Logistical Planning for Electric Vehicles Under Time-Dependent Stochastic Traffic

For the benefit of global environmental preservation, electric vehicles (EVs) have been gradually accepted by people in the past few years. However, the technical problem of limited drivable range and long charging duration is still a major hurdle for the popularization of EVs, especially for commer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 20; číslo 10; s. 3771 - 3781
Hlavní autoři: Bi, Xiaowen, Tang, Wallace K. S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For the benefit of global environmental preservation, electric vehicles (EVs) have been gradually accepted by people in the past few years. However, the technical problem of limited drivable range and long charging duration is still a major hurdle for the popularization of EVs, especially for commercial usage. In this paper, a dynamic electric vehicle routing problem (D-EVRP) model is designed for planning the itinerary for goods delivery by the utilization of EVs in logistics industry. To reflect the real situation, the D-EVRP considers a time-dependent stochastic traffic condition and captures the discharging/charging pattern of an EV using an analytical battery model. Its aim is to minimize the overall service duration, subject to a variety of the state-of-art constraints common in EV routing problems. Furthermore, to address the D-EVRP, a hybrid rollout algorithm (HRA), which incorporates a dedicated pre-planning strategy and a rollout algorithm, is also proposed. The effectiveness of the HRA and benefits of incorporating the analytical battery model are justified by extensive simulations using the real-world D-EVRP instances.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2018.2883791