Coordinated Adaptation of Reference Vectors and Scalarizing Functions in Evolutionary Many-Objective Optimization

It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While adapting the reference vectors enhances the diversity of the achieved solutions, it often decelerates the convergence performance. To address th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 53; číslo 2; s. 763 - 775
Hlavní autoři: Liu, Qiqi, Jin, Yaochu, Heiderich, Martin, Rodemann, Tobias
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2216, 2168-2232
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While adapting the reference vectors enhances the diversity of the achieved solutions, it often decelerates the convergence performance. To address this dilemma, we propose to adapt the reference vectors and the scalarizing functions in a coordinated way. On the one hand, the adaptation of the reference vectors is based on a local angle threshold, making the adaptation better tuned to the distribution of the solutions. On the other hand, the weights of the scalarizing functions are adjusted according to the local angle thresholds and the reference vectors' age, which is calculated by counting the number of generations in which one reference vector has at least one solution assigned to it. Such coordinated adaptation enables the algorithm to achieve a better balance between diversity and convergence, regardless of the shape of the PFs. Experimental studies on MaF, DTLZ, and DPF test suites demonstrate the effectiveness of the proposed algorithm in solving problems with both regular and irregular PFs.
AbstractList It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While adapting the reference vectors enhances the diversity of the achieved solutions, it often decelerates the convergence performance. To address this dilemma, we propose to adapt the reference vectors and the scalarizing functions in a coordinated way. On the one hand, the adaptation of the reference vectors is based on a local angle threshold, making the adaptation better tuned to the distribution of the solutions. On the other hand, the weights of the scalarizing functions are adjusted according to the local angle thresholds and the reference vectors' age, which is calculated by counting the number of generations in which one reference vector has at least one solution assigned to it. Such coordinated adaptation enables the algorithm to achieve a better balance between diversity and convergence, regardless of the shape of the PFs. Experimental studies on MaF, DTLZ, and DPF test suites demonstrate the effectiveness of the proposed algorithm in solving problems with both regular and irregular PFs.
Author Liu, Qiqi
Jin, Yaochu
Rodemann, Tobias
Heiderich, Martin
Author_xml – sequence: 1
  givenname: Qiqi
  orcidid: 0000-0003-1587-5515
  surname: Liu
  fullname: Liu, Qiqi
  email: qiqi.liu@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
– sequence: 2
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@uni-bielefeld.de
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
– sequence: 3
  givenname: Martin
  surname: Heiderich
  fullname: Heiderich, Martin
  email: martin_heiderich@de.hrdeu.com
  organization: Department of Advanced Vehicle Technology Research, Honda R@D Europe (Deutschland) GmbH, Offenbach/Main, Germany
– sequence: 4
  givenname: Tobias
  orcidid: 0000-0001-6256-0060
  surname: Rodemann
  fullname: Rodemann, Tobias
  email: tobias.rodemann@honda-ri.de
  organization: Department of Optimization and Creativity, Honda Research Institute Europe, Offenbach/Main, Germany
BookMark eNp9kN9LwzAQx4NMUOf-APEl4HNncmmb9lGKU2Fj4K_XkiZXyZhJl3bC9tfbOtmDDz5dDr6fu8vngoycd0jIFWdTzll--_qyKKbAAKaCZ1JIdkLOgadZBCBgdHzz9IxM2nbFGOOQpYKl52RTeB-MdapDQ--MajrVWe-or-kz1hjQaaTvqDsfWqqcoS9arVWwe-s-6Gzr9JBuqXX0_suvt0Onwo4ulNtFy2rVg_YL6bLp7Kfd_4y-JKe1Wrc4-a1j8ja7fy0eo_ny4am4m0cactFFKlGmvxFqrBMjoTKQ6TgzFSQm1zrPK11ViYZYs9jIROlYm6zGCqs4EUmaoxiTm8PcJvjNFtuuXPltcP3KEmSacCmgXzQm8pDSwbdtwLrU9qCgC8quS87KQXE5KC4HxeWv4p7kf8gm2M_-8_8y1wfGIuIxn2cgc8nFN6xBjCI
CODEN ITSMFE
CitedBy_id crossref_primary_10_3390_sym16111484
crossref_primary_10_1016_j_eswa_2025_127227
crossref_primary_10_1007_s11227_024_06496_w
crossref_primary_10_1002_cpe_8196
crossref_primary_10_1016_j_asoc_2024_112272
crossref_primary_10_1016_j_eswa_2024_123949
crossref_primary_10_1007_s11227_025_07705_w
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1007_s11227_024_06553_4
crossref_primary_10_3390_e27050524
crossref_primary_10_1016_j_ins_2024_120200
crossref_primary_10_1016_j_swevo_2024_101566
crossref_primary_10_1016_j_eswa_2023_121244
crossref_primary_10_3390_math11010010
crossref_primary_10_1007_s40747_024_01353_y
crossref_primary_10_1016_j_swevo_2024_101585
crossref_primary_10_1093_jcde_qwad088
Cites_doi 10.1109/TEVC.2020.3008877
10.1162/evco_a_00269
10.1109/CEC.2019.8790214
10.1162/EVCO_a_00038
10.1007/BF03325101
10.1109/TCYB.2017.2762701
10.1007/978-3-319-15892-1_8
10.1109/TEVC.2020.2978158
10.1016/j.ins.2018.03.015
10.1109/TEVC.2016.2521175
10.1109/TEVC.2015.2420112
10.1109/TEVC.2013.2281535
10.2307/3001968
10.1109/TSMC.2020.3003926
10.1109/TEVC.2019.2926151
10.1109/TEVC.2018.2874465
10.1109/CEC.2018.8477815
10.1109/TEVC.2017.2725902
10.1162/evco.1999.7.3.205
10.1007/s40747-019-0113-4
10.1109/TEVC.2016.2587808
10.1109/TSMC.2019.2930737
10.1109/TEVC.2013.2281534
10.1109/TEVC.2017.2695579
10.1109/5.58325
10.1109/TCYB.2017.2737554
10.1002/9781118204221
10.1109/JAS.2021.1003817
10.1109/TEVC.2017.2707980
10.1109/TEVC.2007.892759
10.1162/EVCO_a_00109
10.1109/TEVC.2018.2866927
10.1109/TETCI.2017.2669104
10.5220/0004256600420049
10.1109/TEVC.2016.2519378
10.1109/TCYB.2018.2834466
10.1007/978-3-642-01020-0_35
10.1109/MCI.2017.2742868
10.1162/evco_a_00226
10.1016/j.asoc.2017.04.002
10.1109/TEVC.2018.2866854
10.1007/s40747-017-0039-7
10.1007/978-3-319-10762-2_53
10.1109/TCYB.2020.3020630
10.1109/TCYB.2020.2971638
10.1145/2792984
10.1109/TEVC.2005.851275
10.1109/TEVC.2017.2749619
10.1007/978-3-642-37140-0_25
10.1162/EVCO_a_00009
10.1109/TSMC.2018.2858843
10.1109/TEVC.2018.2791283
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2022.3187370
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2168-2232
EndPage 775
ExternalDocumentID 10_1109_TSMC_2022_3187370
9827971
Genre orig-research
GrantInformation_xml – fundername: Honda Research Institute Europe GmbH, Offenbach am Main, Germany
– fundername: Alexander von Humboldt Professorship for Artificial Intelligence endowed by the Federal Ministry of Education and Research, Germany
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-a5ad8632fef5d72bd28c48db25d9cc99bcbb5c24c04d75ac4cd8febeb453569e3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000826059600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Sun Nov 30 03:49:54 EST 2025
Sat Nov 29 03:45:44 EST 2025
Tue Nov 18 22:34:46 EST 2025
Wed Aug 27 02:14:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a5ad8632fef5d72bd28c48db25d9cc99bcbb5c24c04d75ac4cd8febeb453569e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1587-5515
0000-0003-1100-0631
0000-0001-6256-0060
PQID 2765173229
PQPubID 75739
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TSMC_2022_3187370
proquest_journals_2765173229
crossref_primary_10_1109_TSMC_2022_3187370
ieee_primary_9827971
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Deb (ref40) 1996; 26
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
Agrawal (ref39) 1995; 9
ref30
ref33
ref32
ref2
ref1
ref38
ref24
ref23
Zhen (ref50) 2018
ref26
Fritzke (ref27)
ref25
ref20
ref22
ref21
ref28
ref29
References_xml – ident: ref13
  doi: 10.1109/TEVC.2020.3008877
– volume: 26
  start-page: 30
  issue: 4
  year: 1996
  ident: ref40
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inf.
– ident: ref19
  doi: 10.1162/evco_a_00269
– ident: ref21
  doi: 10.1109/CEC.2019.8790214
– ident: ref33
  doi: 10.1162/EVCO_a_00038
– ident: ref2
  doi: 10.1007/BF03325101
– start-page: 625
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref27
  article-title: A growing neural gas network learns topologies
– ident: ref41
  doi: 10.1109/TCYB.2017.2762701
– ident: ref53
  doi: 10.1007/978-3-319-15892-1_8
– ident: ref15
  doi: 10.1109/TEVC.2020.2978158
– ident: ref34
  doi: 10.1016/j.ins.2018.03.015
– ident: ref44
  doi: 10.1109/TEVC.2016.2521175
– ident: ref11
  doi: 10.1109/TEVC.2015.2420112
– ident: ref5
  doi: 10.1109/TEVC.2013.2281535
– ident: ref55
  doi: 10.2307/3001968
– ident: ref56
  doi: 10.1109/TSMC.2020.3003926
– ident: ref24
  doi: 10.1109/TEVC.2019.2926151
– ident: ref31
  doi: 10.1109/TEVC.2018.2874465
– ident: ref45
  doi: 10.1109/CEC.2018.8477815
– ident: ref17
  doi: 10.1109/TEVC.2017.2725902
– ident: ref49
  doi: 10.1162/evco.1999.7.3.205
– ident: ref1
  doi: 10.1007/s40747-019-0113-4
– ident: ref46
  doi: 10.1109/TEVC.2016.2587808
– ident: ref7
  doi: 10.1109/TSMC.2019.2930737
– ident: ref22
  doi: 10.1109/TEVC.2013.2281534
– ident: ref23
  doi: 10.1109/TEVC.2017.2695579
– ident: ref26
  doi: 10.1109/5.58325
– ident: ref35
  doi: 10.1109/TCYB.2017.2737554
– ident: ref38
  doi: 10.1002/9781118204221
– ident: ref16
  doi: 10.1109/JAS.2021.1003817
– ident: ref42
  doi: 10.1109/TEVC.2017.2707980
– ident: ref4
  doi: 10.1109/TEVC.2007.892759
– ident: ref18
  doi: 10.1162/EVCO_a_00109
– ident: ref30
  doi: 10.1109/TEVC.2018.2866927
– ident: ref14
  doi: 10.1109/TETCI.2017.2669104
– ident: ref37
  doi: 10.5220/0004256600420049
– ident: ref6
  doi: 10.1109/TEVC.2016.2519378
– ident: ref29
  doi: 10.1109/TCYB.2018.2834466
– ident: ref43
  doi: 10.1007/978-3-642-01020-0_35
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: ref39
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– ident: ref51
  doi: 10.1109/MCI.2017.2742868
– ident: ref54
  doi: 10.1162/evco_a_00226
– ident: ref32
  doi: 10.1016/j.asoc.2017.04.002
– year: 2018
  ident: ref50
  article-title: Multiobjective test problems with degenerate Pareto fronts
  publication-title: arXiv:1806.02706
– ident: ref12
  doi: 10.1109/TEVC.2018.2866854
– ident: ref48
  doi: 10.1007/s40747-017-0039-7
– ident: ref28
  doi: 10.1007/978-3-319-10762-2_53
– ident: ref25
  doi: 10.1109/TCYB.2020.3020630
– ident: ref47
  doi: 10.1109/TCYB.2020.2971638
– ident: ref3
  doi: 10.1145/2792984
– ident: ref52
  doi: 10.1109/TEVC.2005.851275
– ident: ref20
  doi: 10.1109/TEVC.2017.2749619
– ident: ref36
  doi: 10.1007/978-3-642-37140-0_25
– ident: ref9
  doi: 10.1162/EVCO_a_00009
– ident: ref10
  doi: 10.1109/TSMC.2018.2858843
– ident: ref8
  doi: 10.1109/TEVC.2018.2791283
SSID ssj0001286306
Score 2.3291392
Snippet It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 763
SubjectTerms Adaptation
Algorithms
Convergence
Deceleration
Evolutionary many-objective optimization
irregular Pareto fronts (PFs)
Mathematical analysis
Multiple objective analysis
Optimization
Problem solving
reference vector
scalarizing function
Shape
Sociology
Solids
Stars
Statistics
Title Coordinated Adaptation of Reference Vectors and Scalarizing Functions in Evolutionary Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/9827971
https://www.proquest.com/docview/2765173229
Volume 53
WOSCitedRecordID wos000826059600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5G8aAH3dUVx3WXHDyJrd3ppJMcZXDYw86MoLt4a_JqULRHxwfor99KOg4DK4KXpg9J0-Sr1COV-gpgnxeOSep95oXPM2Yql2EIlmcmbwptDJfSRKR_i_FYXl6qsx4czmthvPfx8pk_Cq8xl--m9ikclR0rSYUKBeNLQlRdrdbCeYqsythKkxYVgo_PlMQscnV8cT4aYDBIKcaoUpShNfGCGYp9Vf5TxtHCDDc-929fYD15kuSkg_4r9Hy7CWsL_IKbsBpcyY6JeQvuB1MMNK9adC4dOXH6rkvCk2lD5myz5G88xH8gunXkHOHDSPoVP0WGaP6ihJKrlpw-J3nVsxcyQm2STcx1pzjJBFXQbart_AZ_hqcXg19ZariQWbT6j5nm2uEq0sY33AlqHJWWSWcod8papYxF9CxlNmdOcG2ZdbJBKTCMl7xSvtyG5Xba-h0gVWml5uiLOeaZYJU2jeMmR_cvUBKasg_52_rXNrGRh6YYN3WMSnJVB8jqAFmdIOvDwXzKXUfF8dHgrYDRfGCCpw97byDXabM-1FRUvBCo2dTu-7O-w2roMt9d1t6D5cfZk_8BK_YZIZz9jHL4D9ZX3Sg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CWkh66CNp6LZpq0NPJW5sWbKkY1iypHR3U8gm5Gb0MiS03nRf0P76jmRlWUgJ9GJ8kIzRN5qHRjMfwCdeOCap95kXPs-YqVyGIViembwptDFcShORHorxWF5fq-9bcLSuhfHex8tn_kt4jbl8N7XLcFR2rCQVKhSMPwnMWalaa-NERVZlJNOkRYXw4zOlMYtcHU8uRn0MBynFKFWKMpATbxiiyKzyQB1HGzN48X9_9xKeJ1-SnHTgv4It3-7Bs40Og3uwG5zJrhfzPvzqTzHUvGnRvXTkxOm7Lg1Ppg1Z95slV_EYf05068gFAoix9B_8FBmgAYwySm5acrpKEqtnv8kI9Ul2bm471UnOUQn9TNWdr-FycDrpn2WJciGzaPcXmeba4SrSxjfcCWoclZZJZyh3ylqljEX8LGU2Z05wbZl1skE5MIyXvFK-PIDtdtr6N0Cq0krN0RtzzDPBKm0ax02ODmBoSmjKHuT361_b1I880GL8qGNckqs6QFYHyOoEWQ8-r6fcdc04Hhu8HzBaD0zw9ODwHuQ6bdd5TUXFC4G6Tb3996yPsHM2GQ3r4dfxt3ewGzjnu6vbh7C9mC39e3hqVwjn7EOUyb-AXOBx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinated+Adaptation+of+Reference+Vectors+and+Scalarizing+Functions+in+Evolutionary+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Liu%2C+Qiqi&rft.au=Jin%2C+Yaochu&rft.au=Heiderich%2C+Martin&rft.au=Rodemann%2C+Tobias&rft.date=2023-02-01&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=53&rft.issue=2&rft.spage=763&rft.epage=775&rft_id=info:doi/10.1109%2FTSMC.2022.3187370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMC_2022_3187370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon