DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing

Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral signatures (endmembers) and their fractional abundances. In this paper, we develop a new technique for unsupervised unmixing which is based on a deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 57; H. 7; S. 4309 - 4321
Hauptverfasser: Su, Yuanchao, Li, Jun, Plaza, Antonio, Marinoni, Andrea, Gamba, Paolo, Chakravortty, Somdatta
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral signatures (endmembers) and their fractional abundances. In this paper, we develop a new technique for unsupervised unmixing which is based on a deep autoencoder network (DAEN). Our newly developed DAEN consists of two parts. The first part of the network adopts stacked autoencoders (SAEs) to learn spectral signatures, so as to generate a good initialization for the unmixing process. In the second part of the network, a variational autoencoder (VAE) is employed to perform blind source separation, aimed at obtaining the endmember signatures and abundance fractions simultaneously. By taking advantage from the SAEs, the robustness of the proposed approach is remarkable as it can unmix data sets with outliers and low signal-to-noise ratio. Moreover, the multihidden layers of the VAE ensure the required constraints (nonnegativity and sum-to-one) when estimating the abundances. The effectiveness of the proposed method is evaluated using both synthetic and real hyperspectral data. When compared with other unmixing methods, the proposed approach demonstrates very competitive performance.
AbstractList Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral signatures (endmembers) and their fractional abundances. In this paper, we develop a new technique for unsupervised unmixing which is based on a deep autoencoder network (DAEN). Our newly developed DAEN consists of two parts. The first part of the network adopts stacked autoencoders (SAEs) to learn spectral signatures, so as to generate a good initialization for the unmixing process. In the second part of the network, a variational autoencoder (VAE) is employed to perform blind source separation, aimed at obtaining the endmember signatures and abundance fractions simultaneously. By taking advantage from the SAEs, the robustness of the proposed approach is remarkable as it can unmix data sets with outliers and low signal-to-noise ratio. Moreover, the multihidden layers of the VAE ensure the required constraints (nonnegativity and sum-to-one) when estimating the abundances. The effectiveness of the proposed method is evaluated using both synthetic and real hyperspectral data. When compared with other unmixing methods, the proposed approach demonstrates very competitive performance.
Author Li, Jun
Su, Yuanchao
Gamba, Paolo
Marinoni, Andrea
Plaza, Antonio
Chakravortty, Somdatta
Author_xml – sequence: 1
  givenname: Yuanchao
  orcidid: 0000-0002-4776-0862
  surname: Su
  fullname: Su, Yuanchao
  email: suych3@mail2.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, Center of Integrated Geographic Information Analysis, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-1613-9448
  surname: Li
  fullname: Li, Jun
  email: lijun48@mail.sysu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Antonio
  orcidid: 0000-0002-9613-1659
  surname: Plaza
  fullname: Plaza, Antonio
  email: aplaza@unex.es
  organization: Department of Technology of Computers and Communications, Hyperspectral Computing Laboratory, Escuela Politécnica, University of Extremadura, Cáceres, Spain
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0001-6789-0915
  surname: Marinoni
  fullname: Marinoni, Andrea
  email: andrea.marinoni@unipv.it
  organization: Department of Physics and Technology, Earth Observation Group, Centre for Integrated Remote Sensing and Forecasting for Arctic Operations, UiT-The Arctic University of Norway, Tromsø, Norway
– sequence: 5
  givenname: Paolo
  orcidid: 0000-0002-9576-6337
  surname: Gamba
  fullname: Gamba, Paolo
  email: paolo.gamba@unipv.it
  organization: Department of Electrical, Computer and Biomedical Engineering, Telecommunications and Remote Sensing Laboratory, University of Pavia, Pavia, Italy
– sequence: 6
  givenname: Somdatta
  orcidid: 0000-0002-9121-4949
  surname: Chakravortty
  fullname: Chakravortty, Somdatta
  email: csomdatta@rediffmail.com
  organization: Department of Information Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
BookMark eNp9kMFOAjEQhhuDiYg-gPGyiefFTrvtttwIIJgQTBTOm9KdNYuwXdslytu7BOLBg6c5zP_9M_muSadyFRJyB7QPQPXjcvr61mcUVJ8pTSXnF6QLQqiYyiTpkC4FLeN2xa7IdQgbSiERkHbJYDycLAbRGLGOhvvGYWVdjj5aYPPl_EeICuej2aFGH2q0jTfbaFXtyu-yer8hl4XZBrw9zx5ZPU2Wo1k8f5k-j4bz2DLNm9hIqVMOEmmSY84BJE2FTAVThhZ2LdZraVSem0QooQ1YBIWGSatzbmTKDe-Rh1Nv7d3nHkOTbdzeV-3JjLFESaGZSttUekpZ70LwWGS2bExTuqp9utxmQLOjqOwoKjuKys6iWhL-kLUvd8Yf_mXuT0yJiL95JZliCfAfeMB0lw
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2021_3121799
crossref_primary_10_1109_JSTARS_2024_3352080
crossref_primary_10_1109_TGRS_2023_3297858
crossref_primary_10_1109_TGRS_2020_2982490
crossref_primary_10_3390_rs15020451
crossref_primary_10_1109_LGRS_2023_3345959
crossref_primary_10_3390_rs15153782
crossref_primary_10_1109_TGRS_2023_3267080
crossref_primary_10_1109_TGRS_2023_3237556
crossref_primary_10_3390_rs15030817
crossref_primary_10_1109_TGRS_2022_3196057
crossref_primary_10_1016_j_ecoinf_2022_101678
crossref_primary_10_1109_TGRS_2024_3422495
crossref_primary_10_1109_MGRS_2021_3071158
crossref_primary_10_1109_TGRS_2021_3094884
crossref_primary_10_1109_JSTARS_2025_3542228
crossref_primary_10_1109_TGRS_2022_3150970
crossref_primary_10_1109_ACCESS_2020_3019973
crossref_primary_10_1109_JSTARS_2024_3387750
crossref_primary_10_1109_TGRS_2020_2992743
crossref_primary_10_1109_JSTARS_2022_3175257
crossref_primary_10_1109_TGRS_2025_3540378
crossref_primary_10_1016_j_isprsjprs_2021_11_008
crossref_primary_10_1109_TGRS_2022_3169228
crossref_primary_10_1109_TGRS_2022_3217892
crossref_primary_10_1016_j_inffus_2025_103712
crossref_primary_10_1016_j_rse_2021_112407
crossref_primary_10_1117_1_JRS_17_046509
crossref_primary_10_1109_JSTARS_2024_3450856
crossref_primary_10_1109_TGRS_2024_3489615
crossref_primary_10_3390_rs16050766
crossref_primary_10_3390_rs13204133
crossref_primary_10_1109_JSTARS_2022_3140389
crossref_primary_10_3390_rs12182955
crossref_primary_10_1080_01431161_2022_2088258
crossref_primary_10_1109_TGRS_2024_3452323
crossref_primary_10_1016_j_eswa_2021_115929
crossref_primary_10_1109_JSTARS_2021_3069574
crossref_primary_10_1063_5_0193607
crossref_primary_10_1109_JSTARS_2022_3188565
crossref_primary_10_3390_rs15041053
crossref_primary_10_1109_TGRS_2021_3069476
crossref_primary_10_1109_JSTARS_2024_3523747
crossref_primary_10_1016_j_asoc_2024_112679
crossref_primary_10_1109_LGRS_2021_3075138
crossref_primary_10_1109_TGRS_2023_3347414
crossref_primary_10_1109_TGRS_2024_3381632
crossref_primary_10_1080_01431161_2020_1724346
crossref_primary_10_1007_s12524_020_01221_5
crossref_primary_10_3390_app122312158
crossref_primary_10_1109_LGRS_2022_3144327
crossref_primary_10_1109_JSTARS_2021_3080919
crossref_primary_10_1109_TGRS_2022_3168712
crossref_primary_10_1016_j_sigpro_2020_107949
crossref_primary_10_1016_j_jag_2024_104247
crossref_primary_10_1080_01431161_2024_2334772
crossref_primary_10_1109_TGRS_2023_3321839
crossref_primary_10_1109_TGRS_2024_3418583
crossref_primary_10_1109_JSTARS_2025_3576281
crossref_primary_10_1109_TGRS_2023_3310155
crossref_primary_10_1109_TGRS_2020_3001948
crossref_primary_10_1109_TGRS_2021_3074364
crossref_primary_10_1109_JSTARS_2021_3066508
crossref_primary_10_1109_JSTARS_2025_3594155
crossref_primary_10_1109_TNNLS_2021_3114203
crossref_primary_10_1109_TIP_2022_3233187
crossref_primary_10_1109_JSTARS_2025_3584232
crossref_primary_10_1016_j_knosys_2024_112087
crossref_primary_10_1109_JSTARS_2022_3140756
crossref_primary_10_1109_TGRS_2024_3403926
crossref_primary_10_1016_j_jag_2022_102906
crossref_primary_10_3390_rs15245694
crossref_primary_10_1016_j_postharvbio_2023_112376
crossref_primary_10_1109_JSTARS_2020_3039844
crossref_primary_10_3390_rs13163131
crossref_primary_10_1016_j_jag_2025_104405
crossref_primary_10_1109_TGRS_2025_3543566
crossref_primary_10_1109_JSTARS_2025_3549515
crossref_primary_10_1080_01431161_2020_1750733
crossref_primary_10_1080_01431161_2020_1849851
crossref_primary_10_1109_LGRS_2024_3514888
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_1016_j_compag_2023_108098
crossref_primary_10_3788_IRLA20250131
crossref_primary_10_1080_10106049_2022_2040601
crossref_primary_10_3390_rs17142517
crossref_primary_10_3390_sym16111414
crossref_primary_10_1109_LGRS_2020_3005999
crossref_primary_10_1109_TGRS_2021_3051204
crossref_primary_10_1109_TCI_2019_2948726
crossref_primary_10_3390_rs16173149
crossref_primary_10_1016_j_cosrev_2023_100584
crossref_primary_10_1016_j_chemolab_2023_104879
crossref_primary_10_1109_TGRS_2020_3041157
crossref_primary_10_1109_TGRS_2019_2956159
crossref_primary_10_1016_j_knosys_2019_104898
crossref_primary_10_1109_TGRS_2021_3067802
crossref_primary_10_1109_TGRS_2021_3098745
crossref_primary_10_1109_TGRS_2025_3576479
crossref_primary_10_1109_TGRS_2022_3151004
crossref_primary_10_1109_JSTARS_2020_3011257
crossref_primary_10_1016_j_ijepes_2024_110144
crossref_primary_10_3390_rs14205167
crossref_primary_10_1109_TGRS_2023_3284992
crossref_primary_10_3390_rs17050869
crossref_primary_10_1109_TGRS_2022_3146904
crossref_primary_10_1109_TGRS_2019_2916296
crossref_primary_10_1109_TGRS_2024_3353259
crossref_primary_10_1109_TGRS_2025_3566205
crossref_primary_10_3390_rs16224316
crossref_primary_10_1109_JSTARS_2021_3140154
crossref_primary_10_1109_TGRS_2024_3446029
crossref_primary_10_1109_ACCESS_2023_3314694
crossref_primary_10_1109_JSTARS_2021_3068727
crossref_primary_10_1109_TGRS_2024_3452148
crossref_primary_10_1016_j_rse_2024_114027
crossref_primary_10_1109_JSTARS_2023_3308037
crossref_primary_10_1080_01431161_2020_1854893
crossref_primary_10_1109_TGRS_2021_3081177
crossref_primary_10_1109_TNNLS_2021_3082289
crossref_primary_10_1109_TGRS_2021_3064958
crossref_primary_10_1109_JSTARS_2021_3126755
crossref_primary_10_1109_TGRS_2023_3307346
crossref_primary_10_1109_JSTARS_2020_3028104
crossref_primary_10_1109_TGRS_2024_3357589
crossref_primary_10_1007_s11600_024_01481_6
crossref_primary_10_1109_JSTARS_2022_3168333
crossref_primary_10_1109_TGRS_2022_3160827
crossref_primary_10_1080_22797254_2023_2268820
crossref_primary_10_1109_LGRS_2021_3127075
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1117_1_JRS_15_026513
crossref_primary_10_1109_JSTARS_2020_2966512
crossref_primary_10_1109_TGRS_2023_3292453
crossref_primary_10_1109_TCI_2024_3369410
crossref_primary_10_1109_TGRS_2024_3393570
crossref_primary_10_1109_JSTARS_2023_3323748
crossref_primary_10_1109_TGRS_2021_3133135
crossref_primary_10_1109_TGRS_2023_3272270
crossref_primary_10_1007_s10661_025_13728_w
crossref_primary_10_1109_TIP_2023_3266660
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1016_j_sigpro_2020_107672
crossref_primary_10_1109_TGRS_2024_3375598
crossref_primary_10_1109_TCI_2023_3321985
crossref_primary_10_1109_TGRS_2021_3131773
crossref_primary_10_1016_j_rse_2025_114657
crossref_primary_10_1109_TGRS_2023_3324018
crossref_primary_10_1016_j_nxener_2023_100046
crossref_primary_10_1007_s12145_025_01779_z
crossref_primary_10_1109_JSTSP_2021_3052361
crossref_primary_10_3390_rs16132430
crossref_primary_10_3390_rs11131566
crossref_primary_10_1109_TGRS_2022_3152782
crossref_primary_10_1109_JSEN_2024_3373477
crossref_primary_10_1109_TGRS_2025_3602210
crossref_primary_10_3390_s25082592
crossref_primary_10_1109_TGRS_2025_3581078
crossref_primary_10_1016_j_isprsjprs_2024_02_018
crossref_primary_10_1109_JSTARS_2020_3008939
crossref_primary_10_1109_TGRS_2022_3141387
crossref_primary_10_1016_j_rse_2022_113429
crossref_primary_10_1109_TGRS_2020_2977819
crossref_primary_10_1109_TGRS_2025_3537171
crossref_primary_10_1109_TGRS_2021_3088686
crossref_primary_10_1109_TGRS_2021_3117250
crossref_primary_10_1109_TGRS_2020_2968304
crossref_primary_10_1109_TGRS_2021_3136336
crossref_primary_10_1080_01431161_2025_2527372
crossref_primary_10_3390_rs17050800
crossref_primary_10_1109_MGRS_2020_3048443
crossref_primary_10_1109_TGRS_2021_3108540
crossref_primary_10_1109_TGRS_2024_3360714
crossref_primary_10_1109_JSTARS_2021_3062116
crossref_primary_10_1109_JSTARS_2021_3132164
crossref_primary_10_1109_TGRS_2025_3551119
crossref_primary_10_23919_JSEE_2022_000030
crossref_primary_10_1016_j_asoc_2020_106522
crossref_primary_10_1080_22797254_2023_2277213
crossref_primary_10_1021_acsami_4c17502
crossref_primary_10_1016_j_neunet_2021_11_014
crossref_primary_10_1109_JSTARS_2024_3437469
crossref_primary_10_1109_LGRS_2024_3402256
crossref_primary_10_1109_LGRS_2023_3295437
crossref_primary_10_1109_JSTARS_2019_2954865
crossref_primary_10_1109_TGRS_2019_2952091
crossref_primary_10_3390_rs14184433
crossref_primary_10_1109_TGRS_2025_3608084
crossref_primary_10_1038_s41524_020_0289_6
crossref_primary_10_3390_rs14081784
crossref_primary_10_1007_s12145_024_01273_y
crossref_primary_10_1109_JSTARS_2022_3214508
crossref_primary_10_1080_10106049_2024_2417919
crossref_primary_10_1109_TGRS_2023_3304484
crossref_primary_10_1016_j_neunet_2020_08_010
crossref_primary_10_1109_TGRS_2025_3544037
crossref_primary_10_1007_s11042_022_12628_2
crossref_primary_10_1109_JSTARS_2023_3241249
crossref_primary_10_1016_j_jag_2022_102981
crossref_primary_10_1016_j_engappai_2025_111784
crossref_primary_10_1016_j_ins_2022_09_066
crossref_primary_10_1016_j_inffus_2022_09_019
crossref_primary_10_3390_rs15112898
crossref_primary_10_1109_JSTARS_2023_3335907
Cites_doi 10.1017/CBO9780511524998
10.1109/TCI.2015.2455411
10.1007/s11263-018-1080-8
10.1109/TIP.2014.2363423
10.1109/TGRS.2010.2062190
10.1109/TIP.2018.2862629
10.1109/LGRS.2009.2036139
10.1109/WHISPERS.2009.5289072
10.1109/TGRS.2018.2862384
10.1109/79.974727
10.1016/j.sigpro.2009.05.005
10.1016/S0034-4257(98)00064-9
10.1109/TGRS.2006.888466
10.1109/MGRS.2013.2244672
10.1109/TGRS.2012.2213825
10.1109/IGARSS.2007.4423734
10.1109/ACCESS.2018.2818280
10.1117/12.366289
10.1109/TGRS.2017.2690445
10.1109/IGARSS.2017.8127062
10.1109/JSTARS.2014.2320576
10.1109/TGRS.2018.2868690
10.1109/LGRS.2013.2294181
10.1109/JSTARS.2017.2782324
10.1109/TSP.2009.2025797
10.1109/36.911111
10.1109/TGRS.2015.2417162
10.1109/TGRS.2018.2856929
10.1109/IGARSS.2017.8127020
10.1109/TGRS.2017.2729882
10.1109/IGARSS.2018.8519571
10.1109/JSTSP.2015.2416693
10.1109/TGRS.2017.2728104
10.1016/j.neunet.2012.05.003
10.1109/TGRS.2005.844293
10.1109/TGRS.2012.2219058
10.1109/TGRS.2011.2163941
10.1109/EAIT.2014.18
10.1109/TIP.2015.2468177
10.1109/TGRS.2011.2160950
10.1016/j.patcog.2009.04.008
10.1109/TGRS.2016.2580702
10.1109/JSTARS.2012.2194696
10.1109/LGRS.2018.2841400
10.1109/TGRS.2005.848692
10.1109/TGRS.2012.2230182
10.1109/MSP.2013.2279274
10.1109/TGRS.2018.2852066
10.1109/WHISPERS.2015.8075378
10.1109/IGARSS.2017.8126930
10.1109/TGRS.2016.2535298
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2018.2890633
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 4321
ExternalDocumentID 10_1109_TGRS_2018_2890633
8628241
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61771496
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2016A030313254
  funderid: 10.13039/501100003453
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB0502900
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-a6697316e04ded311607567528a0fcb5bb6a8dda45859a1ce18ea26c9d3a673a3
IEDL.DBID RIE
ISICitedReferencesCount 248
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473436000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:36:13 EDT 2025
Sat Nov 29 02:49:58 EST 2025
Tue Nov 18 21:15:20 EST 2025
Wed Aug 27 05:51:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a6697316e04ded311607567528a0fcb5bb6a8dda45859a1ce18ea26c9d3a673a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6789-0915
0000-0002-9613-1659
0000-0002-9576-6337
0000-0002-9121-4949
0000-0002-4776-0862
0000-0003-1613-9448
PQID 2248659287
PQPubID 85465
PageCount 13
ParticipantIDs proquest_journals_2248659287
crossref_citationtrail_10_1109_TGRS_2018_2890633
crossref_primary_10_1109_TGRS_2018_2890633
ieee_primary_8628241
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref17
ref16
ref19
ref18
cui (ref10) 2014; 11
kingma (ref45) 2014
ref48
ref47
ref42
ref41
ref44
ref43
ref49
nocedal (ref50) 2006
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
zeiler (ref51) 2012
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
li (ref20) 2015; 53
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
doersch (ref46) 2016
References_xml – ident: ref44
  doi: 10.1017/CBO9780511524998
– ident: ref27
  doi: 10.1109/TCI.2015.2455411
– ident: ref24
  doi: 10.1007/s11263-018-1080-8
– ident: ref53
  doi: 10.1109/TIP.2014.2363423
– ident: ref33
  doi: 10.1109/TGRS.2010.2062190
– ident: ref5
  doi: 10.1109/TIP.2018.2862629
– ident: ref35
  doi: 10.1109/LGRS.2009.2036139
– year: 2012
  ident: ref51
  publication-title: ADADELTA An Adaptive Learning Rate Method
– ident: ref26
  doi: 10.1109/WHISPERS.2009.5289072
– ident: ref4
  doi: 10.1109/TGRS.2018.2862384
– ident: ref6
  doi: 10.1109/79.974727
– start-page: 1
  year: 2014
  ident: ref45
  article-title: Auto-encoding variational Bayes
  publication-title: Proc Int Conf Learn Represent
– ident: ref32
  doi: 10.1016/j.sigpro.2009.05.005
– ident: ref54
  doi: 10.1016/S0034-4257(98)00064-9
– ident: ref18
  doi: 10.1109/TGRS.2006.888466
– ident: ref1
  doi: 10.1109/MGRS.2013.2244672
– ident: ref22
  doi: 10.1109/TGRS.2012.2213825
– ident: ref29
  doi: 10.1109/IGARSS.2007.4423734
– ident: ref42
  doi: 10.1109/ACCESS.2018.2818280
– ident: ref15
  doi: 10.1117/12.366289
– ident: ref2
  doi: 10.1109/TGRS.2017.2690445
– year: 2016
  ident: ref46
  publication-title: Tutorial on variational autoencoders
– ident: ref41
  doi: 10.1109/IGARSS.2017.8127062
– ident: ref8
  doi: 10.1109/JSTARS.2014.2320576
– ident: ref39
  doi: 10.1109/TGRS.2018.2868690
– volume: 11
  start-page: 1404
  year: 2014
  ident: ref10
  article-title: Nonlinear spectral mixture analysis by determining per-pixel endmember sets
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2013.2294181
– ident: ref52
  doi: 10.1109/JSTARS.2017.2782324
– ident: ref31
  doi: 10.1109/TSP.2009.2025797
– ident: ref48
  doi: 10.1109/36.911111
– volume: 53
  start-page: 5067
  year: 2015
  ident: ref20
  article-title: Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2015.2417162
– ident: ref40
  doi: 10.1109/TGRS.2018.2856929
– ident: ref13
  doi: 10.1109/IGARSS.2017.8127020
– ident: ref3
  doi: 10.1109/TGRS.2017.2729882
– ident: ref47
  doi: 10.1109/IGARSS.2018.8519571
– ident: ref9
  doi: 10.1109/JSTSP.2015.2416693
– ident: ref28
  doi: 10.1109/TGRS.2017.2728104
– ident: ref49
  doi: 10.1016/j.neunet.2012.05.003
– ident: ref16
  doi: 10.1109/TGRS.2005.844293
– ident: ref19
  doi: 10.1109/TGRS.2012.2219058
– ident: ref30
  doi: 10.1109/TGRS.2011.2163941
– ident: ref55
  doi: 10.1109/EAIT.2014.18
– ident: ref12
  doi: 10.1109/TIP.2015.2468177
– ident: ref36
  doi: 10.1109/TGRS.2011.2160950
– ident: ref34
  doi: 10.1016/j.patcog.2009.04.008
– ident: ref21
  doi: 10.1109/TGRS.2016.2580702
– ident: ref14
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref43
  doi: 10.1109/LGRS.2018.2841400
– ident: ref17
  doi: 10.1109/TGRS.2005.848692
– ident: ref23
  doi: 10.1109/TGRS.2012.2230182
– ident: ref7
  doi: 10.1109/MSP.2013.2279274
– ident: ref25
  doi: 10.1109/TGRS.2018.2852066
– ident: ref37
  doi: 10.1109/WHISPERS.2015.8075378
– ident: ref38
  doi: 10.1109/IGARSS.2017.8126930
– ident: ref11
  doi: 10.1109/TGRS.2016.2535298
– start-page: 33
  year: 2006
  ident: ref50
  publication-title: Numerical Optimization
SSID ssj0014517
Score 2.661959
Snippet Spectral unmixing is a technique for remotely sensed image interpretation that expresses each (possibly mixed) pixel as a combination of pure spectral...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4309
SubjectTerms Computers
Deep autoencoder network (DAEN)
deep learning
endmember identification
Estimation
Hyperspectral imaging
hyperspectral unmixing
Noise reduction
Outliers (statistics)
Remote sensing
Signal processing
Signal to noise ratio
Spectra
Spectral signatures
Training
variational autoencoder (VAE)
Title DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
URI https://ieeexplore.ieee.org/document/8628241
https://www.proquest.com/docview/2248659287
Volume 57
WOSCitedRecordID wos000473436000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qUdCDj1axWiUHT2LaPLbZ3d6KtvYURFvoLWx2J1DQtPQh_nx3N2lRFMFbDrtD-DbJzGTm-wbghmunJPU5uyqTmUsikrqcZdw13hWJIIbwaIdN0Dhmkwl_qsDdlguDiLb5DFvm0tby1Uyuza-yto6-WWBY6juU0oKrta0YkI5fUqMjVycRQVnB9D3eHj0-v5gmLtYyVbUoDL_5IDtU5ceX2LqXwdH_buwYDssw0ukV534CFcxrcPBFXLAGe7a5Uy7r0H3o9eOu84A4d3rr1cxoVypcOHHRAr50dODqDHVCWvAuF9rwOH-bfmgzpzAe9Ef3Q7ecmeBK7bhXrogiO4wKPaJQhb7Rj-vopCBgwstk2knTSDClBNFpAhe-RJ-hCCLJVSgiGorwDKr5LMdzcBRnFMNU6IzOJ0EqRUYC6mVIjZSoR8IGeBsUE1kKipu5Fq-JTSw8nhjgEwN8UgLfgNvtlnmhpvHX4rpBeruwBLkBzc1RJeX7tkx0IMJMgZjRi993XcK-ts2LRtsmVFeLNV7BrnxfTZeLa_sofQJnGcOD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4QH1EPPkAjitqDJ2Ohj6Xd5UYUxIiNUUi4NdvdaUKiQHgYf76720I0GhNvPexum9ltZ77OfN8AXDLllITaZ1umIrVJQBKb0ZTZ2rsi4UQTHk2ziTCK6GDAngpwveLCIKIpPsOqvjS5fDkWC_2rrKaib-pplvp6nRDPzdhaq5wBqbs5OTqwFYzw8hym67Ba7-75RZdx0arOqwW-_80LmbYqP77FxsG09_73aPuwmweSVjPb-QMo4KgIO1_kBYuwaco7xawEjdtmK2pYt4gTq7mYj7V6pcSpFWVF4DNLha5WR0HSjHk5VQv3R2_DD7XMIfTbrd5Nx867JthCue65zYPAtKNCh0iUvqsV5OoKFniUO6lI6kkScColJwooMO4KdClyLxBM-jwIfe4fwdpoPMJjsCSjIfoJV5jOJV4ieEq80Ekx1GKiDvHL4CytGItcUlx3tniNDbRwWKwNH2vDx7nhy3C1mjLJ9DT-GlzSll4NzI1chspyq-L8jZvFKhShOkVMw5PfZ13AVqf32I2799HDKWyr-7Cs7LYCa_PpAs9gQ7zPh7PpuTlWn8ACxso
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DAEN%3A+Deep+Autoencoder+Networks+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Su%2C+Yuanchao&rft.au=Li%2C+Jun&rft.au=Plaza%2C+Antonio&rft.au=Marinoni%2C+Andrea&rft.date=2019-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=7&rft.spage=4309&rft_id=info:doi/10.1109%2FTGRS.2018.2890633&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon