Coordinated Adaptation of Reference Vectors and Scalarizing Functions in Evolutionary Many-Objective Optimization
It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While adapting the reference vectors enhances the diversity of the achieved solutions, it often decelerates the convergence performance. To address th...
Uloženo v:
| Vydáno v: | IEEE transactions on systems, man, and cybernetics. Systems Ročník 53; číslo 2; s. 763 - 775 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2216, 2168-2232 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While adapting the reference vectors enhances the diversity of the achieved solutions, it often decelerates the convergence performance. To address this dilemma, we propose to adapt the reference vectors and the scalarizing functions in a coordinated way. On the one hand, the adaptation of the reference vectors is based on a local angle threshold, making the adaptation better tuned to the distribution of the solutions. On the other hand, the weights of the scalarizing functions are adjusted according to the local angle thresholds and the reference vectors' age, which is calculated by counting the number of generations in which one reference vector has at least one solution assigned to it. Such coordinated adaptation enables the algorithm to achieve a better balance between diversity and convergence, regardless of the shape of the PFs. Experimental studies on MaF, DTLZ, and DPF test suites demonstrate the effectiveness of the proposed algorithm in solving problems with both regular and irregular PFs. |
|---|---|
| AbstractList | It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While adapting the reference vectors enhances the diversity of the achieved solutions, it often decelerates the convergence performance. To address this dilemma, we propose to adapt the reference vectors and the scalarizing functions in a coordinated way. On the one hand, the adaptation of the reference vectors is based on a local angle threshold, making the adaptation better tuned to the distribution of the solutions. On the other hand, the weights of the scalarizing functions are adjusted according to the local angle thresholds and the reference vectors' age, which is calculated by counting the number of generations in which one reference vector has at least one solution assigned to it. Such coordinated adaptation enables the algorithm to achieve a better balance between diversity and convergence, regardless of the shape of the PFs. Experimental studies on MaF, DTLZ, and DPF test suites demonstrate the effectiveness of the proposed algorithm in solving problems with both regular and irregular PFs. |
| Author | Liu, Qiqi Jin, Yaochu Rodemann, Tobias Heiderich, Martin |
| Author_xml | – sequence: 1 givenname: Qiqi orcidid: 0000-0003-1587-5515 surname: Liu fullname: Liu, Qiqi email: qiqi.liu@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Guildford, U.K – sequence: 2 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@uni-bielefeld.de organization: Department of Computer Science, University of Surrey, Guildford, U.K – sequence: 3 givenname: Martin surname: Heiderich fullname: Heiderich, Martin email: martin_heiderich@de.hrdeu.com organization: Department of Advanced Vehicle Technology Research, Honda R@D Europe (Deutschland) GmbH, Offenbach/Main, Germany – sequence: 4 givenname: Tobias orcidid: 0000-0001-6256-0060 surname: Rodemann fullname: Rodemann, Tobias email: tobias.rodemann@honda-ri.de organization: Department of Optimization and Creativity, Honda Research Institute Europe, Offenbach/Main, Germany |
| BookMark | eNp9kN9LwzAQx4NMUOf-APEl4HNncmmb9lGKU2Fj4K_XkiZXyZhJl3bC9tfbOtmDDz5dDr6fu8vngoycd0jIFWdTzll--_qyKKbAAKaCZ1JIdkLOgadZBCBgdHzz9IxM2nbFGOOQpYKl52RTeB-MdapDQ--MajrVWe-or-kz1hjQaaTvqDsfWqqcoS9arVWwe-s-6Gzr9JBuqXX0_suvt0Onwo4ulNtFy2rVg_YL6bLp7Kfd_4y-JKe1Wrc4-a1j8ja7fy0eo_ny4am4m0cactFFKlGmvxFqrBMjoTKQ6TgzFSQm1zrPK11ViYZYs9jIROlYm6zGCqs4EUmaoxiTm8PcJvjNFtuuXPltcP3KEmSacCmgXzQm8pDSwbdtwLrU9qCgC8quS87KQXE5KC4HxeWv4p7kf8gm2M_-8_8y1wfGIuIxn2cgc8nFN6xBjCI |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_3390_sym16111484 crossref_primary_10_1016_j_eswa_2025_127227 crossref_primary_10_1007_s11227_024_06496_w crossref_primary_10_1002_cpe_8196 crossref_primary_10_1016_j_asoc_2024_112272 crossref_primary_10_1016_j_eswa_2024_123949 crossref_primary_10_1007_s11227_025_07705_w crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1007_s11227_024_06553_4 crossref_primary_10_3390_e27050524 crossref_primary_10_1016_j_ins_2024_120200 crossref_primary_10_1016_j_swevo_2024_101566 crossref_primary_10_1016_j_eswa_2023_121244 crossref_primary_10_3390_math11010010 crossref_primary_10_1007_s40747_024_01353_y crossref_primary_10_1016_j_swevo_2024_101585 crossref_primary_10_1093_jcde_qwad088 |
| Cites_doi | 10.1109/TEVC.2020.3008877 10.1162/evco_a_00269 10.1109/CEC.2019.8790214 10.1162/EVCO_a_00038 10.1007/BF03325101 10.1109/TCYB.2017.2762701 10.1007/978-3-319-15892-1_8 10.1109/TEVC.2020.2978158 10.1016/j.ins.2018.03.015 10.1109/TEVC.2016.2521175 10.1109/TEVC.2015.2420112 10.1109/TEVC.2013.2281535 10.2307/3001968 10.1109/TSMC.2020.3003926 10.1109/TEVC.2019.2926151 10.1109/TEVC.2018.2874465 10.1109/CEC.2018.8477815 10.1109/TEVC.2017.2725902 10.1162/evco.1999.7.3.205 10.1007/s40747-019-0113-4 10.1109/TEVC.2016.2587808 10.1109/TSMC.2019.2930737 10.1109/TEVC.2013.2281534 10.1109/TEVC.2017.2695579 10.1109/5.58325 10.1109/TCYB.2017.2737554 10.1002/9781118204221 10.1109/JAS.2021.1003817 10.1109/TEVC.2017.2707980 10.1109/TEVC.2007.892759 10.1162/EVCO_a_00109 10.1109/TEVC.2018.2866927 10.1109/TETCI.2017.2669104 10.5220/0004256600420049 10.1109/TEVC.2016.2519378 10.1109/TCYB.2018.2834466 10.1007/978-3-642-01020-0_35 10.1109/MCI.2017.2742868 10.1162/evco_a_00226 10.1016/j.asoc.2017.04.002 10.1109/TEVC.2018.2866854 10.1007/s40747-017-0039-7 10.1007/978-3-319-10762-2_53 10.1109/TCYB.2020.3020630 10.1109/TCYB.2020.2971638 10.1145/2792984 10.1109/TEVC.2005.851275 10.1109/TEVC.2017.2749619 10.1007/978-3-642-37140-0_25 10.1162/EVCO_a_00009 10.1109/TSMC.2018.2858843 10.1109/TEVC.2018.2791283 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2022.3187370 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 2168-2232 |
| EndPage | 775 |
| ExternalDocumentID | 10_1109_TSMC_2022_3187370 9827971 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Honda Research Institute Europe GmbH, Offenbach am Main, Germany – fundername: Alexander von Humboldt Professorship for Artificial Intelligence endowed by the Federal Ministry of Education and Research, Germany |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-a5ad8632fef5d72bd28c48db25d9cc99bcbb5c24c04d75ac4cd8febeb453569e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000826059600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Sun Nov 30 03:49:54 EST 2025 Sat Nov 29 03:45:44 EST 2025 Tue Nov 18 22:34:46 EST 2025 Wed Aug 27 02:14:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-a5ad8632fef5d72bd28c48db25d9cc99bcbb5c24c04d75ac4cd8febeb453569e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1587-5515 0000-0003-1100-0631 0000-0001-6256-0060 |
| PQID | 2765173229 |
| PQPubID | 75739 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSMC_2022_3187370 proquest_journals_2765173229 crossref_primary_10_1109_TSMC_2022_3187370 ieee_primary_9827971 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Deb (ref40) 1996; 26 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 Agrawal (ref39) 1995; 9 ref30 ref33 ref32 ref2 ref1 ref38 ref24 ref23 Zhen (ref50) 2018 ref26 Fritzke (ref27) ref25 ref20 ref22 ref21 ref28 ref29 |
| References_xml | – ident: ref13 doi: 10.1109/TEVC.2020.3008877 – volume: 26 start-page: 30 issue: 4 year: 1996 ident: ref40 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Comput. Sci. Inf. – ident: ref19 doi: 10.1162/evco_a_00269 – ident: ref21 doi: 10.1109/CEC.2019.8790214 – ident: ref33 doi: 10.1162/EVCO_a_00038 – ident: ref2 doi: 10.1007/BF03325101 – start-page: 625 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref27 article-title: A growing neural gas network learns topologies – ident: ref41 doi: 10.1109/TCYB.2017.2762701 – ident: ref53 doi: 10.1007/978-3-319-15892-1_8 – ident: ref15 doi: 10.1109/TEVC.2020.2978158 – ident: ref34 doi: 10.1016/j.ins.2018.03.015 – ident: ref44 doi: 10.1109/TEVC.2016.2521175 – ident: ref11 doi: 10.1109/TEVC.2015.2420112 – ident: ref5 doi: 10.1109/TEVC.2013.2281535 – ident: ref55 doi: 10.2307/3001968 – ident: ref56 doi: 10.1109/TSMC.2020.3003926 – ident: ref24 doi: 10.1109/TEVC.2019.2926151 – ident: ref31 doi: 10.1109/TEVC.2018.2874465 – ident: ref45 doi: 10.1109/CEC.2018.8477815 – ident: ref17 doi: 10.1109/TEVC.2017.2725902 – ident: ref49 doi: 10.1162/evco.1999.7.3.205 – ident: ref1 doi: 10.1007/s40747-019-0113-4 – ident: ref46 doi: 10.1109/TEVC.2016.2587808 – ident: ref7 doi: 10.1109/TSMC.2019.2930737 – ident: ref22 doi: 10.1109/TEVC.2013.2281534 – ident: ref23 doi: 10.1109/TEVC.2017.2695579 – ident: ref26 doi: 10.1109/5.58325 – ident: ref35 doi: 10.1109/TCYB.2017.2737554 – ident: ref38 doi: 10.1002/9781118204221 – ident: ref16 doi: 10.1109/JAS.2021.1003817 – ident: ref42 doi: 10.1109/TEVC.2017.2707980 – ident: ref4 doi: 10.1109/TEVC.2007.892759 – ident: ref18 doi: 10.1162/EVCO_a_00109 – ident: ref30 doi: 10.1109/TEVC.2018.2866927 – ident: ref14 doi: 10.1109/TETCI.2017.2669104 – ident: ref37 doi: 10.5220/0004256600420049 – ident: ref6 doi: 10.1109/TEVC.2016.2519378 – ident: ref29 doi: 10.1109/TCYB.2018.2834466 – ident: ref43 doi: 10.1007/978-3-642-01020-0_35 – volume: 9 start-page: 115 issue: 2 year: 1995 ident: ref39 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – ident: ref51 doi: 10.1109/MCI.2017.2742868 – ident: ref54 doi: 10.1162/evco_a_00226 – ident: ref32 doi: 10.1016/j.asoc.2017.04.002 – year: 2018 ident: ref50 article-title: Multiobjective test problems with degenerate Pareto fronts publication-title: arXiv:1806.02706 – ident: ref12 doi: 10.1109/TEVC.2018.2866854 – ident: ref48 doi: 10.1007/s40747-017-0039-7 – ident: ref28 doi: 10.1007/978-3-319-10762-2_53 – ident: ref25 doi: 10.1109/TCYB.2020.3020630 – ident: ref47 doi: 10.1109/TCYB.2020.2971638 – ident: ref3 doi: 10.1145/2792984 – ident: ref52 doi: 10.1109/TEVC.2005.851275 – ident: ref20 doi: 10.1109/TEVC.2017.2749619 – ident: ref36 doi: 10.1007/978-3-642-37140-0_25 – ident: ref9 doi: 10.1162/EVCO_a_00009 – ident: ref10 doi: 10.1109/TSMC.2018.2858843 – ident: ref8 doi: 10.1109/TEVC.2018.2791283 |
| SSID | ssj0001286306 |
| Score | 2.3291392 |
| Snippet | It is highly desirable to adapt the reference vectors to unknown Pareto fronts (PFs) in decomposition-based evolutionary many-objective optimization. While... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 763 |
| SubjectTerms | Adaptation Algorithms Convergence Deceleration Evolutionary many-objective optimization irregular Pareto fronts (PFs) Mathematical analysis Multiple objective analysis Optimization Problem solving reference vector scalarizing function Shape Sociology Solids Stars Statistics |
| Title | Coordinated Adaptation of Reference Vectors and Scalarizing Functions in Evolutionary Many-Objective Optimization |
| URI | https://ieeexplore.ieee.org/document/9827971 https://www.proquest.com/docview/2765173229 |
| Volume | 53 |
| WOSCitedRecordID | wos000826059600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5G8aAH3dUVx3WXHDyJrd3ppJMcZXDYw86MoLt4a_JqULRHxwfor99KOg4DK4KXpg9J0-Sr1COV-gpgnxeOSep95oXPM2Yql2EIlmcmbwptDJfSRKR_i_FYXl6qsx4czmthvPfx8pk_Cq8xl--m9ikclR0rSYUKBeNLQlRdrdbCeYqsythKkxYVgo_PlMQscnV8cT4aYDBIKcaoUpShNfGCGYp9Vf5TxtHCDDc-929fYD15kuSkg_4r9Hy7CWsL_IKbsBpcyY6JeQvuB1MMNK9adC4dOXH6rkvCk2lD5myz5G88xH8gunXkHOHDSPoVP0WGaP6ihJKrlpw-J3nVsxcyQm2STcx1pzjJBFXQbart_AZ_hqcXg19ZariQWbT6j5nm2uEq0sY33AlqHJWWSWcod8papYxF9CxlNmdOcG2ZdbJBKTCMl7xSvtyG5Xba-h0gVWml5uiLOeaZYJU2jeMmR_cvUBKasg_52_rXNrGRh6YYN3WMSnJVB8jqAFmdIOvDwXzKXUfF8dHgrYDRfGCCpw97byDXabM-1FRUvBCo2dTu-7O-w2roMt9d1t6D5cfZk_8BK_YZIZz9jHL4D9ZX3Sg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CWkh66CNp6LZpq0NPJW5sWbKkY1iypHR3U8gm5Gb0MiS03nRf0P76jmRlWUgJ9GJ8kIzRN5qHRjMfwCdeOCap95kXPs-YqVyGIViembwptDFcShORHorxWF5fq-9bcLSuhfHex8tn_kt4jbl8N7XLcFR2rCQVKhSMPwnMWalaa-NERVZlJNOkRYXw4zOlMYtcHU8uRn0MBynFKFWKMpATbxiiyKzyQB1HGzN48X9_9xKeJ1-SnHTgv4It3-7Bs40Og3uwG5zJrhfzPvzqTzHUvGnRvXTkxOm7Lg1Ppg1Z95slV_EYf05068gFAoix9B_8FBmgAYwySm5acrpKEqtnv8kI9Ul2bm471UnOUQn9TNWdr-FycDrpn2WJciGzaPcXmeba4SrSxjfcCWoclZZJZyh3ylqljEX8LGU2Z05wbZl1skE5MIyXvFK-PIDtdtr6N0Cq0krN0RtzzDPBKm0ax02ODmBoSmjKHuT361_b1I880GL8qGNckqs6QFYHyOoEWQ8-r6fcdc04Hhu8HzBaD0zw9ODwHuQ6bdd5TUXFC4G6Tb3996yPsHM2GQ3r4dfxt3ewGzjnu6vbh7C9mC39e3hqVwjn7EOUyb-AXOBx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordinated+Adaptation+of+Reference+Vectors+and+Scalarizing+Functions+in+Evolutionary+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Liu%2C+Qiqi&rft.au=Jin%2C+Yaochu&rft.au=Heiderich%2C+Martin&rft.au=Rodemann%2C+Tobias&rft.date=2023-02-01&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=53&rft.issue=2&rft.spage=763&rft.epage=775&rft_id=info:doi/10.1109%2FTSMC.2022.3187370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMC_2022_3187370 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |