Scalable Single Source Shortest Path Algorithms for Massively Parallel Systems

We consider the single-source shortest path (SSSP) problem: given an undirected graph with integer edge weights and a source vertex <inline-formula><tex-math notation="LaTeX">v</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq1-2634535.gif"/> </i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 28; číslo 7; s. 2031 - 2045
Hlavní autoři: Chakaravarthy, Venkatesan T., Checconi, Fabio, Murali, Prakash, Petrini, Fabrizio, Sabharwal, Yogish
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the single-source shortest path (SSSP) problem: given an undirected graph with integer edge weights and a source vertex <inline-formula><tex-math notation="LaTeX">v</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq1-2634535.gif"/> </inline-formula>, find the shortest paths from <inline-formula><tex-math notation="LaTeX">v</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq2-2634535.gif"/> </inline-formula> to all other vertices. In this paper, we introduce a novel parallel algorithm, derived from the Bellman-Ford and Delta-stepping algorithms. We employ various pruning techniques, such as edge classification and direction-optimization, to dramatically reduce inter-node communication traffic, and we propose load balancing strategies to handle higher-degree vertices. These techniques are particularly effective on power-law graphs, as demonstrated by our extensive performance analysis. In the largest tested configuration, an R-MAT graph with <inline-formula><tex-math notation="LaTeX">2^{38}</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq3-2634535.gif"/> </inline-formula> vertices and <inline-formula><tex-math notation="LaTeX">2^{42}</tex-math> <inline-graphic xlink:href="chakaravarthy-ieq4-2634535.gif"/> </inline-formula> edges on 32,768 Blue Gene/Q nodes, we have achieved a processing rate of three Trillion Edges Per Second (TTEPS), a four orders of magnitude improvement over the best published results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2016.2634535