069
– ident: ref17
  doi: 10.1007/BF00735341
– start-page: 7265
  year: 2018
  ident: ref19
  article-title: Learning attentional communication for multi-agent cooperation
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– year: 2014
  ident: ref45
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref32
  doi: 10.1109/JSAC.2019.2933891
– year: 2017
  ident: ref36
  article-title: Emergence of language with multi-agent games: Learning to communicate with sequences of symbols
  publication-title: arXiv 1705 11192
– year: 2010
  ident: ref3
  publication-title: Origins of Human Communication
– start-page: 1538
  year: 2019
  ident: ref21
  article-title: TarMAC: Targeted multi-agent communication
  publication-title: Proc 36th Int Conf Mach Learn
– year: 2020
  ident: ref8
  article-title: Semantics-empowered communication for networked intelligent systems
  publication-title: arXiv 2007 11579
– ident: ref6
  doi: 10.1109/TCCN.2018.2872596
– ident: ref15
  doi: 10.1109/MCOM.001.2000394
– year: 2016
  ident: ref18
  article-title: Learning to communicate with deep multi-agent reinforcement learning
  publication-title: arXiv 1605 06676
– ident: ref40
  doi: 10.1109/PIMRC.2019.8904190
– volume: 12
  start-page: 1008
  year: 2000
  ident: ref33
  article-title: Actor-critic algorithms
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/SPAWC.2018.8445920
– ident: ref46
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref44
  doi: 10.1007/BF00992696
– start-page: 2252
  year: 2016
  ident: ref35
  article-title: Learning multiagent communication with backpropagation
  publication-title: Proc 30th Int Conf Neural Inf Syst (NIPS)
– year: 2018
  ident: ref11
  article-title: Deep joint source-channel coding for wireless image transmission
  publication-title: arXiv 1809 01733
– ident: ref14
  doi: 10.1109/JSAC.2020.3036955
– ident: ref5
  doi: 10.1145/375735.376455
– year: 2015
  ident: ref27
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv 1509 02971
– year: 2020
  ident: ref10
  article-title: 6G networks: Beyond Shannon towards semantic and goal-oriented communications
  publication-title: arXiv 2011 14844
– year: 2018
  ident: ref20
  article-title: Social influence as intrinsic motivation for multi-agent deep reinforcement learning
  publication-title: arXiv 1810 08647
– ident: ref26
  doi: 10.1038/nature14236
– ident: ref23
  doi: 10.1139/juvs-2018-0009
– ident: ref41
  doi: 10.1109/LCOMM.2018.2877316
– ident: ref13
  doi: 10.1109/TIT.2019.2953750
– ident: ref34
  doi: 10.1177/10597123030111003
– ident: ref43
  doi: 10.1103/PhysRev.36.823
– ident: ref28
  doi: 10.1109/JSTSP.2017.2788405
SSID ssj0014482
Score 2.643482
Snippet We propose a novel formulation of the "effectiveness problem" in communications, put forth by Shannon and Weaver in their seminal work " The Mathematical...
We propose a novel formulation of the “effectiveness problem” in communications, put forth by Shannon and Weaver in their seminal work “ The Mathematical...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2590
SubjectTerms Channel coding
Channels
Communication channels
Communications systems
Deep learning
Drone vehicles
error correction coding
joint source-channel coding
Learning to communicate
Markov processes
Modulation
multi-agent systems
Multiagent systems
Noise measurement
Protocols
Reagents
Reinforcement learning
reinforcement learning (RL)
Semantics
Wireless communication
Title Effective Communications: A Joint Learning and Communication Framework for Multi-Agent Reinforcement Learning Over Noisy Channels
URI https://ieeexplore.ieee.org/document/9466501
https://www.proquest.com/docview/2552160392
Volume 39
WOSCitedRecordID wos000673624000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDrypWq-TgSUzNPrPrrRSLFKniA3pbsnlIQXal3Qoe_edmstu1RRG87SEJgW8nM5PJ9w1CZymIqGsZEk-Gmvi-q0kcBZSkWvtMssj3lZXMv2WjUTQex_cNdFFzYZRS9vGZ6sKnreXLXMzhquwStNADIGutMRaWXK26YmDSDFsxYJ5HIAmoKpgOjS-Hj72-yQRdpwvydy60-lnyQbapyo-T2LqXwfb_NraDtqowEvdK3HdRQ2V7aHNJXLCFPkthYnOa4RUWyOwK9_Awn2QFrsRVXzDP5OogPFg82sImqsWWpkt6QMPCD8qKrQp7r_i9xJ2xCTzKJ7MPDIyFzPjcffQ8uH7q35Cq4QIRxusXhEe-4CkPtQkDqaKx1I7gTsBZGkgZMmHsXzhOGghj1KnHWKpALi9mLg9jTZnyDlAzyzN1iLAMXK0iETnKZKCMpiA7yOHOi0nP15y2EV1AkIhKjRyaYrwmNiuhcQKoJYBaUqHWRuf1lLdSiuOvwS2AqR5YIdRGnQXOSWWss8RkVS50247do99nHaMNWLt899dBzWI6VydoXbwXk9n01P6HXwmY21k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EBfXgW6xWzcGTGM0-s-utFEvVWsUHeFuyeUhBtmKr4NF_bia7rRVF8LaHSXbh28xkMvm-AdjPUUTdqJgGKjY0DH1D0yRiNDcm5IonYaidZH6Hd7vJw0N6PQWHYy6M1tpdPtNH-Ohq-aovX_Go7Bi10CMka81EdlZWsrXGNQObaLiaAQ8CimlAVcP0WHp8ftto2lzQ945QAM_HZj8TUci1Vfnhi12AaS3979OWYbHaSJJGifwKTOliFRYm5AXX4KOUJrb-jHzjgQxOSIOc93vFkFTyqo9EFOq7EWmNrm0Ru68ljqhLG0jEIjfaya1Kd7L4NcWVXRWk2-8N3glyFgobddfhvnV612zTquUClTbuD6lIQilyERu7EWSapcp4UniR4HmkVMyl9QDS8_JI2mWdB5znGgXzUu6LODWM62ADpot-oTeBqMg3OpGJp20OylmOwoMCT724CkIjWA3YCIJMVnrk2BbjKXN5CUszRC1D1LIKtRocjIc8l2IcfxmvIUxjwwqhGtRHOGfVch1kNq_ysd926m_9PmoP5tp3l52sc9a92IZ5fE95C7AO08OXV70Ds_Jt2Bu87Lp_8hOX4d6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Communications%3A+A+Joint+Learning+and+Communication+Framework+for+Multi-Agent+Reinforcement+Learning+Over+Noisy+Channels&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Tze-Yang%2C+Tung&rft.au=Kobus%2C+Szymon&rft.au=Joan+Pujol+Roig&rft.au=Gunduz%2C+Deniz&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=8&rft.spage=2590&rft_id=info:doi/10.1109%2FJSAC.2021.3087248&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon