Model Free Adaptive Iterative Learning Control Based Fault-Tolerant Control for Subway Train With Speed Sensor Fault and Over-Speed Protection

A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and over-speed protection is proposed. Firstly, the train dynamics is transformed into a compact form dynamic linearization (CFDL) data model by a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering Jg. 21; H. 1; S. 168 - 180
Hauptverfasser: Zheng, Jianmin, Hou, Zhongsheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-5955, 1558-3783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and over-speed protection is proposed. Firstly, the train dynamics is transformed into a compact form dynamic linearization (CFDL) data model by applying the concept of pseudo-partial derivative (PPD). If speed sensor fault occurs, the fault function is approximated by the trained RBFNNs under normal condition and the output data of the train system with fault, which serves as a compensation for the proposed MFAILC-FTC scheme. Then, over-speed protection mechanism is developed to ensure that the train operates within safe speed range. Furthermore, the constraint on traction/braking force is also taken into account. Through rigorous mathematical analysis, it is proved that the proposed MFAILC-FTC method with over-speed protection mechanism can ensure the train speed tracking error converges along the iteration axis, which implies the train operates safely and reliably. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm. Note to Practitioners-Subway train as a practical engineering system with short distance between two stations, starts and stops frequently, has the outstanding repetitive operation pattern, and it is unavoidable subject to speed sensor fault, aerodynamic issues, constraint on output speed and traction/braking force. Nevertheless, few works have considered these factors simultaneously, and a lot of data contain valuable operation information are generated during the train operation, this motives the work of this note. On account of the repetitive operation features of subway trains, the control schemes of speed trajectory tracking are handled under MFAILC framework, which is a pure data-driven model free control methodology. By constructing the RBFNNs-based fault function estimation mechanism, a robust compensation term is designed in the fault-tolerant controller. Taking the safe operation of subway trains into account, an over-speed protection term with trigger mechanism is added to the fault-tolerant controller. To further enhance the application, the constraint on traction/braking force is addressed as well. Without requirement of the train dynamics model, the theoretical analyses and simulation results have confirmed the effectiveness and the feasibility of the proposed data-driven control approach. In the future work, we will focus on verifying the proposed control strategy and addressing some other practical problems, for instance, the energy-efficiency and exogenous disturbances during the train operation.
AbstractList A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and over-speed protection is proposed. Firstly, the train dynamics is transformed into a compact form dynamic linearization (CFDL) data model by applying the concept of pseudo-partial derivative (PPD). If speed sensor fault occurs, the fault function is approximated by the trained RBFNNs under normal condition and the output data of the train system with fault, which serves as a compensation for the proposed MFAILC-FTC scheme. Then, over-speed protection mechanism is developed to ensure that the train operates within safe speed range. Furthermore, the constraint on traction/braking force is also taken into account. Through rigorous mathematical analysis, it is proved that the proposed MFAILC-FTC method with over-speed protection mechanism can ensure the train speed tracking error converges along the iteration axis, which implies the train operates safely and reliably. Finally, the simulation results further demonstrate the effectiveness of the proposed algorithm. Note to Practitioners-Subway train as a practical engineering system with short distance between two stations, starts and stops frequently, has the outstanding repetitive operation pattern, and it is unavoidable subject to speed sensor fault, aerodynamic issues, constraint on output speed and traction/braking force. Nevertheless, few works have considered these factors simultaneously, and a lot of data contain valuable operation information are generated during the train operation, this motives the work of this note. On account of the repetitive operation features of subway trains, the control schemes of speed trajectory tracking are handled under MFAILC framework, which is a pure data-driven model free control methodology. By constructing the RBFNNs-based fault function estimation mechanism, a robust compensation term is designed in the fault-tolerant controller. Taking the safe operation of subway trains into account, an over-speed protection term with trigger mechanism is added to the fault-tolerant controller. To further enhance the application, the constraint on traction/braking force is addressed as well. Without requirement of the train dynamics model, the theoretical analyses and simulation results have confirmed the effectiveness and the feasibility of the proposed data-driven control approach. In the future work, we will focus on verifying the proposed control strategy and addressing some other practical problems, for instance, the energy-efficiency and exogenous disturbances during the train operation.
Author Hou, Zhongsheng
Zheng, Jianmin
Author_xml – sequence: 1
  givenname: Jianmin
  orcidid: 0000-0002-1901-0001
  surname: Zheng
  fullname: Zheng, Jianmin
  email: 18111046@bjtu.edu.cn
  organization: Advanced Control Systems Laboratory, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Zhongsheng
  orcidid: 0000-0001-5278-3420
  surname: Hou
  fullname: Hou, Zhongsheng
  email: zhshhou@bjtu.edu.cn
  organization: School of Automation, Qingdao University, Qingdao, China
BookMark eNp9kMlOwzAURS1UJMYPQGwssU7xmNjLUlFAKipSi1hGTvICQcEujlvUn-CbcVrUBQtWfvI9x8M9QQPrLCB0QcmQUqKvF6P57ZARxoacMcmUOkDHVEqV8EzxQT8LmUgt5RE66bp3QphQmhyj70dXQYsnHgCPKrMMzRrwQwBvttMUjLeNfcVjZ4N3Lb4xHVR4YlZtSBaujZwN-7B2Hs9XxZfZ4IU3jcUvTXjD8yVEZQ62i_HWxMZWeLYGn-yyJ-8ClKFx9gwd1qbt4Px3PUXPk9vF-D6Zzu4exqNpUjLNQ2IkSynnWpQlV5mgBGopizStZSGruhDSxF2lOWRCSM40TUnJudJFXVVFWRh-iq525y69-1xBF_J3t_I2XplHmgqltNaRynZU6V3Xeajzsgmmf2eI32tzSvK-_LwvP-_Lz3_Ljyb9Yy5982H85l_ncuc0ALDntU6zTAv-A5bwkr4
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TIE_2025_3531474
crossref_primary_10_1016_j_jfranklin_2024_106957
crossref_primary_10_1016_j_neucom_2024_127708
crossref_primary_10_1109_TFUZZ_2025_3568535
crossref_primary_10_3390_wevj15090396
crossref_primary_10_26599_TST_2024_9010130
crossref_primary_10_3390_pr12112430
crossref_primary_10_1109_TASE_2025_3577992
crossref_primary_10_1109_TITS_2024_3477988
crossref_primary_10_1109_TIE_2025_3546326
crossref_primary_10_1016_j_engappai_2024_108651
crossref_primary_10_1007_s11071_024_09657_x
crossref_primary_10_1109_TASE_2024_3369651
crossref_primary_10_3390_su17062367
crossref_primary_10_1109_JAS_2024_124827
crossref_primary_10_1109_TASE_2025_3604450
crossref_primary_10_1109_TIE_2024_3508070
crossref_primary_10_1016_j_jfranklin_2025_107782
crossref_primary_10_1109_TITS_2024_3524731
crossref_primary_10_1109_TASE_2024_3461806
crossref_primary_10_1109_TCYB_2025_3588159
crossref_primary_10_1177_01423312241295443
crossref_primary_10_1109_TITS_2023_3275205
crossref_primary_10_1109_MITS_2023_3310668
crossref_primary_10_1016_j_conengprac_2025_106430
crossref_primary_10_1109_TFUZZ_2025_3580891
crossref_primary_10_1016_j_jrst_2025_07_003
crossref_primary_10_3390_en16124566
crossref_primary_10_1109_TITS_2023_3264503
crossref_primary_10_1109_TASE_2024_3445670
crossref_primary_10_1016_j_rineng_2025_105357
crossref_primary_10_1049_cth2_12629
crossref_primary_10_1016_j_neucom_2025_130223
crossref_primary_10_1007_s11071_024_10302_w
crossref_primary_10_1016_j_cnsns_2025_108709
crossref_primary_10_1080_00207721_2024_2438348
crossref_primary_10_1007_s12555_024_0349_7
crossref_primary_10_1080_00207721_2025_2547682
Cites_doi 10.1109/TAC.2019.2894586
10.1016/j.trc.2013.01.007
10.1109/TVT.2021.3133858
10.1109/TPEL.2020.3034190
10.1109/TSM.2021.3074625
10.1109/TFUZZ.2020.2999958
10.1109/TASE.2021.3061974
10.1109/TAC.2010.2069372
10.1109/TITS.2022.3155628
10.1109/TITS.2020.3046416
10.1109/TSMC.2018.2866618
10.1109/TASE.2014.2371816
10.1109/TASE.2012.2216261
10.1109/TITS.2020.2970000
10.1109/TITS.2022.3170950
10.1109/TCYB.2020.2986006
10.1109/TNNLS.2021.3087481
10.1109/TITS.2021.3106653
10.1109/TSMC.2019.2957299
10.1109/TITS.2022.3156281
10.1049/iet-cta.2019.1161
10.1109/TCST.2022.3140805
10.1109/TSMC.2017.2672664
10.1109/TITS.2020.3002550
10.1109/TSMC.2020.3000073
10.1017/S0373463303002364
10.1109/TITS.2021.3131997
10.1109/TAC.2021.3051353
10.1109/TNNLS.2022.3173337
10.1002/rob.4620010203
10.1109/9.867018
10.1109/TNNLS.2020.2980588
10.1109/TITS.2011.2174229
10.1109/TCST.2010.2093136
10.1109/TASE.2020.3041952
10.1109/TCST.2021.3123744
10.1109/TTE.2020.3030111
10.1109/TSMC.2021.3091422
10.1109/TCYB.2020.3015233
10.1080/00207179.2011.569030
10.1109/TIE.2019.2952810
10.1109/TVT.2022.3174864
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2022.3225288
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 180
ExternalDocumentID 10_1109_TASE_2022_3225288
9967794
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61833001
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-a52613394cc387410ef55b66f5b5dfb45a874893e7445329160c3389bfddbcba3
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912777500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Jun 29 17:00:10 EDT 2025
Sat Nov 29 04:12:48 EST 2025
Tue Nov 18 22:31:16 EST 2025
Wed Aug 27 02:15:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a52613394cc387410ef55b66f5b5dfb45a874893e7445329160c3389bfddbcba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1901-0001
0000-0001-5278-3420
PQID 2911488999
PQPubID 27623
PageCount 13
ParticipantIDs proquest_journals_2911488999
crossref_citationtrail_10_1109_TASE_2022_3225288
ieee_primary_9967794
crossref_primary_10_1109_TASE_2022_3225288
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Rao (ref43) 2005
ref18
ref24
ref23
ref45
ref26
ref25
ref20
Davis (ref32) 1926; 29
Hay (ref33) 1982
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1109/TAC.2019.2894586
– ident: ref44
  doi: 10.1016/j.trc.2013.01.007
– ident: ref1
  doi: 10.1109/TVT.2021.3133858
– ident: ref27
  doi: 10.1109/TPEL.2020.3034190
– ident: ref38
  doi: 10.1109/TSM.2021.3074625
– ident: ref19
  doi: 10.1109/TFUZZ.2020.2999958
– ident: ref37
  doi: 10.1109/TASE.2021.3061974
– ident: ref22
  doi: 10.1109/TAC.2010.2069372
– ident: ref4
  doi: 10.1109/TITS.2022.3155628
– ident: ref8
  doi: 10.1109/TITS.2020.3046416
– ident: ref31
  doi: 10.1109/TSMC.2018.2866618
– ident: ref18
  doi: 10.1109/TASE.2014.2371816
– ident: ref26
  doi: 10.1109/TASE.2012.2216261
– ident: ref23
  doi: 10.1109/TITS.2020.2970000
– ident: ref5
  doi: 10.1109/TITS.2022.3170950
– ident: ref25
  doi: 10.1109/TCYB.2020.2986006
– ident: ref41
  doi: 10.1109/TNNLS.2021.3087481
– ident: ref20
  doi: 10.1109/TITS.2021.3106653
– ident: ref24
  doi: 10.1109/TSMC.2019.2957299
– ident: ref29
  doi: 10.1109/TITS.2022.3156281
– ident: ref42
  doi: 10.1049/iet-cta.2019.1161
– ident: ref9
  doi: 10.1109/TCST.2022.3140805
– volume-title: Railroad Engineering
  year: 1982
  ident: ref33
– ident: ref34
  doi: 10.1109/TSMC.2017.2672664
– ident: ref7
  doi: 10.1109/TITS.2020.3002550
– ident: ref6
  doi: 10.1109/TSMC.2020.3000073
– ident: ref30
  doi: 10.1017/S0373463303002364
– ident: ref2
  doi: 10.1109/TITS.2021.3131997
– ident: ref14
  doi: 10.1109/TAC.2021.3051353
– ident: ref28
  doi: 10.1109/TNNLS.2022.3173337
– volume-title: Train Traction Calculation
  year: 2005
  ident: ref43
– ident: ref16
  doi: 10.1002/rob.4620010203
– ident: ref45
  doi: 10.1109/9.867018
– ident: ref12
  doi: 10.1109/TNNLS.2020.2980588
– ident: ref21
  doi: 10.1109/TITS.2011.2174229
– ident: ref35
  doi: 10.1109/TCST.2010.2093136
– ident: ref3
  doi: 10.1109/TASE.2020.3041952
– ident: ref11
  doi: 10.1109/TCST.2021.3123744
– volume: 29
  start-page: 685
  issue: 10
  year: 1926
  ident: ref32
  article-title: Traction resistance of electric locomotives and cars
  publication-title: General Electr. Rev.
– ident: ref40
  doi: 10.1109/TTE.2020.3030111
– ident: ref15
  doi: 10.1109/TSMC.2021.3091422
– ident: ref13
  doi: 10.1109/TCYB.2020.3015233
– ident: ref17
  doi: 10.1080/00207179.2011.569030
– ident: ref39
  doi: 10.1109/TIE.2019.2952810
– ident: ref10
  doi: 10.1109/TVT.2022.3174864
SSID ssj0024890
Score 2.5476785
Snippet A model free adaptive iterative learning control based fault-tolerant control (MFAILC-FTC) scheme for subway train speed tracking with speed sensor fault and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168
SubjectTerms Adaptive control
Aerodynamics
Algorithms
Braking
Compensation
Control methods
Controllers
Effectiveness
Fault tolerance
fault-tolerant control (FTC)
Iterative learning control
Iterative methods
Learning
Mathematical analysis
Model free adaptive iterative learning control (MFAILC)
over-speed protection
Public transportation
Radial basis function networks
radial basis function neural networks (RBFNNs)
Railway stations
Robustness (mathematics)
Sensors
speed sensor fault
Subway stations
subway train control
Tracking errors
Traction
Trajectory control
Uncertainty
Title Model Free Adaptive Iterative Learning Control Based Fault-Tolerant Control for Subway Train With Speed Sensor Fault and Over-Speed Protection
URI https://ieeexplore.ieee.org/document/9967794
https://www.proquest.com/docview/2911488999
Volume 21
WOSCitedRecordID wos000912777500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWK1t0jTHVVwURIVd0VvJU4Wlu6xdxT_hb3aS1lVQBG-BPGj5kpn58vgGYE_EVFGrWOSYy5GgcIprTqMxdCpWWWwol-Gh8CW_usrv78XNFBxM3sJYa8PlM3voi-Es3wz02G-VHWFsznH-TMM051n9VutLVy8P-yk-IoiYYKw5wTyOxVGv3T1DJpgkh372JiHJypcPCklVflji4F46i__7sCVYaMJI0q5xX4YpW67A_DdxwVV492nO-qQzspa0jRx6u0YugoiyLzXCqg_ktL6sTk7QnxnSkeN-FfUGfWxXVpNKDG0J2phX-UZ6PqkEuXuqHkl3iL6PdJEJY3XoSWRpyDUuj6iuu6llIBD8NbjtnPVOz6Mm-0KkMQSoIsmQXKWpoFqnOcYdsXWMqSxzTDHjFGUyD8o1llPK0gTDzFgj3xXKGaO0kuk6zJSD0m4ASVPHrUWbzKSmjGtBjZOUaZrozCTStiD-xKPQjTS5z5DRLwJFiUXhISw8hEUDYQv2J12GtS7HX41XPWaThg1cLdj-BL1oVu5zgT-CDBFZqNj8vdcWzOHYtN6G2YaZajS2OzCrX6qn59FumJQfS0XgKw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD5igLTxABswrdzmB54QoV5iN_FjQVSgdQWpmcZb5OuGVKVVSUH8CX4zx04ok0BIvFmyLSf67HPO58t3APYFZYpZxSPHXYYEJWW45jQaQ6eo6lDDUhkeCvfTwSC7uhKXC3A4fwtjrQ2Xz-yRL4azfDPWM79V1sbYPMX58wGWOGMxrV9rPSvrZWFHxccEERecN2eYP6ho593hKXLBOD7y8zcOaVaevVBIq_LCFgcH01t736d9htUmkCTdGvkvsGDLdVj5T15wAx58orMR6U2tJV0jJ96ykfMgo-xLjbTqX3JSX1cnx-jRDOnJ2aiK8vEI25XVvBKDW4JW5k7ek9ynlSB_rqt_ZDhB70eGyIWxOvQksjTkAhdIVNdd1kIQCP8m_O6d5idnUZN_IdIYBFSR5EivkkQwrZMMIw9qHeeq03FcceMU4zIL2jU2ZYwnMQaaVCPjFcoZo7SSyVdYLMel_QYkSVxqLVplLjXjqRbMOMm4ZrHumFjaFtAnPArdiJP7HBmjIpAUKgoPYeEhLBoIW3Aw7zKplTnearzhMZs3bOBqwc4T6EWzdm8K_BHkiMhDxdbrvb7Dx7P8V7_onw9-bsMnHIfVmzI7sFhNZ3YXlvVtdX0z3QsT9BEYwONy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Free+Adaptive+Iterative+Learning+Control+Based+Fault-Tolerant+Control+for+Subway+Train+With+Speed+Sensor+Fault+and+Over-Speed+Protection&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zheng%2C+Jianmin&rft.au=Hou%2C+Zhongsheng&rft.date=2024-01-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=1&rft.spage=168&rft.epage=180&rft_id=info:doi/10.1109%2FTASE.2022.3225288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2022_3225288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon