Scalable Single Source Shortest Path Algorithms for Massively Parallel Systems
We consider the single-source shortest path (SSSP) problem: given an undirected graph with integer edge weights and a source vertex <inline-formula><tex-math notation="LaTeX">v</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq1-2634535.gif"/> </i...
Saved in:
| Published in: | IEEE transactions on parallel and distributed systems Vol. 28; no. 7; pp. 2031 - 2045 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1045-9219, 1558-2183 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider the single-source shortest path (SSSP) problem: given an undirected graph with integer edge weights and a source vertex <inline-formula><tex-math notation="LaTeX">v</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq1-2634535.gif"/> </inline-formula>, find the shortest paths from <inline-formula><tex-math notation="LaTeX">v</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq2-2634535.gif"/> </inline-formula> to all other vertices. In this paper, we introduce a novel parallel algorithm, derived from the Bellman-Ford and Delta-stepping algorithms. We employ various pruning techniques, such as edge classification and direction-optimization, to dramatically reduce inter-node communication traffic, and we propose load balancing strategies to handle higher-degree vertices. These techniques are particularly effective on power-law graphs, as demonstrated by our extensive performance analysis. In the largest tested configuration, an R-MAT graph with <inline-formula><tex-math notation="LaTeX">2^{38}</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq3-2634535.gif"/> </inline-formula> vertices and <inline-formula><tex-math notation="LaTeX">2^{42}</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq4-2634535.gif"/> </inline-formula> edges on 32,768 Blue Gene/Q nodes, we have achieved a processing rate of three Trillion Edges Per Second (TTEPS), a four orders of magnitude improvement over the best published results. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1045-9219 1558-2183 |
| DOI: | 10.1109/TPDS.2016.2634535 |