Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data

A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 20; číslo 12; s. 4450 - 4465
Hlavní autoři: Chen, Jie, Wu, ZhongCheng, Zhang, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction. Unfortunately, with existing research methods, the size of the sliding time window is too large, the feature extraction is relatively subjective, and class imbalances occur, which leads to low identification accuracy, long prediction times, and poor applicability. We first propose using a three-layer L 1 /L 2 -nonnegativity-constrained autoencoder to adaptively search the optimal size of the sliding window and then construct a deep L 1 /L 2 -nonnegativity-constrained autoencoder network to automatically extract the hidden features of the driving behaviors. Finally, we build a new L 1 /L 2 -nonnegativityconstrained focal loss classifier to predict the driving behaviors under different safety risk levels. The results from the public 100-Car naturalistic driving study dataset indicate that our method can effectively find the optimal window size, reduce the data volume and reconstruction error, and extract more distinctive features. Furthermore, this method effectively curbs the class imbalance, improves the driving safety risk prediction performance, reduces overfitting, shortens the prediction time, and improves the timeliness.
AbstractList A large number of studies have shown that most vehicle collisions are caused by drivers’ abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers’ driving safety risks in real time. In this paper, we propose a novel cost-sensitive [Formula Omitted]-nonnegativity-constrained deep autoencoder network for driving safety risk prediction. Unfortunately, with existing research methods, the size of the sliding time window is too large, the feature extraction is relatively subjective, and class imbalances occur, which leads to low identification accuracy, long prediction times, and poor applicability. We first propose using a three-layer [Formula Omitted]-nonnegativity-constrained autoencoder to adaptively search the optimal size of the sliding window and then construct a deep [Formula Omitted]-nonnegativity-constrained autoencoder network to automatically extract the hidden features of the driving behaviors. Finally, we build a new [Formula Omitted]-nonnegativity-constrained focal loss classifier to predict the driving behaviors under different safety risk levels. The results from the public 100-Car naturalistic driving study dataset indicate that our method can effectively find the optimal window size, reduce the data volume and reconstruction error, and extract more distinctive features. Furthermore, this method effectively curbs the class imbalance, improves the driving safety risk prediction performance, reduces overfitting, shortens the prediction time, and improves the timeliness.
A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction. Unfortunately, with existing research methods, the size of the sliding time window is too large, the feature extraction is relatively subjective, and class imbalances occur, which leads to low identification accuracy, long prediction times, and poor applicability. We first propose using a three-layer L 1 /L 2 -nonnegativity-constrained autoencoder to adaptively search the optimal size of the sliding window and then construct a deep L 1 /L 2 -nonnegativity-constrained autoencoder network to automatically extract the hidden features of the driving behaviors. Finally, we build a new L 1 /L 2 -nonnegativityconstrained focal loss classifier to predict the driving behaviors under different safety risk levels. The results from the public 100-Car naturalistic driving study dataset indicate that our method can effectively find the optimal window size, reduce the data volume and reconstruction error, and extract more distinctive features. Furthermore, this method effectively curbs the class imbalance, improves the driving safety risk prediction performance, reduces overfitting, shortens the prediction time, and improves the timeliness.
Author Chen, Jie
Wu, ZhongCheng
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-9605-4331
  surname: Chen
  fullname: Chen, Jie
  email: cj2016@mail.ustc.edu.cn
  organization: Chinese Academy of Sciences, Hefei Institute of Physical Science, Hefei, China
– sequence: 2
  givenname: ZhongCheng
  surname: Wu
  fullname: Wu, ZhongCheng
  email: zcwu@iim.ac.cn
  organization: Chinese Academy of Sciences, Hefei Institute of Physical Science, Hefei, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0003-1321-6022
  surname: Zhang
  fullname: Zhang, Jun
  email: zhang_jun@hmfl.ac.cn
  organization: Chinese Academy of Sciences, Hefei Institute of Physical Science, Hefei, China
BookMark eNp9kM1OGzEUha0KpELKA1RsLLGe1PaMx_YSwk8jIYpIUJejO841NQ022A5SHqLv3BkFumDR1fU99jnH-g7JXogBCfnK2ZRzZr4t58vFVDCup0LrVmj2iRxwKXXFGG_3xrNoKsMk-0wOc34c1EZyfkD-nCf_6sMDXYDDsqV3Pv-mtwlX3hYfA73P4-Us5lItMGRf_CvSn778ojcxBHyAQfBlW81iyCWBD7iip5sSMdi4wpTpGeRBGpLmTz2sIdhhu4GySbD2uXhL3z9wDgW-kH0H64xHb3NC7i8vlrPv1fWPq_ns9LqywtSlAils7YThrUTd2laZGiW2ulHCtVpb6ZTRPSoFxvFeNL10rGcGVCNQORD1hJzscp9TfNlgLt1j3KQwVHairhkTDR8yJ4TvXtkUc07ouufknyBtO866kXo3Uu9G6t0b9cGjPnisLzCiHOms_-s83jk9Iv5r0i1Xipn6L9a9k-w
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2021_3086411
crossref_primary_10_1109_TITS_2022_3166275
crossref_primary_10_1007_s11831_023_10062_7
crossref_primary_10_1016_j_aap_2022_106568
crossref_primary_10_1016_j_aap_2021_106122
crossref_primary_10_1177_09544070241265633
crossref_primary_10_3390_app122211688
crossref_primary_10_1109_ACCESS_2019_2932434
crossref_primary_10_1016_j_eswa_2024_123619
crossref_primary_10_1016_j_aap_2023_107155
crossref_primary_10_1016_j_knosys_2021_107288
crossref_primary_10_1016_j_eswa_2021_115041
crossref_primary_10_1109_TITS_2021_3055545
crossref_primary_10_1007_s10489_023_04451_5
crossref_primary_10_1109_TITS_2023_3237681
crossref_primary_10_1007_s11042_023_17864_8
crossref_primary_10_1002_adfm_202405321
crossref_primary_10_1007_s00500_023_09331_1
crossref_primary_10_1016_j_aap_2020_105665
crossref_primary_10_1016_j_aap_2021_106537
crossref_primary_10_1016_j_eswa_2025_127502
crossref_primary_10_1145_3357253
crossref_primary_10_3390_designs7040100
crossref_primary_10_1109_TITS_2023_3274256
crossref_primary_10_1016_j_ijepes_2023_109512
crossref_primary_10_1016_j_rineng_2023_101025
crossref_primary_10_3390_en14040944
crossref_primary_10_1016_j_ins_2021_07_053
crossref_primary_10_1016_j_aap_2023_107269
crossref_primary_10_1016_j_trf_2024_12_020
crossref_primary_10_1109_TITS_2022_3193125
crossref_primary_10_3390_s25103213
crossref_primary_10_1631_FITEE_2000667
crossref_primary_10_1080_15472450_2025_2478469
crossref_primary_10_1109_TITS_2023_3314402
crossref_primary_10_3390_su13116102
crossref_primary_10_3390_ijerph18147534
Cites_doi 10.17226/14494
10.1016/j.neucom.2018.07.050
10.1109/CVPR.2008.4587630
10.1109/JAS.2017.7510814
10.1109/TVT.2014.2369522
10.1016/j.aap.2005.03.003
10.1109/JBHI.2017.2705031
10.1016/j.trc.2017.05.015
10.1007/978-3-319-39378-0_1
10.1016/j.asoc.2017.02.019
10.1109/ICMLA.2016.0132
10.1109/PST.2016.7906929
10.1016/j.aap.2006.04.012
10.1016/j.trf.2017.12.006
10.1162/neco.2006.18.7.1527
10.1109/TITS.2010.2072502
10.3141/2147-09
10.1109/TNNLS.2015.2479223
10.1109/TNNLS.2017.2770179
10.1109/TII.2018.2799928
10.1109/TITS.2015.2498408
10.1016/j.tra.2010.02.001
10.1109/TITS.2017.2700869
10.1016/j.eswa.2011.09.058
10.1109/TKDE.2008.239
10.1037/e729262011-001
10.1016/j.dss.2013.06.001
10.1016/j.aap.2016.10.006
10.1109/ICCV.2017.324
10.1109/TIE.2017.2739691
10.1145/1390156.1390294
10.1016/j.tra.2017.10.018
10.1016/j.trf.2015.10.011
10.1109/SmartCity.2015.63
10.1109/IJCNN.2016.7727349
10.1016/j.aap.2015.07.007
10.1109/TNB.2015.2403274
10.1109/TITS.2017.2649541
10.1016/j.aap.2012.06.014
10.1037/e624282011-001
10.1109/ICSMC.2008.4811498
10.1109/TMM.2017.2729019
10.1109/TKDE.2006.17
10.1109/THMS.2017.2776605
10.1109/TITS.2014.2368980
10.1109/LSP.2017.2752459
10.1109/TNNLS.2014.2310059
10.1016/j.aap.2012.05.019
10.1016/j.neunet.2017.04.012
10.1109/TITS.2017.2711046
10.1109/TITS.2018.2835523
10.1016/j.imavis.2017.01.005
10.1061/(ASCE)TE.1943-5436.0000068
10.1016/j.dss.2017.04.009
10.1109/TIP.2015.2487860
10.1109/TITS.2011.2179537
10.1109/TITS.2009.2018321
10.1109/JPROC.2016.2634938
10.1016/j.cosrev.2017.01.001
10.1177/154193120504902222
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2018.2886280
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 4465
ExternalDocumentID 10_1109_TITS_2018_2886280
8617709
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61273323
  funderid: 10.13039/501100001809
– fundername: Chinese Academy of Sciences
  grantid: KFJ-STS-SCYD-017
  funderid: 10.13039/501100002367
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23
IEDL.DBID RIE
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505522400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 09 06:23:51 EST 2025
Sat Nov 29 06:34:52 EST 2025
Tue Nov 18 22:41:41 EST 2025
Wed Aug 27 06:02:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1321-6022
0000-0002-9605-4331
PQID 2330024179
PQPubID 75735
PageCount 16
ParticipantIDs crossref_primary_10_1109_TITS_2018_2886280
proquest_journals_2330024179
ieee_primary_8617709
crossref_citationtrail_10_1109_TITS_2018_2886280
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
sta (ref2) 2015; 15
ref56
ref12
hinton (ref63) 1993
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref54
campbell (ref37) 2012
hendricks (ref10) 2001
ref16
ref19
ref18
dot (ref35) 2010
neale (ref39) 2005
ref51
ref50
treat (ref9) 1979
ref46
ref45
ref48
ref47
ref44
ref43
ref49
ref8
ref7
(ref11) 2006
krizhevsky (ref1) 2012
ref81
martinelli (ref66) 2017
hanowski (ref42) 2006; 49
ref80
ref79
ref78
klauer (ref34) 2006
masnadi-shirazi (ref73) 2015
ref36
ref75
ref74
ref30
ref77
ref32
(ref3) 2013
ervin (ref33) 2005
(ref40) 2010
ref38
(ref6) 2004
john (ref31) 2013
dingus (ref41) 2006
ref71
ref70
ref72
masko (ref76) 2015
ref68
ref24
ref67
ref26
ref69
ref25
ref64
ref20
mackay (ref5) 2000; 44
ref22
ref65
ref21
finch (ref4) 1994
ref28
marotta (ref17) 2017; 24
ref29
santini (ref23) 2010
fugiglando (ref27) 2018
ayinde (ref82) 2018
ref60
ref62
ref61
References_xml – ident: ref36
  doi: 10.17226/14494
– ident: ref59
  doi: 10.1016/j.neucom.2018.07.050
– ident: ref72
  doi: 10.1109/CVPR.2008.4587630
– year: 2018
  ident: ref27
  article-title: Driving behavior analysis through CAN bus data in an uncontrolled environment
  publication-title: IEEE Trans Intell Transp Syst
– year: 2013
  ident: ref3
  publication-title: Global Status Report on Road Safety 2013
– year: 2010
  ident: ref35
  article-title: An analysis of driver inattention using a case-crossover approach on 100-car data: Final report
– start-page: 338
  year: 2013
  ident: ref31
  article-title: Estimating continuous distributions in Bayesian classifiers
  publication-title: Proc 11th Conf Uncertainty Artif Intell
– ident: ref13
  doi: 10.1109/JAS.2017.7510814
– ident: ref15
  doi: 10.1109/TVT.2014.2369522
– ident: ref8
  doi: 10.1016/j.aap.2005.03.003
– ident: ref70
  doi: 10.1109/JBHI.2017.2705031
– ident: ref32
  doi: 10.1016/j.trc.2017.05.015
– start-page: 3
  year: 1993
  ident: ref63
  article-title: Autoencoders, minimum description length and Helmholtz free energy
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2010
  ident: ref40
  publication-title: Naturalistic Driving Observing Everyday Driving Behavior
– ident: ref58
  doi: 10.1007/978-3-319-39378-0_1
– start-page: 30
  year: 2012
  ident: ref37
  publication-title: The SHRP 2 naturalistic driving study Addressing driver performance and behavior in traffic safety
– ident: ref61
  doi: 10.1016/j.asoc.2017.02.019
– year: 2004
  ident: ref6
  publication-title: World report on road traffic injury prevention
– ident: ref71
  doi: 10.1109/ICMLA.2016.0132
– year: 1994
  ident: ref4
  article-title: Speed_speed limits and accidents
– start-page: 1
  year: 2005
  ident: ref39
  article-title: An overview of the 100-car naturalistic study and findings
– ident: ref67
  doi: 10.1109/PST.2016.7906929
– ident: ref25
  doi: 10.1016/j.aap.2006.04.012
– ident: ref21
  doi: 10.1016/j.trf.2017.12.006
– ident: ref64
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref16
  doi: 10.1109/TITS.2010.2072502
– ident: ref45
  doi: 10.3141/2147-09
– ident: ref48
  doi: 10.1109/TNNLS.2015.2479223
– ident: ref57
  doi: 10.1109/TNNLS.2017.2770179
– ident: ref77
  doi: 10.1109/TII.2018.2799928
– ident: ref74
  doi: 10.1109/TITS.2015.2498408
– ident: ref24
  doi: 10.1016/j.tra.2010.02.001
– ident: ref26
  doi: 10.1109/TITS.2017.2700869
– ident: ref29
  doi: 10.1016/j.eswa.2011.09.058
– ident: ref69
  doi: 10.1109/TKDE.2008.239
– year: 2006
  ident: ref34
  article-title: The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data
  doi: 10.1037/e729262011-001
– ident: ref28
  doi: 10.1016/j.dss.2013.06.001
– ident: ref18
  doi: 10.1016/j.aap.2016.10.006
– ident: ref60
  doi: 10.1109/ICCV.2017.324
– ident: ref80
  doi: 10.1109/TIE.2017.2739691
– ident: ref62
  doi: 10.1145/1390156.1390294
– ident: ref20
  doi: 10.1016/j.tra.2017.10.018
– ident: ref38
  doi: 10.1016/j.trf.2015.10.011
– year: 2017
  ident: ref66
  article-title: Human behavior characterization for driving style recognition in vehicle system
  publication-title: Comput Elect Eng
– year: 2015
  ident: ref76
  publication-title: The impact of imbalanced training data for convolutional neural networks
– ident: ref55
  doi: 10.1109/SmartCity.2015.63
– ident: ref68
  doi: 10.1109/IJCNN.2016.7727349
– year: 2005
  ident: ref33
  article-title: Automotive collision avoidance system field operational test report: Methodology and results
– ident: ref47
  doi: 10.1016/j.aap.2015.07.007
– ident: ref75
  doi: 10.1109/TNB.2015.2403274
– year: 2010
  ident: ref23
  publication-title: OBD-II Functions monitors and diagnostic techniques
– year: 2015
  ident: ref73
  publication-title: Cost-sensitive learning in support vector machines
– ident: ref51
  doi: 10.1109/TITS.2017.2649541
– year: 2001
  ident: ref10
  article-title: The relative frequency of unsafe driving acts in serious traffic crashes
– year: 2006
  ident: ref11
  article-title: Report to congress on the large truck crash causation study
– ident: ref19
  doi: 10.1016/j.aap.2012.06.014
– year: 2006
  ident: ref41
  article-title: The 100-car naturalistic driving study, phase II-Results of the 100-car field experiment
  doi: 10.1037/e624282011-001
– ident: ref12
  doi: 10.1109/ICSMC.2008.4811498
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref78
  doi: 10.1109/TMM.2017.2729019
– ident: ref65
  doi: 10.1109/TKDE.2006.17
– ident: ref54
  doi: 10.1109/THMS.2017.2776605
– ident: ref14
  doi: 10.1109/TITS.2014.2368980
– volume: 15
  start-page: 286
  year: 2015
  ident: ref2
  article-title: Global status report on road safety
  publication-title: Injury Prevention
– ident: ref49
  doi: 10.1109/LSP.2017.2752459
– ident: ref50
  doi: 10.1109/TNNLS.2014.2310059
– year: 2018
  ident: ref82
  publication-title: Building efficient ConvNets using redundant feature pruning
– ident: ref7
  doi: 10.1016/j.aap.2012.05.019
– ident: ref52
  doi: 10.1016/j.neunet.2017.04.012
– ident: ref53
  doi: 10.1109/TITS.2017.2711046
– ident: ref56
  doi: 10.1109/TITS.2018.2835523
– ident: ref81
  doi: 10.1016/j.imavis.2017.01.005
– ident: ref46
  doi: 10.1061/(ASCE)TE.1943-5436.0000068
– volume: 44
  start-page: 75
  year: 2000
  ident: ref5
  article-title: Age and gender effects on injury outcome for restrained occupants in frontal crashes: A comparison of UK and US data bases
  publication-title: Annu Proc Assoc Adv Automot Med
– year: 1979
  ident: ref9
  article-title: Tri-level study of the causes of traffic accidents
– ident: ref30
  doi: 10.1016/j.dss.2017.04.009
– ident: ref79
  doi: 10.1109/TIP.2015.2487860
– ident: ref44
  doi: 10.1109/TITS.2011.2179537
– ident: ref43
  doi: 10.1109/TITS.2009.2018321
– ident: ref22
  doi: 10.1109/JPROC.2016.2634938
– volume: 24
  start-page: 35
  year: 2017
  ident: ref17
  article-title: Cyber-insurance survey
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2017.01.001
– volume: 49
  start-page: 1989
  year: 2006
  ident: ref42
  article-title: The 100-car naturalistic driving study: A descriptive analysis of light vehicle-heavy vehicle interactions from the light vehicle driver's perspective, data analysis results
  publication-title: Proc Human Factors Ergonom Soc Annu Meeting
  doi: 10.1177/154193120504902222
SSID ssj0014511
Score 2.4978013
Snippet A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road...
A large number of studies have shown that most vehicle collisions are caused by drivers’ abnormal operations. To ensure the safety of all people on the road...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4450
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 2-Nonnegativity-constrained autoencoder
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 2-nonnegativity-constrained Focal Loss
Accident reconstruction
Accidents
adaptive search
Automobile safety
class imbalance
Computer crashes
Drivers
driving safety risk prediction
Feature extraction
naturalistic driving study
Real-time systems
Risk levels
Roads
Safety
Sliding
Time series analysis
Vehicle safety
Vehicles
Windows (intervals)
Title Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data
URI https://ieeexplore.ieee.org/document/8617709
https://www.proquest.com/docview/2330024179
Volume 20
WOSCitedRecordID wos000505522400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBt1hf5OBJjGafSY4-0UsRW9Hbkk0mWtRW2q3gj_A_m0m3RVAEb7uQhCzfZmaS-fINIftKcJcnkWaRj8VZqlPOlIGUcTCpMLrMobSh2IRoteTDg7qZIYfTuzAAEMhncISPIZdv-2aER2XH0rtbgbf1ZoXIx3e1phkD1NkK2qhxyhTPJhnMiKvjznWnjSQueRRLH8CjAuQ3HxSKqvywxMG9XC79b2LLZLEOI-nJGPcVMgO9VbLwTVxwjXyeD7p4WkDb2kH1QW-7w2d6M8DEDIJBA1mAnvWHFWsjix3tHr3vVk-0heSXx7quBMOSnqGQBFh6Mqr6qHyJ7Gd66h2gpX6k69cSCZLGv7V00PEI6s90MoFzXel1cnd50Tm7YnXxBWZ8BFAxncUmcbGPHjOQucn9OoYMcu_MYpdLaTInlCxBCK1cVMZpmTlecqX9VhuE03GyQRq9fg82Cc0Sa6MIRJqV3i57AKwCLp2x1kHqn5uET-AoTK1Mjt_1UoQdClcFIlgggkWNYJMcTLu8jWU5_mq8hpBNG9ZoNcnOBPOiXrjDIk4SDFu8mdr6vdc2mfdjqzGjZYc0qsEIdsmcea-6w8Fe-Ce_AOQ-4Ws
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELamgQQ88GsgCgP8wBPCm-PYsf04NqZVjGiiRewtcuwzqwYtatNJ-yP4n_G5aTUJhMRbItmJoy--O_s-f0fIG6t5rMrCsSLF4kw6yZn1IBkHL7V3bQVtyMUmdF2b83N7tkXebc7CAEAmn8EeXuZcfpj5JW6V7ZvkbjWe1rulpBR8dVprkzNApa2sjioks1ytc5gFt_vj4XiENC6zJ0wK4VED8oYXymVV_rDF2cEcP_i_oT0k9_tAkh6skH9EtmD6mNy7IS-4Q34dzSe4X0BHLkJ3TT9PFpf0bI6pGYSDZroAPZwtOjZCHjtaPvp10l3QGukv3_rKEgyLeuZSEhDowbKbofYl8p_p--QCA01PGv5okSLp013tspJH1n-m6wEcuc49IV-OP4wPT1hffoH5FAN0zCnhyyhS_KjAVL5KMxkUVMmdiVgZ41XU1rSgtbOxaIVsVeQtty4ttkFHJ8qnZHs6m8IzQlUZQlGAlqpNljkBECxwE30IEWS6HhC-hqPxvTY5ftf3Jq9RuG0QwQYRbHoEB-TtpsvPlTDHvxrvIGSbhj1aA7K7xrzpp-6iEWWJgUsyVM__3us1uXMy_nTanA7rjy_I3fQeu-K37JLtbr6El-S2v-omi_mr_H_-BsAq5LI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driving+Safety+Risk+Prediction+Using+Cost-Sensitive+With+Nonnegativity-Constrained+Autoencoders+Based+on+Imbalanced+Naturalistic+Driving+Data&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Chen%2C+Jie&rft.au=Wu%2C+ZhongCheng&rft.au=Zhang%2C+Jun&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=20&rft.issue=12&rft.spage=4450&rft_id=info:doi/10.1109%2FTITS.2018.2886280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon