A Globally Optimal Bilinear Programming Approach to the Design of Approximate Hilbert Pairs of Orthonormal Wavelet Bases
It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate quadrature filter (CQF) banks. In this paper, the approximate FIR realization of the Hilbert transform pairs is formulated as an optimization problem...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 58; číslo 1; s. 233 - 241 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.01.2010
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate quadrature filter (CQF) banks. In this paper, the approximate FIR realization of the Hilbert transform pairs is formulated as an optimization problem in the sense of the lp ( p =1, 2, or infinite) norm minimization on the approximate error of the magnitude and phase conditions of the scaling filters. The orthogonality and regularity conditions of the CQF bank pairs are taken as the constraints of such an optimization problem. Whereafter the branch and bound technique is employed to obtain the globally optimal solution of the resulting bilinear program optimization problem. Since the orthogonality and regularity conditions are explicitly taken as the constraints of our optimization problem, the attained solution is an approximate Hilbert transform pair satisfying these conditions exactly. Some orthogonal wavelet bases designed herein demonstrate that our design scheme is superior to those that have been reported in the literature. Moreover, the designed orthogonal wavelet bases show that minimizing the l 1 norm of the approximate error should be advocated for obtaining better approximated Hilbert pairs. |
|---|---|
| AbstractList | It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate quadrature filter (CQF) banks. In this paper, the approximate FIR realization of the Hilbert transform pairs is formulated as an optimization problem in the sense of the lp ( p =1, 2, or infinite) norm minimization on the approximate error of the magnitude and phase conditions of the scaling filters. The orthogonality and regularity conditions of the CQF bank pairs are taken as the constraints of such an optimization problem. Whereafter the branch and bound technique is employed to obtain the globally optimal solution of the resulting bilinear program optimization problem. Since the orthogonality and regularity conditions are explicitly taken as the constraints of our optimization problem, the attained solution is an approximate Hilbert transform pair satisfying these conditions exactly. Some orthogonal wavelet bases designed herein demonstrate that our design scheme is superior to those that have been reported in the literature. Moreover, the designed orthogonal wavelet bases show that minimizing the l 1 norm of the approximate error should be advocated for obtaining better approximated Hilbert pairs. |
| Author | Jian Qiu Zhang Jiang Wang |
| Author_xml | – sequence: 1 givenname: Jiang surname: Wang fullname: Wang, Jiang – sequence: 2 givenname: Jian Qiu surname: Zhang fullname: Zhang, Jian Qiu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22492321$$DView record in Pascal Francis |
| BookMark | eNp9kEtrWzEQhUVxIM5jH-hGmy5votd9aGmnzQMMNiQh2V3GyshWka8ukijJv4-Mky666GZmYM53OJwTMhnCgIRccHbJOdNXjw-rS8GYLkPoVtTfyJRrxSum2mZSblbLqu7al2NyktJvxrhSupmStxm99WEN3r_T5ZjdDjydO-8GhEhXMWwi7HZu2NDZOMYAZktzoHmL9CcmtxlosIfPWyEz0jvn1xgzXYGLaf9cxrwNQ4h732f4gx4znUPCdEaOLPiE55_7lDzd_Hq8vqsWy9v769miMkLLXIGqrRZ1J5iGkhmaDqRVurVadwyYaaRsW3hdK27QrlutalRouW214Ny8CnlKfhx8R0gGvI0wGJf6MZbA8b0XQmkhBS-65qAzMaQU0fbGZcguDDmC8z1n_b7nvvTc73vuP3suIPsH_PL-D_L9gDhE_Cuvi0bqTn4AtyOLRg |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2013_08_016 crossref_primary_10_1016_j_sigpro_2013_11_040 crossref_primary_10_1016_j_sigpro_2011_08_004 crossref_primary_10_1109_LSP_2010_2080674 crossref_primary_10_1109_TSP_2020_3001906 crossref_primary_10_1109_LSP_2012_2196692 |
| Cites_doi | 10.1109/TPAMI.2008.79 10.1109/TSP.2007.913156 10.1007/BF01580367 10.1109/97.923042 10.1098/rsta.1999.0447 10.1002/cpa.3160410705 10.1109/MSP.2005.1550194 10.1109/TSP.2006.872542 10.1109/LSP.2006.874453 10.1007/BF01580892 10.1017/CBO9780511804441 10.1109/78.995070 10.1109/18.119725 10.1287/opre.14.4.699 10.1109/LSP.2007.913609 10.1109/TCSI.2005.856048 10.1109/CVPR.2008.4587846 10.1109/TSP.2008.924134 10.1109/TSP.2008.917408 10.1109/34.799911 10.1109/LSP.2007.910318 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW |
| DOI | 10.1109/TSP.2009.2029725 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0476 |
| EndPage | 241 |
| ExternalDocumentID | 22492321 10_1109_TSP_2009_2029725 5200398 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG |
| ID | FETCH-LOGICAL-c293t-a45f9258209a014a68a3f497f9980a0c63377adb41cefb7945e4ef1f79211cd23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272843900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jul 21 09:16:22 EDT 2025 Sat Nov 29 04:10:15 EST 2025 Tue Nov 18 22:20:44 EST 2025 Tue Aug 26 17:10:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | dual-tree complex wavelet transform (DTWT) conjugate quadrature filter (CQF) Branch and bound method L1 approximation Programming Bilinear programming Orthogonality Hilbert transformation Constrained optimization Hilbert transform Wavelet transformation Optimal solution Wavelet base Signal processing Filter bank orthonormal wavelet bases |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-a45f9258209a014a68a3f497f9980a0c63377adb41cefb7945e4ef1f79211cd23 |
| PageCount | 9 |
| ParticipantIDs | pascalfrancis_primary_22492321 crossref_citationtrail_10_1109_TSP_2009_2029725 crossref_primary_10_1109_TSP_2009_2029725 ieee_primary_5200398 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Jan. 2010-01-00 2010 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – month: 01 year: 2010 text: 2010-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2010 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref14 ref11 yang (ref22) 2008 ref2 ref1 ref17 ref16 ref19 ref18 mallat (ref15) 1999 shi (ref8) 2008; 56 lu (ref10) 1999 ref24 ref25 ref20 ref21 ref7 ref9 ref4 ref3 ref6 ref5 tibshirani (ref23) 1996; 58 |
| References_xml | – ident: ref24 doi: 10.1109/TPAMI.2008.79 – volume: 56 start-page: 2289 year: 2008 ident: ref8 article-title: a novel scheme for the design of approximate hilbert transform pairs of orthonormal wavelet bases publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2007.913156 – ident: ref20 doi: 10.1007/BF01580367 – year: 1999 ident: ref15 publication-title: A Wavelet Tour of Signal Processing – year: 2008 ident: ref22 article-title: image super-resolution as sparse representation of raw image patches publication-title: Proc IEEE Conf Comput Vision Pattern Recogn – ident: ref4 doi: 10.1109/97.923042 – ident: ref2 doi: 10.1098/rsta.1999.0447 – ident: ref16 doi: 10.1002/cpa.3160410705 – ident: ref3 doi: 10.1109/MSP.2005.1550194 – ident: ref17 doi: 10.1109/TSP.2006.872542 – ident: ref5 doi: 10.1109/LSP.2006.874453 – year: 1999 ident: ref10 article-title: design of nonlinear-phase fir digital filters: a semidefiniteprogramming approach publication-title: Proc IEEE Int Symp Circuits Syst (ISCAS'99) – ident: ref19 doi: 10.1007/BF01580892 – ident: ref18 doi: 10.1017/CBO9780511804441 – ident: ref7 doi: 10.1109/78.995070 – ident: ref1 doi: 10.1109/18.119725 – ident: ref14 doi: 10.1287/opre.14.4.699 – ident: ref6 doi: 10.1109/LSP.2007.913609 – ident: ref11 doi: 10.1109/TCSI.2005.856048 – ident: ref21 doi: 10.1109/CVPR.2008.4587846 – ident: ref12 doi: 10.1109/TSP.2008.924134 – ident: ref13 doi: 10.1109/TSP.2008.917408 – ident: ref25 doi: 10.1109/34.799911 – ident: ref9 doi: 10.1109/LSP.2007.910318 – volume: 58 start-page: 267 year: 1996 ident: ref23 article-title: regression shrinkage and selection via the lasso publication-title: Royal Statistical Society Series B Statistical Methodology) |
| SSID | ssj0014496 |
| Score | 1.991302 |
| Snippet | It is understood that the Hilbert transform pairs of orthonormal wavelet bases can only be realized approximately by the scaling filters of conjugate... |
| SourceID | pascalfrancis crossref ieee |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 233 |
| SubjectTerms | Applied sciences Bilinear programming conjugate quadrature filter (CQF) Constraint optimization Delay Detection, estimation, filtering, equalization, prediction Discrete transforms Discrete wavelet transforms dual-tree complex wavelet transform (DTWT) Exact sciences and technology Filter bank Finite impulse response filter Frequency Hilbert transform Information, signal and communications theory Miscellaneous orthonormal wavelet bases Quadratic programming Signal and communications theory Signal processing Signal, noise Telecommunications and information theory Wavelet transforms |
| Title | A Globally Optimal Bilinear Programming Approach to the Design of Approximate Hilbert Pairs of Orthonormal Wavelet Bases |
| URI | https://ieeexplore.ieee.org/document/5200398 |
| Volume | 58 |
| WOSCitedRecordID | wos000272843900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBt1gfZQ9eBGPz2GSzx1YtntqCir2VzWYXCrWVNor-e2eyaaggguQS2FkIO0nmm53Z7wO4jASGaT-VXhbkmccxontS23KbIwkyrjETcmITotdLh0M5WIPr-iyMMaZsPjM3dFvW8vOZfqetshZRBEUyXYd1IRJ3VquuGHBeanEhXIi8OBXDZUnSl62nx4EjpgxJqYlEsVdCUKmpQh2RaoGLYp2axUqI6e7-7-H2YKeCkqztfL8Pa2Z6ANsrBIOH8NlmjtR_8sX6-HN4RfvOmJClmrOBa816RUvWrqjFWTFjCAnZXdnYwWbWjXzizMKwhzExYhVsQEUgGuzPiXqAYO-EvSjSsChYB-Pi4gieu_dPtw9epbXgaQz4had4bGUYIx6QChdTJamKLJfCYjrmK18nUSSEyjMeaGMz_Ihjw40NrJCYQeo8jI5hYzqbmhNg1hIJPM8TKQ3CHT_DS8VxbKwKLMKdBrSWyz_SFRE56WFMRmVC4ssROozkMeWoclgDruoZb46E4w_bQ_JNbVe5pQHNHx6ux0OiTIzC4PT3eWew5foFaNPlHDaK-bu5gE39UYwX82b5Cn4DMVfYrQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gXrwLdbnHrwIxuaxabLH-qKi1oIVewubzS4UaittFP33zmRjqCCC5BLYWQg7SeabndnvAzgOIgzTbiyc1MtSh2NEd4QyxTZHw0u5wkzIik1E7Xbc64nODJxWZ2G01kXzmT6j26KWn43UG22V1YkiKBDxLMyHnPuuPa1V1Qw4L9S4EDAEThhHve-ipCvq3ceOpab0SauJZLGnglChqkI9kXKCy2KsnsVUkLle_d_jrcFKCSZZ03p_HWb0cAOWpygGN-GjySyt_-CTPeDv4QXtz_uELeWYdWxz1gtasmZJLs7yEUNQyC6L1g42MnbkA2fmmrX6xImVsw6VgWjwYUzkAwR8B-xZkopFzs4xMk624On6qnvRckq1BUdhyM8dyUMj_BARgZC4mLIRy8BwERlMyFzpqkYQRJHMUu4pbVL8jEPNtfFMJDCHVJkfbMPccDTUO8CMIRp4njWE0Ah43BQvGYahNtIzCHhqUP9e_kSVVOSkiDFIipTEFQk6jAQyRVI6rAYn1YxXS8Pxh-0m-aayK91Sg8MfHq7GfSJNDHxv9_d5R7DY6t7fJXc37ds9WLLdA7QFsw9z-fhNH8CCes_7k_Fh8Tp-AZw32_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Globally+Optimal+Bilinear+Programming+Approach+to+the+Design+of+Approximate+Hilbert+Pairs+of+Orthonormal+Wavelet+Bases&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=JIANG+WANG&rft.au=JIAN+QIU+ZHANG&rft.date=2010&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=58&rft.issue=1&rft.spage=233&rft.epage=241&rft_id=info:doi/10.1109%2FTSP.2009.2029725&rft.externalDBID=n%2Fa&rft.externalDocID=22492321 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |