Transformation of Multispectral Data to Quasi-Hyperspectral Data Using Convolutional Neural Network Regression
Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other applications. However, absence of any space-borne HS sensor since 2017, which can provide open-source data with global coverage, and high cost and lim...
Saved in:
| Published in: | IEEE transactions on geoscience and remote sensing Vol. 59; no. 4; pp. 3352 - 3368 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other applications. However, absence of any space-borne HS sensor since 2017, which can provide open-source data with global coverage, and high cost and limited obtainability of airborne sensors-based images limit the use of HS data. Transformation of readily available MS data into quasi-HS data can be a feasible solution for this issue. In this article, we propose the use of convolutional neural network regression (CNNR), a deep learning-based algorithm, for MS (i.e., Landsat 7/8) to quasi-HS (i.e., quasi-Hyperion) data transformation. The proposed CNNR model is compared with the existing pseudo-HS image transformation algorithm (PHITA), a simple linear model [i.e., stepwise linear regression (SLR)], and a nonlinear modeling approach [i.e., support vector regression (SVR)] by evaluating the quality of the quasi-Hyperion data. Contrary to these existing and simple models, the proposed CNNR model has the added advantage of utilizing deep learning-based spectral-spatial features for MS to quasi-HS data transformation through regression-based nonlinear modeling. Different statistical metrics are calculated to compare each band's reflectance values as well as spectral reflectance curve of each pixel of the quasi-Hyperion data with that of the original Hyperion data. The developed models and generated quasi-Hyperion data are also evaluated with application to crop classification. Analyzing the results of all the experiments, it is evident that CNNR model is more efficient compared to PHITA, SLR, and SVR in creating the quasi-Hyperion data and this transformed data are proven to be resourceful for crop classification application. The proposed CNNR model-based MS to quasi-HS data transformation approach can be used as a viable alternative for different applications in the absence of original HS images. |
|---|---|
| AbstractList | Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other applications. However, absence of any space-borne HS sensor since 2017, which can provide open-source data with global coverage, and high cost and limited obtainability of airborne sensors-based images limit the use of HS data. Transformation of readily available MS data into quasi-HS data can be a feasible solution for this issue. In this article, we propose the use of convolutional neural network regression (CNNR), a deep learning-based algorithm, for MS (i.e., Landsat 7/8) to quasi-HS (i.e., quasi-Hyperion) data transformation. The proposed CNNR model is compared with the existing pseudo-HS image transformation algorithm (PHITA), a simple linear model [i.e., stepwise linear regression (SLR)], and a nonlinear modeling approach [i.e., support vector regression (SVR)] by evaluating the quality of the quasi-Hyperion data. Contrary to these existing and simple models, the proposed CNNR model has the added advantage of utilizing deep learning-based spectral–spatial features for MS to quasi-HS data transformation through regression-based nonlinear modeling. Different statistical metrics are calculated to compare each band’s reflectance values as well as spectral reflectance curve of each pixel of the quasi-Hyperion data with that of the original Hyperion data. The developed models and generated quasi-Hyperion data are also evaluated with application to crop classification. Analyzing the results of all the experiments, it is evident that CNNR model is more efficient compared to PHITA, SLR, and SVR in creating the quasi-Hyperion data and this transformed data are proven to be resourceful for crop classification application. The proposed CNNR model-based MS to quasi-HS data transformation approach can be used as a viable alternative for different applications in the absence of original HS images. |
| Author | Nagesh Kumar, D. Paul, Subir |
| Author_xml | – sequence: 1 givenname: Subir orcidid: 0000-0001-5651-2775 surname: Paul fullname: Paul, Subir email: subir.paul.iisc@gmail.com organization: Department of Civil Engineering, Indian Institute of Science, Bengaluru, India – sequence: 2 givenname: D. orcidid: 0000-0002-5294-8501 surname: Nagesh Kumar fullname: Nagesh Kumar, D. email: nagesh@iisc.ac.in organization: Department of Civil Engineering, Indian Institute of Science, Bengaluru, India |
| BookMark | eNp9kE1PwjAYxxuDiYB-AONliedhX9atPRpUMEGNCOemKy0ZjnW2nYZv7wbERA-ensP_Jc__NwC9ylYagEsERwhBfrOYzN9GGGI4IhByzOEJ6CNKWQzTJOmBPkQ8jTHj-AwMvN9AiBKKsj6oFk5W3li3laGwVWRN9NSUofC1VsHJMrqTQUbBRq-N9EU83dXa_daWvqjW0dhWn7Zsuo5WeNaN25_wZd17NNdrp71vtXNwamTp9cXxDsHy4X4xnsazl8nj-HYWK8xJiCXimsqcSGwwoYQyYxQhWUq0kYgxjRAzKGcraJIU85yqXLZbNVdspcgqlWQIrg-9tbMfjfZBbGzj2te8wBTSFDLMWevKDi7lrPdOG6GKsOfQzitKgaDo4IoOrujgiiPcNon-JGtXbKXb_Zu5OmQKrfWPn6MkzRJEvgEvC4mW |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1016_j_jag_2024_104129 crossref_primary_10_1109_ACCESS_2025_3570629 crossref_primary_10_1109_TGRS_2021_3104476 crossref_primary_10_1016_j_jag_2023_103645 crossref_primary_10_1109_TGRS_2025_3541211 crossref_primary_10_1080_10106049_2022_2157497 crossref_primary_10_1109_TGRS_2023_3315472 crossref_primary_10_3390_agronomy15081779 crossref_primary_10_1109_TGRS_2021_3079969 crossref_primary_10_1109_JSTARS_2025_3594497 crossref_primary_10_3390_foods14111977 |
| Cites_doi | 10.1016/j.isprsjprs.2018.02.001 10.1117/12.2533077 10.1016/j.rse.2018.04.050 10.1016/j.isprsjprs.2017.09.016 10.1080/01431160701408410 10.1109/IGARSS.2016.7730608 10.3390/s90403090 10.1109/ICCV.2015.342 10.1007/s41976-019-00024-8 10.5194/isprs-archives-XLII-3-W6-579-2019 10.1109/JSTARS.2014.2329330 10.1109/JSTARS.2020.2983000 10.1109/TGRS.2019.2902568 10.1109/ICSPCC.2017.8242625 10.1109/TIP.2003.819861 10.1109/TGRS.2016.2584107 10.1016/j.isprsjprs.2018.01.007 10.3390/rs9010067 10.1109/JSTARS.2014.2356512 10.1007/978-3-319-32025-0_14 10.1007/978-3-319-46475-6_41 10.1016/j.rse.2019.111350 10.1016/j.patcog.2016.10.019 10.1109/TPAMI.2015.2439281 10.1109/TIP.2016.2564643 10.1016/j.neucom.2016.09.010 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2020.3009290 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture Physics |
| EISSN | 1558-0644 |
| EndPage | 3368 |
| ExternalDocumentID | 10_1109_TGRS_2020_3009290 9146741 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Earth Sciences, Government of India, through a project grantid: MoES/PAMC/H&C/41/2013-PC-II funderid: 10.13039/501100001851 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-a19e5ab3a2f235358ffc33763efa188e118f1b8d0f4629b5cba558e9c8dc3d6a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633493700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:14:18 EDT 2025 Sat Nov 29 02:50:07 EST 2025 Tue Nov 18 22:22:13 EST 2025 Wed Aug 27 02:47:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-a19e5ab3a2f235358ffc33763efa188e118f1b8d0f4629b5cba558e9c8dc3d6a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5651-2775 0000-0002-5294-8501 |
| PQID | 2505608298 |
| PQPubID | 85465 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2505608298 ieee_primary_9146741 crossref_citationtrail_10_1109_TGRS_2020_3009290 crossref_primary_10_1109_TGRS_2020_3009290 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 tiwari (ref5) 2016; 9880 ref12 ref15 ref14 ref31 ref11 ref10 hoang (ref8) 2016 chollet (ref30) 2015 ref2 ref1 ref17 ref16 ref19 ref18 raftery (ref32) 2019 goodfellow (ref28) 2016 hoang (ref7) 2015; 9643 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref14 doi: 10.1016/j.isprsjprs.2018.02.001 – ident: ref18 doi: 10.1117/12.2533077 – ident: ref21 doi: 10.1016/j.rse.2018.04.050 – ident: ref1 doi: 10.1016/j.isprsjprs.2017.09.016 – volume: 9880 year: 2016 ident: ref5 article-title: Simulation of the hyperspectral data from multispectral data using Python programming language publication-title: Proc SPIE – start-page: 661 year: 2016 ident: ref8 article-title: Hyperspectral transformation from EO-1 ALI imagery using pseudo-hyperspectral image synthesis algorithm – ident: ref4 doi: 10.1080/01431160701408410 – ident: ref6 doi: 10.1109/IGARSS.2016.7730608 – ident: ref3 doi: 10.3390/s90403090 – ident: ref23 doi: 10.1109/ICCV.2015.342 – ident: ref26 doi: 10.1007/s41976-019-00024-8 – ident: ref27 doi: 10.5194/isprs-archives-XLII-3-W6-579-2019 – ident: ref15 doi: 10.1109/JSTARS.2014.2329330 – ident: ref17 doi: 10.1109/JSTARS.2020.2983000 – ident: ref22 doi: 10.1109/TGRS.2019.2902568 – year: 2016 ident: ref28 publication-title: Deep Learning – ident: ref12 doi: 10.1109/ICSPCC.2017.8242625 – volume: 9643 year: 2015 ident: ref7 article-title: Development of Bayesian-based transformation method of Landsat imagery into pseudo-hyperspectral imagery publication-title: Proc SPIE – ident: ref31 doi: 10.1109/TIP.2003.819861 – year: 2015 ident: ref30 publication-title: Keras – ident: ref29 doi: 10.1109/TGRS.2016.2584107 – ident: ref9 doi: 10.1016/j.isprsjprs.2018.01.007 – ident: ref20 doi: 10.3390/rs9010067 – ident: ref2 doi: 10.1109/JSTARS.2014.2356512 – ident: ref25 doi: 10.1007/978-3-319-32025-0_14 – ident: ref24 doi: 10.1007/978-3-319-46475-6_41 – ident: ref13 doi: 10.1016/j.rse.2019.111350 – ident: ref16 doi: 10.1016/j.patcog.2016.10.019 – ident: ref10 doi: 10.1109/TPAMI.2015.2439281 – ident: ref11 doi: 10.1109/TIP.2016.2564643 – year: 2019 ident: ref32 article-title: Package 'BMA – ident: ref19 doi: 10.1016/j.neucom.2016.09.010 |
| SSID | ssj0014517 |
| Score | 2.4275608 |
| Snippet | Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3352 |
| SubjectTerms | Agriculture Airborne remote sensing Airborne sensing Algorithms Artificial neural networks Artificial satellites Classification Convolutional neural network regression (CNNR) crop classification Data Data models Deep learning Earth Evaluation hyperspectral (HS) data Landsat Landsat satellites Machine learning Mathematical models Modelling multispectral (MS) data Neural networks Object recognition quasi-HS data Reflectance Reflectance curves Regression analysis Remote sensing Spatial discrimination learning Spatial resolution Spectral reflectance Statistical analysis Support vector machines Transformations |
| Title | Transformation of Multispectral Data to Quasi-Hyperspectral Data Using Convolutional Neural Network Regression |
| URI | https://ieeexplore.ieee.org/document/9146741 https://www.proquest.com/docview/2505608298 |
| Volume | 59 |
| WOSCitedRecordID | wos000633493700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oUNAHb1OcTumDT2Jdb2mTR1GnT-Jlgm8lPT0ZgrTSXX6_SZaNiSL41JYkpfDl9jXfdw7AWYoYi1BIn5Wx9BM0idyjgvlCEzceSlIolE02kT088Lc38bgCFwsvDBFZ8Rldmlt7ll_WODG_ynrCDGvjUl_NsnTm1VqcGCQsdNbo1NckInInmGEgeoO75xfNBCNNUE2IITP9Lq1BNqnKj5nYLi_97f992A5suW2kdzXDfRdWqNqDzath40JpkH5aCjW4B-tW6omjNlSDpb1qXXm18qwL13ouG_3SGzmW3rj2niZy9O7fa6LafC-zMgPvuq6mrt_qAhPkw16sqtx7puFMYFvtw2v_dnB977usCz7qpX_sy1AQk0UsIxXFLGZcKYzNNERKhpyTZiQqLHgZqCSNRMGwkIxxEshLjMtUxgfQquqKDsELkGdIGWFaYqI7i2Z3USKToigSQlZiB4I5Djm6kOQmM8ZHbqlJIHIDXW6gyx10HThfNPmcxeP4q3LbYLWo6GDqQHcOdu5G7Ci3W0FjNOZHv7c6ho3I6FmsaqcLrXEzoRNYw6kGqDm1nfELdEnfiw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6IF9QH7-K89sEnsdpbuuRR1DlRh5cJvpX09EQEaaXb_P0mWTYmiuBTW5KUwpfb13zfOQCHKWIsQiF9VsTST9Akco9y5gtN3HgoSaFQNtlEs9PhLy_ifgqOx14YIrLiMzoxt_Ysv6hwYH6VnQozrI1LfcZkznJurfGZQcJCZ45OfU0jIneGGQbitHv1-KS5YKQpqgkyZCbgiVXIplX5MRfbBaa1_L9PW4Elt5H0zobIr8IUlWuwePZau2AapJ8mgg2uwZwVe2JvHcruxG61Kr1KedaHa12XtX7phexLr195DwPZe_PbmqrW38us0MA7r8pP13N1gQnzYS9WV-490utQYltuwHPrsnve9l3eBR_14t_3ZSiIyTyWkYpiFjOuFMZmIiIlQ85JcxIV5rwIVJJGImeYS8Y4CeQFxkUq402YLquStsALkDeRmoRpgYnuLprfRYlM8jxPCFmBDQhGOGTogpKb3BjvmSUngcgMdJmBLnPQNeBo3ORjGJHjr8rrBqtxRQdTA3ZHYGduzPYyuxk0VmO-_XurA5hvd-9us9vrzs0OLERG3WI1PLsw3a8HtAez-KnBqvdtx_wCPS3i1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+of+Multispectral+Data+to+Quasi-Hyperspectral+Data+Using+Convolutional+Neural+Network+Regression&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Paul%2C+Subir&rft.au=Kumar%2C+D+Nagesh&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=4&rft.spage=3352&rft_id=info:doi/10.1109%2FTGRS.2020.3009290&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |