Model Free Adaptive Iterative Learning Control Based Fault-Tolerant Control for Subway Train With Speed Sensor Fault and Over-Speed Protection
A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and over-speed protection is proposed. Firstly, the train dynamics is transformed into a compact form dynamic linearization (CFDL) data model by a...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automation science and engineering Jg. 21; H. 1; S. 168 - 180 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and over-speed protection is proposed. Firstly, the train dynamics is transformed into a compact form dynamic linearization (CFDL) data model by applying the concept of pseudo-partial derivative (PPD). If speed sensor fault occurs, the fault function is approximated by the trained RBFNNs under normal condition and the output data of the train system with fault, which serves as a compensation for the proposed MFAILC-FTC scheme. Then, over-speed protection mechanism is developed to ensure that the train operates within safe speed range. Furthermore, the constraint on traction/braking force is also taken into account. Through rigorous mathematical analysis, it is proved that the proposed MFAILC-FTC method with over-speed protection mechanism can ensure the train speed tracking error converges along the iteration axis, which implies the train operates safely and reliably. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm. Note to Practitioners-Subway train as a practical engineering system with short distance between two stations, starts and stops frequently, has the outstanding repetitive operation pattern, and it is unavoidable subject to speed sensor fault, aerodynamic issues, constraint on output speed and traction/braking force. Nevertheless, few works have considered these factors simultaneously, and a lot of data contain valuable operation information are generated during the train operation, this motives the work of this note. On account of the repetitive operation features of subway trains, the control schemes of speed trajectory tracking are handled under MFAILC framework, which is a pure data-driven model free control methodology. By constructing the RBFNNs-based fault function estimation mechanism, a robust compensation term is designed in the fault-tolerant controller. Taking the safe operation of subway trains into account, an over-speed protection term with trigger mechanism is added to the fault-tolerant controller. To further enhance the application, the constraint on traction/braking force is addressed as well. Without requirement of the train dynamics model, the theoretical analyses and simulation results have confirmed the effectiveness and the feasibility of the proposed data-driven control approach. In the future work, we will focus on verifying the proposed control strategy and addressing some other practical problems, for instance, the energy-efficiency and exogenous disturbances during the train operation. |
|---|---|
| AbstractList | A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and over-speed protection is proposed. Firstly, the train dynamics is transformed into a compact form dynamic linearization (CFDL) data model by applying the concept of pseudo-partial derivative (PPD). If speed sensor fault occurs, the fault function is approximated by the trained RBFNNs under normal condition and the output data of the train system with fault, which serves as a compensation for the proposed MFAILC-FTC scheme. Then, over-speed protection mechanism is developed to ensure that the train operates within safe speed range. Furthermore, the constraint on traction/braking force is also taken into account. Through rigorous mathematical analysis, it is proved that the proposed MFAILC-FTC method with over-speed protection mechanism can ensure the train speed tracking error converges along the iteration axis, which implies the train operates safely and reliably. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm. Note to Practitioners-Subway train as a practical engineering system with short distance between two stations, starts and stops frequently, has the outstanding repetitive operation pattern, and it is unavoidable subject to speed sensor fault, aerodynamic issues, constraint on output speed and traction/braking force. Nevertheless, few works have considered these factors simultaneously, and a lot of data contain valuable operation information are generated during the train operation, this motives the work of this note. On account of the repetitive operation features of subway trains, the control schemes of speed trajectory tracking are handled under MFAILC framework, which is a pure data-driven model free control methodology. By constructing the RBFNNs-based fault function estimation mechanism, a robust compensation term is designed in the fault-tolerant controller. Taking the safe operation of subway trains into account, an over-speed protection term with trigger mechanism is added to the fault-tolerant controller. To further enhance the application, the constraint on traction/braking force is addressed as well. Without requirement of the train dynamics model, the theoretical analyses and simulation results have confirmed the effectiveness and the feasibility of the proposed data-driven control approach. In the future work, we will focus on verifying the proposed control strategy and addressing some other practical problems, for instance, the energy-efficiency and exogenous disturbances during the train operation. |
| Author | Hou, Zhongsheng Zheng, Jianmin |
| Author_xml | – sequence: 1 givenname: Jianmin orcidid: 0000-0002-1901-0001 surname: Zheng fullname: Zheng, Jianmin email: 18111046@bjtu.edu.cn organization: Advanced Control Systems Laboratory, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Zhongsheng orcidid: 0000-0001-5278-3420 surname: Hou fullname: Hou, Zhongsheng email: zhshhou@bjtu.edu.cn organization: School of Automation, Qingdao University, Qingdao, China |
| BookMark | eNp9kMlOwzAURS1UJMYPQGwssU7xmNjLUlFAKipSi1hGTvICQcEujlvUn-CbcVrUBQtWfvI9x8M9QQPrLCB0QcmQUqKvF6P57ZARxoacMcmUOkDHVEqV8EzxQT8LmUgt5RE66bp3QphQmhyj70dXQYsnHgCPKrMMzRrwQwBvttMUjLeNfcVjZ4N3Lb4xHVR4YlZtSBaujZwN-7B2Hs9XxZfZ4IU3jcUvTXjD8yVEZQ62i_HWxMZWeLYGn-yyJ-8ClKFx9gwd1qbt4Px3PUXPk9vF-D6Zzu4exqNpUjLNQ2IkSynnWpQlV5mgBGopizStZSGruhDSxF2lOWRCSM40TUnJudJFXVVFWRh-iq525y69-1xBF_J3t_I2XplHmgqltNaRynZU6V3Xeajzsgmmf2eI32tzSvK-_LwvP-_Lz3_Ljyb9Yy5982H85l_ncuc0ALDntU6zTAv-A5bwkr4 |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1109_TIE_2025_3531474 crossref_primary_10_1016_j_jfranklin_2024_106957 crossref_primary_10_1016_j_neucom_2024_127708 crossref_primary_10_1109_TFUZZ_2025_3568535 crossref_primary_10_3390_wevj15090396 crossref_primary_10_26599_TST_2024_9010130 crossref_primary_10_3390_pr12112430 crossref_primary_10_1109_TASE_2025_3577992 crossref_primary_10_1109_TITS_2024_3477988 crossref_primary_10_1109_TIE_2025_3546326 crossref_primary_10_1016_j_engappai_2024_108651 crossref_primary_10_1007_s11071_024_09657_x crossref_primary_10_1109_TASE_2024_3369651 crossref_primary_10_3390_su17062367 crossref_primary_10_1109_JAS_2024_124827 crossref_primary_10_1109_TASE_2025_3604450 crossref_primary_10_1109_TIE_2024_3508070 crossref_primary_10_1016_j_jfranklin_2025_107782 crossref_primary_10_1109_TITS_2024_3524731 crossref_primary_10_1109_TASE_2024_3461806 crossref_primary_10_1109_TCYB_2025_3588159 crossref_primary_10_1177_01423312241295443 crossref_primary_10_1109_TITS_2023_3275205 crossref_primary_10_1109_MITS_2023_3310668 crossref_primary_10_1016_j_conengprac_2025_106430 crossref_primary_10_1109_TFUZZ_2025_3580891 crossref_primary_10_1016_j_jrst_2025_07_003 crossref_primary_10_3390_en16124566 crossref_primary_10_1109_TITS_2023_3264503 crossref_primary_10_1109_TASE_2024_3445670 crossref_primary_10_1016_j_rineng_2025_105357 crossref_primary_10_1049_cth2_12629 crossref_primary_10_1016_j_neucom_2025_130223 crossref_primary_10_1007_s11071_024_10302_w crossref_primary_10_1016_j_cnsns_2025_108709 crossref_primary_10_1080_00207721_2024_2438348 crossref_primary_10_1007_s12555_024_0349_7 crossref_primary_10_1080_00207721_2025_2547682 |
| Cites_doi | 10.1109/TAC.2019.2894586 10.1016/j.trc.2013.01.007 10.1109/TVT.2021.3133858 10.1109/TPEL.2020.3034190 10.1109/TSM.2021.3074625 10.1109/TFUZZ.2020.2999958 10.1109/TASE.2021.3061974 10.1109/TAC.2010.2069372 10.1109/TITS.2022.3155628 10.1109/TITS.2020.3046416 10.1109/TSMC.2018.2866618 10.1109/TASE.2014.2371816 10.1109/TASE.2012.2216261 10.1109/TITS.2020.2970000 10.1109/TITS.2022.3170950 10.1109/TCYB.2020.2986006 10.1109/TNNLS.2021.3087481 10.1109/TITS.2021.3106653 10.1109/TSMC.2019.2957299 10.1109/TITS.2022.3156281 10.1049/iet-cta.2019.1161 10.1109/TCST.2022.3140805 10.1109/TSMC.2017.2672664 10.1109/TITS.2020.3002550 10.1109/TSMC.2020.3000073 10.1017/S0373463303002364 10.1109/TITS.2021.3131997 10.1109/TAC.2021.3051353 10.1109/TNNLS.2022.3173337 10.1002/rob.4620010203 10.1109/9.867018 10.1109/TNNLS.2020.2980588 10.1109/TITS.2011.2174229 10.1109/TCST.2010.2093136 10.1109/TASE.2020.3041952 10.1109/TCST.2021.3123744 10.1109/TTE.2020.3030111 10.1109/TSMC.2021.3091422 10.1109/TCYB.2020.3015233 10.1080/00207179.2011.569030 10.1109/TIE.2019.2952810 10.1109/TVT.2022.3174864 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2022.3225288 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 180 |
| ExternalDocumentID | 10_1109_TASE_2022_3225288 9967794 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61833001 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-a52613394cc387410ef55b66f5b5dfb45a874893e7445329160c3389bfddbcba3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912777500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Jun 29 17:00:10 EDT 2025 Sat Nov 29 04:12:48 EST 2025 Tue Nov 18 22:31:16 EST 2025 Wed Aug 27 02:15:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-a52613394cc387410ef55b66f5b5dfb45a874893e7445329160c3389bfddbcba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1901-0001 0000-0001-5278-3420 |
| PQID | 2911488999 |
| PQPubID | 27623 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2911488999 crossref_citationtrail_10_1109_TASE_2022_3225288 ieee_primary_9967794 crossref_primary_10_1109_TASE_2022_3225288 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan. 2024-1-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 Rao (ref43) 2005 ref18 ref24 ref23 ref45 ref26 ref25 ref20 Davis (ref32) 1926; 29 Hay (ref33) 1982 ref42 ref41 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref36 doi: 10.1109/TAC.2019.2894586 – ident: ref44 doi: 10.1016/j.trc.2013.01.007 – ident: ref1 doi: 10.1109/TVT.2021.3133858 – ident: ref27 doi: 10.1109/TPEL.2020.3034190 – ident: ref38 doi: 10.1109/TSM.2021.3074625 – ident: ref19 doi: 10.1109/TFUZZ.2020.2999958 – ident: ref37 doi: 10.1109/TASE.2021.3061974 – ident: ref22 doi: 10.1109/TAC.2010.2069372 – ident: ref4 doi: 10.1109/TITS.2022.3155628 – ident: ref8 doi: 10.1109/TITS.2020.3046416 – ident: ref31 doi: 10.1109/TSMC.2018.2866618 – ident: ref18 doi: 10.1109/TASE.2014.2371816 – ident: ref26 doi: 10.1109/TASE.2012.2216261 – ident: ref23 doi: 10.1109/TITS.2020.2970000 – ident: ref5 doi: 10.1109/TITS.2022.3170950 – ident: ref25 doi: 10.1109/TCYB.2020.2986006 – ident: ref41 doi: 10.1109/TNNLS.2021.3087481 – ident: ref20 doi: 10.1109/TITS.2021.3106653 – ident: ref24 doi: 10.1109/TSMC.2019.2957299 – ident: ref29 doi: 10.1109/TITS.2022.3156281 – ident: ref42 doi: 10.1049/iet-cta.2019.1161 – ident: ref9 doi: 10.1109/TCST.2022.3140805 – volume-title: Railroad Engineering year: 1982 ident: ref33 – ident: ref34 doi: 10.1109/TSMC.2017.2672664 – ident: ref7 doi: 10.1109/TITS.2020.3002550 – ident: ref6 doi: 10.1109/TSMC.2020.3000073 – ident: ref30 doi: 10.1017/S0373463303002364 – ident: ref2 doi: 10.1109/TITS.2021.3131997 – ident: ref14 doi: 10.1109/TAC.2021.3051353 – ident: ref28 doi: 10.1109/TNNLS.2022.3173337 – volume-title: Train Traction Calculation year: 2005 ident: ref43 – ident: ref16 doi: 10.1002/rob.4620010203 – ident: ref45 doi: 10.1109/9.867018 – ident: ref12 doi: 10.1109/TNNLS.2020.2980588 – ident: ref21 doi: 10.1109/TITS.2011.2174229 – ident: ref35 doi: 10.1109/TCST.2010.2093136 – ident: ref3 doi: 10.1109/TASE.2020.3041952 – ident: ref11 doi: 10.1109/TCST.2021.3123744 – volume: 29 start-page: 685 issue: 10 year: 1926 ident: ref32 article-title: Traction resistance of electric locomotives and cars publication-title: General Electr. Rev. – ident: ref40 doi: 10.1109/TTE.2020.3030111 – ident: ref15 doi: 10.1109/TSMC.2021.3091422 – ident: ref13 doi: 10.1109/TCYB.2020.3015233 – ident: ref17 doi: 10.1080/00207179.2011.569030 – ident: ref39 doi: 10.1109/TIE.2019.2952810 – ident: ref10 doi: 10.1109/TVT.2022.3174864 |
| SSID | ssj0024890 |
| Score | 2.5476785 |
| Snippet | A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 168 |
| SubjectTerms | Adaptive control Aerodynamics Algorithms Braking Compensation Control methods Controllers Effectiveness Fault tolerance fault-tolerant control (FTC) Iterative learning control Iterative methods Learning Mathematical analysis Model free adaptive iterative learning control (MFAILC) over-speed protection Public transportation Radial basis function networks radial basis function neural networks (RBFNNs) Railway stations Robustness (mathematics) Sensors speed sensor fault Subway stations subway train control Tracking errors Traction Trajectory control Uncertainty |
| Title | Model Free Adaptive Iterative Learning Control Based Fault-Tolerant Control for Subway Train With Speed Sensor Fault and Over-Speed Protection |
| URI | https://ieeexplore.ieee.org/document/9967794 https://www.proquest.com/docview/2911488999 |
| Volume | 21 |
| WOSCitedRecordID | wos000912777500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWK1t0jTHVVwURIVd0VvJU4Wlu6xdxT_hb3aS1lVQBG-BPGj5kpn58vgGYE_EVFGrWOSYy5GgcIprTqMxdCpWWWwol-Gh8CW_usrv78XNFBxM3sJYa8PlM3voi-Es3wz02G-VHWFsznH-TMM051n9VutLVy8P-yk-IoiYYKw5wTyOxVGv3T1DJpgkh372JiHJypcPCklVflji4F46i__7sCVYaMJI0q5xX4YpW67A_DdxwVV492nO-qQzspa0jRx6u0YugoiyLzXCqg_ktL6sTk7QnxnSkeN-FfUGfWxXVpNKDG0J2phX-UZ6PqkEuXuqHkl3iL6PdJEJY3XoSWRpyDUuj6iuu6llIBD8NbjtnPVOz6Mm-0KkMQSoIsmQXKWpoFqnOcYdsXWMqSxzTDHjFGUyD8o1llPK0gTDzFgj3xXKGaO0kuk6zJSD0m4ASVPHrUWbzKSmjGtBjZOUaZrozCTStiD-xKPQjTS5z5DRLwJFiUXhISw8hEUDYQv2J12GtS7HX41XPWaThg1cLdj-BL1oVu5zgT-CDBFZqNj8vdcWzOHYtN6G2YaZajS2OzCrX6qn59FumJQfS0XgKw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD5igLTxABswrdzmB54QoV5iN_FjQVSgdQWpmcZb5OuGVKVVSUH8CX4zx04ok0BIvFmyLSf67HPO58t3APYFZYpZxSPHXYYEJWW45jQaQ6eo6lDDUhkeCvfTwSC7uhKXC3A4fwtjrQ2Xz-yRL4azfDPWM79V1sbYPMX58wGWOGMxrV9rPSvrZWFHxccEERecN2eYP6ho593hKXLBOD7y8zcOaVaevVBIq_LCFgcH01t736d9htUmkCTdGvkvsGDLdVj5T15wAx58orMR6U2tJV0jJ96ykfMgo-xLjbTqX3JSX1cnx-jRDOnJ2aiK8vEI25XVvBKDW4JW5k7ek9ynlSB_rqt_ZDhB70eGyIWxOvQksjTkAhdIVNdd1kIQCP8m_O6d5idnUZN_IdIYBFSR5EivkkQwrZMMIw9qHeeq03FcceMU4zIL2jU2ZYwnMQaaVCPjFcoZo7SSyVdYLMel_QYkSVxqLVplLjXjqRbMOMm4ZrHumFjaFtAnPArdiJP7HBmjIpAUKgoPYeEhLBoIW3Aw7zKplTnearzhMZs3bOBqwc4T6EWzdm8K_BHkiMhDxdbrvb7Dx7P8V7_onw9-bsMnHIfVmzI7sFhNZ3YXlvVtdX0z3QsT9BEYwONy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Free+Adaptive+Iterative+Learning+Control+Based+Fault-Tolerant+Control+for+Subway+Train+With+Speed+Sensor+Fault+and+Over-Speed+Protection&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zheng%2C+Jianmin&rft.au=Hou%2C+Zhongsheng&rft.date=2024-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=1&rft.spage=168&rft.epage=180&rft_id=info:doi/10.1109%2FTASE.2022.3225288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2022_3225288 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |