Transformation of Multispectral Data to Quasi-Hyperspectral Data Using Convolutional Neural Network Regression

Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other applications. However, absence of any space-borne HS sensor since 2017, which can provide open-source data with global coverage, and high cost and lim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 59; no. 4; pp. 3352 - 3368
Main Authors: Paul, Subir, Nagesh Kumar, D.
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0196-2892, 1558-0644
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other applications. However, absence of any space-borne HS sensor since 2017, which can provide open-source data with global coverage, and high cost and limited obtainability of airborne sensors-based images limit the use of HS data. Transformation of readily available MS data into quasi-HS data can be a feasible solution for this issue. In this article, we propose the use of convolutional neural network regression (CNNR), a deep learning-based algorithm, for MS (i.e., Landsat 7/8) to quasi-HS (i.e., quasi-Hyperion) data transformation. The proposed CNNR model is compared with the existing pseudo-HS image transformation algorithm (PHITA), a simple linear model [i.e., stepwise linear regression (SLR)], and a nonlinear modeling approach [i.e., support vector regression (SVR)] by evaluating the quality of the quasi-Hyperion data. Contrary to these existing and simple models, the proposed CNNR model has the added advantage of utilizing deep learning-based spectral-spatial features for MS to quasi-HS data transformation through regression-based nonlinear modeling. Different statistical metrics are calculated to compare each band's reflectance values as well as spectral reflectance curve of each pixel of the quasi-Hyperion data with that of the original Hyperion data. The developed models and generated quasi-Hyperion data are also evaluated with application to crop classification. Analyzing the results of all the experiments, it is evident that CNNR model is more efficient compared to PHITA, SLR, and SVR in creating the quasi-Hyperion data and this transformed data are proven to be resourceful for crop classification application. The proposed CNNR model-based MS to quasi-HS data transformation approach can be used as a viable alternative for different applications in the absence of original HS images.
AbstractList Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other applications. However, absence of any space-borne HS sensor since 2017, which can provide open-source data with global coverage, and high cost and limited obtainability of airborne sensors-based images limit the use of HS data. Transformation of readily available MS data into quasi-HS data can be a feasible solution for this issue. In this article, we propose the use of convolutional neural network regression (CNNR), a deep learning-based algorithm, for MS (i.e., Landsat 7/8) to quasi-HS (i.e., quasi-Hyperion) data transformation. The proposed CNNR model is compared with the existing pseudo-HS image transformation algorithm (PHITA), a simple linear model [i.e., stepwise linear regression (SLR)], and a nonlinear modeling approach [i.e., support vector regression (SVR)] by evaluating the quality of the quasi-Hyperion data. Contrary to these existing and simple models, the proposed CNNR model has the added advantage of utilizing deep learning-based spectral–spatial features for MS to quasi-HS data transformation through regression-based nonlinear modeling. Different statistical metrics are calculated to compare each band’s reflectance values as well as spectral reflectance curve of each pixel of the quasi-Hyperion data with that of the original Hyperion data. The developed models and generated quasi-Hyperion data are also evaluated with application to crop classification. Analyzing the results of all the experiments, it is evident that CNNR model is more efficient compared to PHITA, SLR, and SVR in creating the quasi-Hyperion data and this transformed data are proven to be resourceful for crop classification application. The proposed CNNR model-based MS to quasi-HS data transformation approach can be used as a viable alternative for different applications in the absence of original HS images.
Author Nagesh Kumar, D.
Paul, Subir
Author_xml – sequence: 1
  givenname: Subir
  orcidid: 0000-0001-5651-2775
  surname: Paul
  fullname: Paul, Subir
  email: subir.paul.iisc@gmail.com
  organization: Department of Civil Engineering, Indian Institute of Science, Bengaluru, India
– sequence: 2
  givenname: D.
  orcidid: 0000-0002-5294-8501
  surname: Nagesh Kumar
  fullname: Nagesh Kumar, D.
  email: nagesh@iisc.ac.in
  organization: Department of Civil Engineering, Indian Institute of Science, Bengaluru, India
BookMark eNp9kE1PwjAYxxuDiYB-AONliedhX9atPRpUMEGNCOemKy0ZjnW2nYZv7wbERA-ensP_Jc__NwC9ylYagEsERwhBfrOYzN9GGGI4IhByzOEJ6CNKWQzTJOmBPkQ8jTHj-AwMvN9AiBKKsj6oFk5W3li3laGwVWRN9NSUofC1VsHJMrqTQUbBRq-N9EU83dXa_daWvqjW0dhWn7Zsuo5WeNaN25_wZd17NNdrp71vtXNwamTp9cXxDsHy4X4xnsazl8nj-HYWK8xJiCXimsqcSGwwoYQyYxQhWUq0kYgxjRAzKGcraJIU85yqXLZbNVdspcgqlWQIrg-9tbMfjfZBbGzj2te8wBTSFDLMWevKDi7lrPdOG6GKsOfQzitKgaDo4IoOrujgiiPcNon-JGtXbKXb_Zu5OmQKrfWPn6MkzRJEvgEvC4mW
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_jag_2024_104129
crossref_primary_10_1109_ACCESS_2025_3570629
crossref_primary_10_1109_TGRS_2021_3104476
crossref_primary_10_1016_j_jag_2023_103645
crossref_primary_10_1109_TGRS_2025_3541211
crossref_primary_10_1080_10106049_2022_2157497
crossref_primary_10_1109_TGRS_2023_3315472
crossref_primary_10_3390_agronomy15081779
crossref_primary_10_1109_TGRS_2021_3079969
crossref_primary_10_1109_JSTARS_2025_3594497
crossref_primary_10_3390_foods14111977
Cites_doi 10.1016/j.isprsjprs.2018.02.001
10.1117/12.2533077
10.1016/j.rse.2018.04.050
10.1016/j.isprsjprs.2017.09.016
10.1080/01431160701408410
10.1109/IGARSS.2016.7730608
10.3390/s90403090
10.1109/ICCV.2015.342
10.1007/s41976-019-00024-8
10.5194/isprs-archives-XLII-3-W6-579-2019
10.1109/JSTARS.2014.2329330
10.1109/JSTARS.2020.2983000
10.1109/TGRS.2019.2902568
10.1109/ICSPCC.2017.8242625
10.1109/TIP.2003.819861
10.1109/TGRS.2016.2584107
10.1016/j.isprsjprs.2018.01.007
10.3390/rs9010067
10.1109/JSTARS.2014.2356512
10.1007/978-3-319-32025-0_14
10.1007/978-3-319-46475-6_41
10.1016/j.rse.2019.111350
10.1016/j.patcog.2016.10.019
10.1109/TPAMI.2015.2439281
10.1109/TIP.2016.2564643
10.1016/j.neucom.2016.09.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3009290
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
Physics
EISSN 1558-0644
EndPage 3368
ExternalDocumentID 10_1109_TGRS_2020_3009290
9146741
Genre orig-research
GrantInformation_xml – fundername: Ministry of Earth Sciences, Government of India, through a project
  grantid: MoES/PAMC/H&C/41/2013-PC-II
  funderid: 10.13039/501100001851
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-a19e5ab3a2f235358ffc33763efa188e118f1b8d0f4629b5cba558e9c8dc3d6a3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633493700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:14:18 EDT 2025
Sat Nov 29 02:50:07 EST 2025
Tue Nov 18 22:22:13 EST 2025
Wed Aug 27 02:47:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a19e5ab3a2f235358ffc33763efa188e118f1b8d0f4629b5cba558e9c8dc3d6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5651-2775
0000-0002-5294-8501
PQID 2505608298
PQPubID 85465
PageCount 17
ParticipantIDs proquest_journals_2505608298
ieee_primary_9146741
crossref_citationtrail_10_1109_TGRS_2020_3009290
crossref_primary_10_1109_TGRS_2020_3009290
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
tiwari (ref5) 2016; 9880
ref12
ref15
ref14
ref31
ref11
ref10
hoang (ref8) 2016
chollet (ref30) 2015
ref2
ref1
ref17
ref16
ref19
ref18
raftery (ref32) 2019
goodfellow (ref28) 2016
hoang (ref7) 2015; 9643
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref9
ref4
ref3
ref6
References_xml – ident: ref14
  doi: 10.1016/j.isprsjprs.2018.02.001
– ident: ref18
  doi: 10.1117/12.2533077
– ident: ref21
  doi: 10.1016/j.rse.2018.04.050
– ident: ref1
  doi: 10.1016/j.isprsjprs.2017.09.016
– volume: 9880
  year: 2016
  ident: ref5
  article-title: Simulation of the hyperspectral data from multispectral data using Python programming language
  publication-title: Proc SPIE
– start-page: 661
  year: 2016
  ident: ref8
  article-title: Hyperspectral transformation from EO-1 ALI imagery using pseudo-hyperspectral image synthesis algorithm
– ident: ref4
  doi: 10.1080/01431160701408410
– ident: ref6
  doi: 10.1109/IGARSS.2016.7730608
– ident: ref3
  doi: 10.3390/s90403090
– ident: ref23
  doi: 10.1109/ICCV.2015.342
– ident: ref26
  doi: 10.1007/s41976-019-00024-8
– ident: ref27
  doi: 10.5194/isprs-archives-XLII-3-W6-579-2019
– ident: ref15
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref17
  doi: 10.1109/JSTARS.2020.2983000
– ident: ref22
  doi: 10.1109/TGRS.2019.2902568
– year: 2016
  ident: ref28
  publication-title: Deep Learning
– ident: ref12
  doi: 10.1109/ICSPCC.2017.8242625
– volume: 9643
  year: 2015
  ident: ref7
  article-title: Development of Bayesian-based transformation method of Landsat imagery into pseudo-hyperspectral imagery
  publication-title: Proc SPIE
– ident: ref31
  doi: 10.1109/TIP.2003.819861
– year: 2015
  ident: ref30
  publication-title: Keras
– ident: ref29
  doi: 10.1109/TGRS.2016.2584107
– ident: ref9
  doi: 10.1016/j.isprsjprs.2018.01.007
– ident: ref20
  doi: 10.3390/rs9010067
– ident: ref2
  doi: 10.1109/JSTARS.2014.2356512
– ident: ref25
  doi: 10.1007/978-3-319-32025-0_14
– ident: ref24
  doi: 10.1007/978-3-319-46475-6_41
– ident: ref13
  doi: 10.1016/j.rse.2019.111350
– ident: ref16
  doi: 10.1016/j.patcog.2016.10.019
– ident: ref10
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref11
  doi: 10.1109/TIP.2016.2564643
– year: 2019
  ident: ref32
  article-title: Package 'BMA
– ident: ref19
  doi: 10.1016/j.neucom.2016.09.010
SSID ssj0014517
Score 2.4275608
Snippet Hyperspectral (HS) data are proven to be more resourceful compared to multispectral (MS) data for object detection, classification, and several other...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3352
SubjectTerms Agriculture
Airborne remote sensing
Airborne sensing
Algorithms
Artificial neural networks
Artificial satellites
Classification
Convolutional neural network regression (CNNR)
crop classification
Data
Data models
Deep learning
Earth
Evaluation
hyperspectral (HS) data
Landsat
Landsat satellites
Machine learning
Mathematical models
Modelling
multispectral (MS) data
Neural networks
Object recognition
quasi-HS data
Reflectance
Reflectance curves
Regression analysis
Remote sensing
Spatial discrimination learning
Spatial resolution
Spectral reflectance
Statistical analysis
Support vector machines
Transformations
Title Transformation of Multispectral Data to Quasi-Hyperspectral Data Using Convolutional Neural Network Regression
URI https://ieeexplore.ieee.org/document/9146741
https://www.proquest.com/docview/2505608298
Volume 59
WOSCitedRecordID wos000633493700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oUNAHb1OcTumDT2Jdb2mTR1GnT-Jlgm8lPT0ZgrTSXX6_SZaNiSL41JYkpfDl9jXfdw7AWYoYi1BIn5Wx9BM0idyjgvlCEzceSlIolE02kT088Lc38bgCFwsvDBFZ8Rldmlt7ll_WODG_ynrCDGvjUl_NsnTm1VqcGCQsdNbo1NckInInmGEgeoO75xfNBCNNUE2IITP9Lq1BNqnKj5nYLi_97f992A5suW2kdzXDfRdWqNqDzath40JpkH5aCjW4B-tW6omjNlSDpb1qXXm18qwL13ouG_3SGzmW3rj2niZy9O7fa6LafC-zMgPvuq6mrt_qAhPkw16sqtx7puFMYFvtw2v_dnB977usCz7qpX_sy1AQk0UsIxXFLGZcKYzNNERKhpyTZiQqLHgZqCSNRMGwkIxxEshLjMtUxgfQquqKDsELkGdIGWFaYqI7i2Z3USKToigSQlZiB4I5Djm6kOQmM8ZHbqlJIHIDXW6gyx10HThfNPmcxeP4q3LbYLWo6GDqQHcOdu5G7Ci3W0FjNOZHv7c6ho3I6FmsaqcLrXEzoRNYw6kGqDm1nfELdEnfiw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6IF9QH7-K89sEnsdpbuuRR1DlRh5cJvpX09EQEaaXb_P0mWTYmiuBTW5KUwpfb13zfOQCHKWIsQiF9VsTST9Akco9y5gtN3HgoSaFQNtlEs9PhLy_ifgqOx14YIrLiMzoxt_Ysv6hwYH6VnQozrI1LfcZkznJurfGZQcJCZ45OfU0jIneGGQbitHv1-KS5YKQpqgkyZCbgiVXIplX5MRfbBaa1_L9PW4Elt5H0zobIr8IUlWuwePZau2AapJ8mgg2uwZwVe2JvHcruxG61Kr1KedaHa12XtX7phexLr195DwPZe_PbmqrW38us0MA7r8pP13N1gQnzYS9WV-490utQYltuwHPrsnve9l3eBR_14t_3ZSiIyTyWkYpiFjOuFMZmIiIlQ85JcxIV5rwIVJJGImeYS8Y4CeQFxkUq402YLquStsALkDeRmoRpgYnuLprfRYlM8jxPCFmBDQhGOGTogpKb3BjvmSUngcgMdJmBLnPQNeBo3ORjGJHjr8rrBqtxRQdTA3ZHYGduzPYyuxk0VmO-_XurA5hvd-9us9vrzs0OLERG3WI1PLsw3a8HtAez-KnBqvdtx_wCPS3i1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+of+Multispectral+Data+to+Quasi-Hyperspectral+Data+Using+Convolutional+Neural+Network+Regression&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Paul%2C+Subir&rft.au=Kumar%2C+D+Nagesh&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=4&rft.spage=3352&rft_id=info:doi/10.1109%2FTGRS.2020.3009290&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon