DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral signatures (endmembers) and their fractional abundances. In this paper, we develop a new technique for unsupervised unmixing which is based on a deep...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 57; H. 7; S. 4309 - 4321 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral signatures (endmembers) and their fractional abundances. In this paper, we develop a new technique for unsupervised unmixing which is based on a deep autoencoder network (DAEN). Our newly developed DAEN consists of two parts. The first part of the network adopts stacked autoencoders (SAEs) to learn spectral signatures, so as to generate a good initialization for the unmixing process. In the second part of the network, a variational autoencoder (VAE) is employed to perform blind source separation, aimed at obtaining the endmember signatures and abundance fractions simultaneously. By taking advantage from the SAEs, the robustness of the proposed approach is remarkable as it can unmix data sets with outliers and low signal-to-noise ratio. Moreover, the multihidden layers of the VAE ensure the required constraints (nonnegativity and sum-to-one) when estimating the abundances. The effectiveness of the proposed method is evaluated using both synthetic and real hyperspectral data. When compared with other unmixing methods, the proposed approach demonstrates very competitive performance. |
|---|---|
| AbstractList | Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral signatures (endmembers) and their fractional abundances. In this paper, we develop a new technique for unsupervised unmixing which is based on a deep autoencoder network (DAEN). Our newly developed DAEN consists of two parts. The first part of the network adopts stacked autoencoders (SAEs) to learn spectral signatures, so as to generate a good initialization for the unmixing process. In the second part of the network, a variational autoencoder (VAE) is employed to perform blind source separation, aimed at obtaining the endmember signatures and abundance fractions simultaneously. By taking advantage from the SAEs, the robustness of the proposed approach is remarkable as it can unmix data sets with outliers and low signal-to-noise ratio. Moreover, the multihidden layers of the VAE ensure the required constraints (nonnegativity and sum-to-one) when estimating the abundances. The effectiveness of the proposed method is evaluated using both synthetic and real hyperspectral data. When compared with other unmixing methods, the proposed approach demonstrates very competitive performance. |
| Author | Li, Jun Su, Yuanchao Gamba, Paolo Marinoni, Andrea Plaza, Antonio Chakravortty, Somdatta |
| Author_xml | – sequence: 1 givenname: Yuanchao orcidid: 0000-0002-4776-0862 surname: Su fullname: Su, Yuanchao email: suych3@mail2.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, Center of Integrated Geographic Information Analysis, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Jun orcidid: 0000-0003-1613-9448 surname: Li fullname: Li, Jun email: lijun48@mail.sysu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Antonio orcidid: 0000-0002-9613-1659 surname: Plaza fullname: Plaza, Antonio email: aplaza@unex.es organization: Department of Technology of Computers and Communications, Hyperspectral Computing Laboratory, Escuela Politécnica, University of Extremadura, Cáceres, Spain – sequence: 4 givenname: Andrea orcidid: 0000-0001-6789-0915 surname: Marinoni fullname: Marinoni, Andrea email: andrea.marinoni@unipv.it organization: Department of Physics and Technology, Earth Observation Group, Centre for Integrated Remote Sensing and Forecasting for Arctic Operations, UiT-The Arctic University of Norway, Tromsø, Norway – sequence: 5 givenname: Paolo orcidid: 0000-0002-9576-6337 surname: Gamba fullname: Gamba, Paolo email: paolo.gamba@unipv.it organization: Department of Electrical, Computer and Biomedical Engineering, Telecommunications and Remote Sensing Laboratory, University of Pavia, Pavia, Italy – sequence: 6 givenname: Somdatta orcidid: 0000-0002-9121-4949 surname: Chakravortty fullname: Chakravortty, Somdatta email: csomdatta@rediffmail.com organization: Department of Information Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, India |
| BookMark | eNp9kMFOAjEQhhuDiYg-gPGyiefFTrvtttwIIJgQTBTOm9KdNYuwXdslytu7BOLBg6c5zP_9M_muSadyFRJyB7QPQPXjcvr61mcUVJ8pTSXnF6QLQqiYyiTpkC4FLeN2xa7IdQgbSiERkHbJYDycLAbRGLGOhvvGYWVdjj5aYPPl_EeICuej2aFGH2q0jTfbaFXtyu-yer8hl4XZBrw9zx5ZPU2Wo1k8f5k-j4bz2DLNm9hIqVMOEmmSY84BJE2FTAVThhZ2LdZraVSem0QooQ1YBIWGSatzbmTKDe-Rh1Nv7d3nHkOTbdzeV-3JjLFESaGZSttUekpZ70LwWGS2bExTuqp9utxmQLOjqOwoKjuKys6iWhL-kLUvd8Yf_mXuT0yJiL95JZliCfAfeMB0lw |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2021_3121799 crossref_primary_10_1109_JSTARS_2024_3352080 crossref_primary_10_1109_TGRS_2023_3297858 crossref_primary_10_1109_TGRS_2020_2982490 crossref_primary_10_3390_rs15020451 crossref_primary_10_1109_LGRS_2023_3345959 crossref_primary_10_3390_rs15153782 crossref_primary_10_1109_TGRS_2023_3267080 crossref_primary_10_1109_TGRS_2023_3237556 crossref_primary_10_3390_rs15030817 crossref_primary_10_1109_TGRS_2022_3196057 crossref_primary_10_1016_j_ecoinf_2022_101678 crossref_primary_10_1109_TGRS_2024_3422495 crossref_primary_10_1109_MGRS_2021_3071158 crossref_primary_10_1109_TGRS_2021_3094884 crossref_primary_10_1109_JSTARS_2025_3542228 crossref_primary_10_1109_TGRS_2022_3150970 crossref_primary_10_1109_ACCESS_2020_3019973 crossref_primary_10_1109_JSTARS_2024_3387750 crossref_primary_10_1109_TGRS_2020_2992743 crossref_primary_10_1109_JSTARS_2022_3175257 crossref_primary_10_1109_TGRS_2025_3540378 crossref_primary_10_1016_j_isprsjprs_2021_11_008 crossref_primary_10_1109_TGRS_2022_3169228 crossref_primary_10_1109_TGRS_2022_3217892 crossref_primary_10_1016_j_inffus_2025_103712 crossref_primary_10_1016_j_rse_2021_112407 crossref_primary_10_1117_1_JRS_17_046509 crossref_primary_10_1109_JSTARS_2024_3450856 crossref_primary_10_1109_TGRS_2024_3489615 crossref_primary_10_3390_rs16050766 crossref_primary_10_3390_rs13204133 crossref_primary_10_1109_JSTARS_2022_3140389 crossref_primary_10_3390_rs12182955 crossref_primary_10_1080_01431161_2022_2088258 crossref_primary_10_1109_TGRS_2024_3452323 crossref_primary_10_1016_j_eswa_2021_115929 crossref_primary_10_1109_JSTARS_2021_3069574 crossref_primary_10_1063_5_0193607 crossref_primary_10_1109_JSTARS_2022_3188565 crossref_primary_10_3390_rs15041053 crossref_primary_10_1109_TGRS_2021_3069476 crossref_primary_10_1109_JSTARS_2024_3523747 crossref_primary_10_1016_j_asoc_2024_112679 crossref_primary_10_1109_LGRS_2021_3075138 crossref_primary_10_1109_TGRS_2023_3347414 crossref_primary_10_1109_TGRS_2024_3381632 crossref_primary_10_1080_01431161_2020_1724346 crossref_primary_10_1007_s12524_020_01221_5 crossref_primary_10_3390_app122312158 crossref_primary_10_1109_LGRS_2022_3144327 crossref_primary_10_1109_JSTARS_2021_3080919 crossref_primary_10_1109_TGRS_2022_3168712 crossref_primary_10_1016_j_sigpro_2020_107949 crossref_primary_10_1016_j_jag_2024_104247 crossref_primary_10_1080_01431161_2024_2334772 crossref_primary_10_1109_TGRS_2023_3321839 crossref_primary_10_1109_TGRS_2024_3418583 crossref_primary_10_1109_JSTARS_2025_3576281 crossref_primary_10_1109_TGRS_2023_3310155 crossref_primary_10_1109_TGRS_2020_3001948 crossref_primary_10_1109_TGRS_2021_3074364 crossref_primary_10_1109_JSTARS_2021_3066508 crossref_primary_10_1109_JSTARS_2025_3594155 crossref_primary_10_1109_TNNLS_2021_3114203 crossref_primary_10_1109_TIP_2022_3233187 crossref_primary_10_1109_JSTARS_2025_3584232 crossref_primary_10_1016_j_knosys_2024_112087 crossref_primary_10_1109_JSTARS_2022_3140756 crossref_primary_10_1109_TGRS_2024_3403926 crossref_primary_10_1016_j_jag_2022_102906 crossref_primary_10_3390_rs15245694 crossref_primary_10_1016_j_postharvbio_2023_112376 crossref_primary_10_1109_JSTARS_2020_3039844 crossref_primary_10_3390_rs13163131 crossref_primary_10_1016_j_jag_2025_104405 crossref_primary_10_1109_TGRS_2025_3543566 crossref_primary_10_1109_JSTARS_2025_3549515 crossref_primary_10_1080_01431161_2020_1750733 crossref_primary_10_1080_01431161_2020_1849851 crossref_primary_10_1109_LGRS_2024_3514888 crossref_primary_10_1080_01431161_2022_2048319 crossref_primary_10_1016_j_compag_2023_108098 crossref_primary_10_3788_IRLA20250131 crossref_primary_10_1080_10106049_2022_2040601 crossref_primary_10_3390_rs17142517 crossref_primary_10_3390_sym16111414 crossref_primary_10_1109_LGRS_2020_3005999 crossref_primary_10_1109_TGRS_2021_3051204 crossref_primary_10_1109_TCI_2019_2948726 crossref_primary_10_3390_rs16173149 crossref_primary_10_1016_j_cosrev_2023_100584 crossref_primary_10_1016_j_chemolab_2023_104879 crossref_primary_10_1109_TGRS_2020_3041157 crossref_primary_10_1109_TGRS_2019_2956159 crossref_primary_10_1016_j_knosys_2019_104898 crossref_primary_10_1109_TGRS_2021_3067802 crossref_primary_10_1109_TGRS_2021_3098745 crossref_primary_10_1109_TGRS_2025_3576479 crossref_primary_10_1109_TGRS_2022_3151004 crossref_primary_10_1109_JSTARS_2020_3011257 crossref_primary_10_1016_j_ijepes_2024_110144 crossref_primary_10_3390_rs14205167 crossref_primary_10_1109_TGRS_2023_3284992 crossref_primary_10_3390_rs17050869 crossref_primary_10_1109_TGRS_2022_3146904 crossref_primary_10_1109_TGRS_2019_2916296 crossref_primary_10_1109_TGRS_2024_3353259 crossref_primary_10_1109_TGRS_2025_3566205 crossref_primary_10_3390_rs16224316 crossref_primary_10_1109_JSTARS_2021_3140154 crossref_primary_10_1109_TGRS_2024_3446029 crossref_primary_10_1109_ACCESS_2023_3314694 crossref_primary_10_1109_JSTARS_2021_3068727 crossref_primary_10_1109_TGRS_2024_3452148 crossref_primary_10_1016_j_rse_2024_114027 crossref_primary_10_1109_JSTARS_2023_3308037 crossref_primary_10_1080_01431161_2020_1854893 crossref_primary_10_1109_TGRS_2021_3081177 crossref_primary_10_1109_TNNLS_2021_3082289 crossref_primary_10_1109_TGRS_2021_3064958 crossref_primary_10_1109_JSTARS_2021_3126755 crossref_primary_10_1109_TGRS_2023_3307346 crossref_primary_10_1109_JSTARS_2020_3028104 crossref_primary_10_1109_TGRS_2024_3357589 crossref_primary_10_1007_s11600_024_01481_6 crossref_primary_10_1109_JSTARS_2022_3168333 crossref_primary_10_1109_TGRS_2022_3160827 crossref_primary_10_1080_22797254_2023_2268820 crossref_primary_10_1109_LGRS_2021_3127075 crossref_primary_10_1007_s10462_023_10662_6 crossref_primary_10_1117_1_JRS_15_026513 crossref_primary_10_1109_JSTARS_2020_2966512 crossref_primary_10_1109_TGRS_2023_3292453 crossref_primary_10_1109_TCI_2024_3369410 crossref_primary_10_1109_TGRS_2024_3393570 crossref_primary_10_1109_JSTARS_2023_3323748 crossref_primary_10_1109_TGRS_2021_3133135 crossref_primary_10_1109_TGRS_2023_3272270 crossref_primary_10_1007_s10661_025_13728_w crossref_primary_10_1109_TIP_2023_3266660 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_1016_j_sigpro_2020_107672 crossref_primary_10_1109_TGRS_2024_3375598 crossref_primary_10_1109_TCI_2023_3321985 crossref_primary_10_1109_TGRS_2021_3131773 crossref_primary_10_1016_j_rse_2025_114657 crossref_primary_10_1109_TGRS_2023_3324018 crossref_primary_10_1016_j_nxener_2023_100046 crossref_primary_10_1007_s12145_025_01779_z crossref_primary_10_1109_JSTSP_2021_3052361 crossref_primary_10_3390_rs16132430 crossref_primary_10_3390_rs11131566 crossref_primary_10_1109_TGRS_2022_3152782 crossref_primary_10_1109_JSEN_2024_3373477 crossref_primary_10_1109_TGRS_2025_3602210 crossref_primary_10_3390_s25082592 crossref_primary_10_1109_TGRS_2025_3581078 crossref_primary_10_1016_j_isprsjprs_2024_02_018 crossref_primary_10_1109_JSTARS_2020_3008939 crossref_primary_10_1109_TGRS_2022_3141387 crossref_primary_10_1016_j_rse_2022_113429 crossref_primary_10_1109_TGRS_2020_2977819 crossref_primary_10_1109_TGRS_2025_3537171 crossref_primary_10_1109_TGRS_2021_3088686 crossref_primary_10_1109_TGRS_2021_3117250 crossref_primary_10_1109_TGRS_2020_2968304 crossref_primary_10_1109_TGRS_2021_3136336 crossref_primary_10_1080_01431161_2025_2527372 crossref_primary_10_3390_rs17050800 crossref_primary_10_1109_MGRS_2020_3048443 crossref_primary_10_1109_TGRS_2021_3108540 crossref_primary_10_1109_TGRS_2024_3360714 crossref_primary_10_1109_JSTARS_2021_3062116 crossref_primary_10_1109_JSTARS_2021_3132164 crossref_primary_10_1109_TGRS_2025_3551119 crossref_primary_10_23919_JSEE_2022_000030 crossref_primary_10_1016_j_asoc_2020_106522 crossref_primary_10_1080_22797254_2023_2277213 crossref_primary_10_1021_acsami_4c17502 crossref_primary_10_1016_j_neunet_2021_11_014 crossref_primary_10_1109_JSTARS_2024_3437469 crossref_primary_10_1109_LGRS_2024_3402256 crossref_primary_10_1109_LGRS_2023_3295437 crossref_primary_10_1109_JSTARS_2019_2954865 crossref_primary_10_1109_TGRS_2019_2952091 crossref_primary_10_3390_rs14184433 crossref_primary_10_1109_TGRS_2025_3608084 crossref_primary_10_1038_s41524_020_0289_6 crossref_primary_10_3390_rs14081784 crossref_primary_10_1007_s12145_024_01273_y crossref_primary_10_1109_JSTARS_2022_3214508 crossref_primary_10_1080_10106049_2024_2417919 crossref_primary_10_1109_TGRS_2023_3304484 crossref_primary_10_1016_j_neunet_2020_08_010 crossref_primary_10_1109_TGRS_2025_3544037 crossref_primary_10_1007_s11042_022_12628_2 crossref_primary_10_1109_JSTARS_2023_3241249 crossref_primary_10_1016_j_jag_2022_102981 crossref_primary_10_1016_j_engappai_2025_111784 crossref_primary_10_1016_j_ins_2022_09_066 crossref_primary_10_1016_j_inffus_2022_09_019 crossref_primary_10_3390_rs15112898 crossref_primary_10_1109_JSTARS_2023_3335907 |
| Cites_doi | 10.1017/CBO9780511524998 10.1109/TCI.2015.2455411 10.1007/s11263-018-1080-8 10.1109/TIP.2014.2363423 10.1109/TGRS.2010.2062190 10.1109/TIP.2018.2862629 10.1109/LGRS.2009.2036139 10.1109/WHISPERS.2009.5289072 10.1109/TGRS.2018.2862384 10.1109/79.974727 10.1016/j.sigpro.2009.05.005 10.1016/S0034-4257(98)00064-9 10.1109/TGRS.2006.888466 10.1109/MGRS.2013.2244672 10.1109/TGRS.2012.2213825 10.1109/IGARSS.2007.4423734 10.1109/ACCESS.2018.2818280 10.1117/12.366289 10.1109/TGRS.2017.2690445 10.1109/IGARSS.2017.8127062 10.1109/JSTARS.2014.2320576 10.1109/TGRS.2018.2868690 10.1109/LGRS.2013.2294181 10.1109/JSTARS.2017.2782324 10.1109/TSP.2009.2025797 10.1109/36.911111 10.1109/TGRS.2015.2417162 10.1109/TGRS.2018.2856929 10.1109/IGARSS.2017.8127020 10.1109/TGRS.2017.2729882 10.1109/IGARSS.2018.8519571 10.1109/JSTSP.2015.2416693 10.1109/TGRS.2017.2728104 10.1016/j.neunet.2012.05.003 10.1109/TGRS.2005.844293 10.1109/TGRS.2012.2219058 10.1109/TGRS.2011.2163941 10.1109/EAIT.2014.18 10.1109/TIP.2015.2468177 10.1109/TGRS.2011.2160950 10.1016/j.patcog.2009.04.008 10.1109/TGRS.2016.2580702 10.1109/JSTARS.2012.2194696 10.1109/LGRS.2018.2841400 10.1109/TGRS.2005.848692 10.1109/TGRS.2012.2230182 10.1109/MSP.2013.2279274 10.1109/TGRS.2018.2852066 10.1109/WHISPERS.2015.8075378 10.1109/IGARSS.2017.8126930 10.1109/TGRS.2016.2535298 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2018.2890633 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 4321 |
| ExternalDocumentID | 10_1109_TGRS_2018_2890633 8628241 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61771496 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province grantid: 2016A030313254 funderid: 10.13039/501100003453 – fundername: National Key Research and Development Program of China grantid: 2017YFB0502900 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c293t-a6697316e04ded311607567528a0fcb5bb6a8dda45859a1ce18ea26c9d3a673a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 248 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473436000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:36:13 EDT 2025 Sat Nov 29 02:49:58 EST 2025 Tue Nov 18 21:15:20 EST 2025 Wed Aug 27 05:51:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-a6697316e04ded311607567528a0fcb5bb6a8dda45859a1ce18ea26c9d3a673a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6789-0915 0000-0002-9613-1659 0000-0002-9576-6337 0000-0002-9121-4949 0000-0002-4776-0862 0000-0003-1613-9448 |
| PQID | 2248659287 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2248659287 crossref_citationtrail_10_1109_TGRS_2018_2890633 crossref_primary_10_1109_TGRS_2018_2890633 ieee_primary_8628241 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref17 ref16 ref19 ref18 cui (ref10) 2014; 11 kingma (ref45) 2014 ref48 ref47 ref42 ref41 ref44 ref43 ref49 nocedal (ref50) 2006 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 zeiler (ref51) 2012 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 li (ref20) 2015; 53 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 doersch (ref46) 2016 |
| References_xml | – ident: ref44 doi: 10.1017/CBO9780511524998 – ident: ref27 doi: 10.1109/TCI.2015.2455411 – ident: ref24 doi: 10.1007/s11263-018-1080-8 – ident: ref53 doi: 10.1109/TIP.2014.2363423 – ident: ref33 doi: 10.1109/TGRS.2010.2062190 – ident: ref5 doi: 10.1109/TIP.2018.2862629 – ident: ref35 doi: 10.1109/LGRS.2009.2036139 – year: 2012 ident: ref51 publication-title: ADADELTA An Adaptive Learning Rate Method – ident: ref26 doi: 10.1109/WHISPERS.2009.5289072 – ident: ref4 doi: 10.1109/TGRS.2018.2862384 – ident: ref6 doi: 10.1109/79.974727 – start-page: 1 year: 2014 ident: ref45 article-title: Auto-encoding variational Bayes publication-title: Proc Int Conf Learn Represent – ident: ref32 doi: 10.1016/j.sigpro.2009.05.005 – ident: ref54 doi: 10.1016/S0034-4257(98)00064-9 – ident: ref18 doi: 10.1109/TGRS.2006.888466 – ident: ref1 doi: 10.1109/MGRS.2013.2244672 – ident: ref22 doi: 10.1109/TGRS.2012.2213825 – ident: ref29 doi: 10.1109/IGARSS.2007.4423734 – ident: ref42 doi: 10.1109/ACCESS.2018.2818280 – ident: ref15 doi: 10.1117/12.366289 – ident: ref2 doi: 10.1109/TGRS.2017.2690445 – year: 2016 ident: ref46 publication-title: Tutorial on variational autoencoders – ident: ref41 doi: 10.1109/IGARSS.2017.8127062 – ident: ref8 doi: 10.1109/JSTARS.2014.2320576 – ident: ref39 doi: 10.1109/TGRS.2018.2868690 – volume: 11 start-page: 1404 year: 2014 ident: ref10 article-title: Nonlinear spectral mixture analysis by determining per-pixel endmember sets publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2013.2294181 – ident: ref52 doi: 10.1109/JSTARS.2017.2782324 – ident: ref31 doi: 10.1109/TSP.2009.2025797 – ident: ref48 doi: 10.1109/36.911111 – volume: 53 start-page: 5067 year: 2015 ident: ref20 article-title: Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2417162 – ident: ref40 doi: 10.1109/TGRS.2018.2856929 – ident: ref13 doi: 10.1109/IGARSS.2017.8127020 – ident: ref3 doi: 10.1109/TGRS.2017.2729882 – ident: ref47 doi: 10.1109/IGARSS.2018.8519571 – ident: ref9 doi: 10.1109/JSTSP.2015.2416693 – ident: ref28 doi: 10.1109/TGRS.2017.2728104 – ident: ref49 doi: 10.1016/j.neunet.2012.05.003 – ident: ref16 doi: 10.1109/TGRS.2005.844293 – ident: ref19 doi: 10.1109/TGRS.2012.2219058 – ident: ref30 doi: 10.1109/TGRS.2011.2163941 – ident: ref55 doi: 10.1109/EAIT.2014.18 – ident: ref12 doi: 10.1109/TIP.2015.2468177 – ident: ref36 doi: 10.1109/TGRS.2011.2160950 – ident: ref34 doi: 10.1016/j.patcog.2009.04.008 – ident: ref21 doi: 10.1109/TGRS.2016.2580702 – ident: ref14 doi: 10.1109/JSTARS.2012.2194696 – ident: ref43 doi: 10.1109/LGRS.2018.2841400 – ident: ref17 doi: 10.1109/TGRS.2005.848692 – ident: ref23 doi: 10.1109/TGRS.2012.2230182 – ident: ref7 doi: 10.1109/MSP.2013.2279274 – ident: ref25 doi: 10.1109/TGRS.2018.2852066 – ident: ref37 doi: 10.1109/WHISPERS.2015.8075378 – ident: ref38 doi: 10.1109/IGARSS.2017.8126930 – ident: ref11 doi: 10.1109/TGRS.2016.2535298 – start-page: 33 year: 2006 ident: ref50 publication-title: Numerical Optimization |
| SSID | ssj0014517 |
| Score | 2.661959 |
| Snippet | Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4309 |
| SubjectTerms | Computers Deep autoencoder network (DAEN) deep learning endmember identification Estimation Hyperspectral imaging hyperspectral unmixing Noise reduction Outliers (statistics) Remote sensing Signal processing Signal to noise ratio Spectra Spectral signatures Training variational autoencoder (VAE) |
| Title | DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing |
| URI | https://ieeexplore.ieee.org/document/8628241 https://www.proquest.com/docview/2248659287 |
| Volume | 57 |
| WOSCitedRecordID | wos000473436000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qUdCDj1axWiUHT2LaPLbZ3d6KtvYURFvoLWx2J1DQtPQh_nx3N2lRFMFbDrtD-DbJzGTm-wbghmunJPU5uyqTmUsikrqcZdw13hWJIIbwaIdN0Dhmkwl_qsDdlguDiLb5DFvm0tby1Uyuza-yto6-WWBY6juU0oKrta0YkI5fUqMjVycRQVnB9D3eHj0-v5gmLtYyVbUoDL_5IDtU5ceX2LqXwdH_buwYDssw0ukV534CFcxrcPBFXLAGe7a5Uy7r0H3o9eOu84A4d3rr1cxoVypcOHHRAr50dODqDHVCWvAuF9rwOH-bfmgzpzAe9Ef3Q7ecmeBK7bhXrogiO4wKPaJQhb7Rj-vopCBgwstk2knTSDClBNFpAhe-RJ-hCCLJVSgiGorwDKr5LMdzcBRnFMNU6IzOJ0EqRUYC6mVIjZSoR8IGeBsUE1kKipu5Fq-JTSw8nhjgEwN8UgLfgNvtlnmhpvHX4rpBeruwBLkBzc1RJeX7tkx0IMJMgZjRi993XcK-ts2LRtsmVFeLNV7BrnxfTZeLa_sofQJnGcOD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4QH1EPPkAjitqDJ2Ohj6Xd5UYUxIiNUUi4NdvdaUKiQHgYf76720I0GhNvPexum9ltZ77OfN8AXDLllITaZ1umIrVJQBKb0ZTZ2rsi4UQTHk2ziTCK6GDAngpwveLCIKIpPsOqvjS5fDkWC_2rrKaib-pplvp6nRDPzdhaq5wBqbs5OTqwFYzw8hym67Ba7-75RZdx0arOqwW-_80LmbYqP77FxsG09_73aPuwmweSVjPb-QMo4KgIO1_kBYuwaco7xawEjdtmK2pYt4gTq7mYj7V6pcSpFWVF4DNLha5WR0HSjHk5VQv3R2_DD7XMIfTbrd5Nx867JthCue65zYPAtKNCh0iUvqsV5OoKFniUO6lI6kkScColJwooMO4KdClyLxBM-jwIfe4fwdpoPMJjsCSjIfoJV5jOJV4ieEq80Ekx1GKiDvHL4CytGItcUlx3tniNDbRwWKwNH2vDx7nhy3C1mjLJ9DT-GlzSll4NzI1chspyq-L8jZvFKhShOkVMw5PfZ13AVqf32I2799HDKWyr-7Cs7LYCa_PpAs9gQ7zPh7PpuTlWn8ACxso |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DAEN%3A+Deep+Autoencoder+Networks+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Su%2C+Yuanchao&rft.au=Li%2C+Jun&rft.au=Plaza%2C+Antonio&rft.au=Marinoni%2C+Andrea&rft.date=2019-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=7&rft.spage=4309&rft_id=info:doi/10.1109%2FTGRS.2018.2890633&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |