Expensive Multiobjective Optimization by Relation Learning and Prediction

Expensive multiobjective optimization problems pose great challenges to evolutionary algorithms due to their costly evaluation. Building cheap surrogate models to replace the expensive real models has been proved to be a practical way to reduce the number of costly evaluations. Supervised learning t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 26; H. 5; S. 1157 - 1170
Hauptverfasser: Hao, Hao, Zhou, Aimin, Qian, Hong, Zhang, Hu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Expensive multiobjective optimization problems pose great challenges to evolutionary algorithms due to their costly evaluation. Building cheap surrogate models to replace the expensive real models has been proved to be a practical way to reduce the number of costly evaluations. Supervised learning techniques from the community of machine learning have been widely applied to build either regressors, which approximate the fitness values of candidate solutions, or classifiers, which estimate the categories of candidate solutions. Considering the characteristics of the data produced in optimization, this article proposes a new surrogate model, called a relation model, for evolutionary multiobjective optimization. Instead of estimating the qualities of candidate solutions directly, the relation model tries to estimate the relationship between a pair of solutions <inline-formula> <tex-math notation="LaTeX">\langle \mathbf {x}, \mathbf {y}\rangle </tex-math></inline-formula>, i.e., <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> dominates <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> is dominated by <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula>, or <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> is nondominated with <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula> in the case of multiobjective optimization. To implement this idea, first a balanced training set is prepared, then a classifier is built based on the training data set to learn the relationship, and finally, the classifier with a voting-scoring strategy is applied to estimate the relationship between the candidate solutions and parent solutions. By this way, the promising candidate solutions are recognized and evaluated by the real models. The new approach is applied to three well-known benchmark suites and two real-world applications, and the experimental results suggest that the proposed method outperforms some state-of-the-art methods based on regression and classification models on the given instances.
AbstractList Expensive multiobjective optimization problems pose great challenges to evolutionary algorithms due to their costly evaluation. Building cheap surrogate models to replace the expensive real models has been proved to be a practical way to reduce the number of costly evaluations. Supervised learning techniques from the community of machine learning have been widely applied to build either regressors, which approximate the fitness values of candidate solutions, or classifiers, which estimate the categories of candidate solutions. Considering the characteristics of the data produced in optimization, this article proposes a new surrogate model, called a relation model, for evolutionary multiobjective optimization. Instead of estimating the qualities of candidate solutions directly, the relation model tries to estimate the relationship between a pair of solutions <inline-formula> <tex-math notation="LaTeX">\langle \mathbf {x}, \mathbf {y}\rangle </tex-math></inline-formula>, i.e., <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> dominates <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> is dominated by <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula>, or <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> is nondominated with <inline-formula> <tex-math notation="LaTeX">\mathbf {y} </tex-math></inline-formula> in the case of multiobjective optimization. To implement this idea, first a balanced training set is prepared, then a classifier is built based on the training data set to learn the relationship, and finally, the classifier with a voting-scoring strategy is applied to estimate the relationship between the candidate solutions and parent solutions. By this way, the promising candidate solutions are recognized and evaluated by the real models. The new approach is applied to three well-known benchmark suites and two real-world applications, and the experimental results suggest that the proposed method outperforms some state-of-the-art methods based on regression and classification models on the given instances.
Expensive multiobjective optimization problems pose great challenges to evolutionary algorithms due to their costly evaluation. Building cheap surrogate models to replace the expensive real models has been proved to be a practical way to reduce the number of costly evaluations. Supervised learning techniques from the community of machine learning have been widely applied to build either regressors, which approximate the fitness values of candidate solutions, or classifiers, which estimate the categories of candidate solutions. Considering the characteristics of the data produced in optimization, this article proposes a new surrogate model, called a relation model, for evolutionary multiobjective optimization. Instead of estimating the qualities of candidate solutions directly, the relation model tries to estimate the relationship between a pair of solutions [Formula Omitted], i.e., [Formula Omitted] dominates [Formula Omitted], [Formula Omitted] is dominated by [Formula Omitted], or [Formula Omitted] is nondominated with [Formula Omitted] in the case of multiobjective optimization. To implement this idea, first a balanced training set is prepared, then a classifier is built based on the training data set to learn the relationship, and finally, the classifier with a voting-scoring strategy is applied to estimate the relationship between the candidate solutions and parent solutions. By this way, the promising candidate solutions are recognized and evaluated by the real models. The new approach is applied to three well-known benchmark suites and two real-world applications, and the experimental results suggest that the proposed method outperforms some state-of-the-art methods based on regression and classification models on the given instances.
Author Qian, Hong
Hao, Hao
Zhou, Aimin
Zhang, Hu
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-3171-6194
  surname: Hao
  fullname: Hao, Hao
  email: 52194506007@stu.ecnu.edu.cn
  organization: Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, Shanghai Institute of AI for Education, and the School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 2
  givenname: Aimin
  orcidid: 0000-0002-4768-5946
  surname: Zhou
  fullname: Zhou, Aimin
  email: amzhou@cs.ecnu.edu.cn
  organization: Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, Shanghai Institute of AI for Education, and the School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 3
  givenname: Hong
  surname: Qian
  fullname: Qian, Hong
  email: hqian@cs.ecnu.edu.cn
  organization: Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, Shanghai Institute of AI for Education, and the School of Computer Science and Technology, East China Normal University, Shanghai, China
– sequence: 4
  givenname: Hu
  surname: Zhang
  fullname: Zhang, Hu
  email: jxzhanghu@126.com
  organization: Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing Electro-Mechanical Engineering Institute, Beijing, China
BookMark eNp9kE9Lw0AQxRepYFv9AOIl4Dl1_2R3s0cpVQsVRap4WzabiWxJN3GTivXTm5jiwYOneTO838zwJmjkKw8InRM8IwSrq_XiZT6jmNIZI5zylB6hMVEJiTGmYtRpnKpYyvT1BE2aZoMxSThRY7RcfNbgG_cB0f2ubF2VbcC2fftQt27rvkw381G2j56gHPQKTPDOv0XG59FjgNzZfn6KjgtTNnB2qFP0fLNYz-_i1cPtcn69ii1VrI0V2IwUGUslF1bQXKa4UBIMs7KQSc6EwVgIIlJugOaWZzQ3gkHODFNKGcam6HLYW4fqfQdNqzfVLvjupKaSKM45pknnkoPLhqppAhTauvbn_zYYV2qCdZ-b7nPTfW76kFtHkj9kHdzWhP2_zMXAOAD49StJhCKSfQOZTntO
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_ins_2023_03_005
crossref_primary_10_1007_s40747_025_01955_0
crossref_primary_10_1007_s40747_024_01499_9
crossref_primary_10_1016_j_asoc_2025_113670
crossref_primary_10_1109_MCI_2023_3304073
crossref_primary_10_1007_s40747_023_01113_4
crossref_primary_10_1016_j_swevo_2024_101516
crossref_primary_10_1002_we_2940
crossref_primary_10_1016_j_conengprac_2025_106240
crossref_primary_10_1109_TEVC_2024_3380327
crossref_primary_10_1016_j_swevo_2025_101892
crossref_primary_10_1007_s00158_024_03748_4
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_26599_TST_2024_9010224
crossref_primary_10_1109_TEVC_2024_3383095
crossref_primary_10_1016_j_engappai_2023_107745
crossref_primary_10_1109_TEVC_2024_3409431
crossref_primary_10_1016_j_engappai_2024_108616
crossref_primary_10_1109_TEVC_2023_3296488
crossref_primary_10_1016_j_swevo_2025_101926
crossref_primary_10_1016_j_swevo_2024_101506
crossref_primary_10_1016_j_swevo_2025_101924
crossref_primary_10_1016_j_swevo_2024_101666
crossref_primary_10_1016_j_swevo_2024_101700
crossref_primary_10_1016_j_eswa_2023_122575
crossref_primary_10_1016_j_swevo_2025_102019
crossref_primary_10_1016_j_swevo_2023_101323
crossref_primary_10_1016_j_swevo_2024_101741
crossref_primary_10_1016_j_eswa_2024_126103
crossref_primary_10_1016_j_swevo_2025_101980
crossref_primary_10_1177_13835416251328552
crossref_primary_10_1109_TETCI_2024_3372378
crossref_primary_10_1109_TEVC_2025_3529938
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TSMC_2022_3219080
crossref_primary_10_1109_ACCESS_2025_3525850
crossref_primary_10_1007_s00521_023_08661_3
crossref_primary_10_1016_j_petsci_2025_06_001
crossref_primary_10_1007_s10489_024_05270_y
crossref_primary_10_1109_MCI_2024_3401369
crossref_primary_10_1016_j_swevo_2025_101978
crossref_primary_10_1016_j_swevo_2024_101610
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1016_j_engappai_2024_109381
crossref_primary_10_1109_TETCI_2024_3404020
crossref_primary_10_1007_s11432_023_3909_x
crossref_primary_10_1016_j_rico_2025_100606
crossref_primary_10_1016_j_asoc_2025_113388
crossref_primary_10_1007_s40747_025_01845_5
crossref_primary_10_1016_j_swevo_2024_101729
crossref_primary_10_1016_j_swevo_2025_101905
crossref_primary_10_1016_j_swevo_2025_101947
crossref_primary_10_1016_j_asoc_2025_113932
crossref_primary_10_1016_j_ins_2024_121045
crossref_primary_10_1016_j_swevo_2025_101988
crossref_primary_10_1109_TEVC_2023_3340678
crossref_primary_10_1016_j_eswa_2025_128177
crossref_primary_10_1007_s40747_024_01715_6
crossref_primary_10_1016_j_swevo_2025_101982
Cites_doi 10.1007/s10710-005-6164-x
10.1109/TEVC.2019.2919762
10.1007/978-3-540-24854-5_71
10.1145/3321707.3321729
10.1109/TEVC.2005.859463
10.1109/MAP.2017.2774140
10.1609/aaai.v33i01.33012403
10.1109/ICSMC.2008.4811334
10.1007/s40747-017-0039-7
10.1109/CEC.2011.5949859
10.1109/4235.996017
10.1109/TEVC.2009.2039141
10.1109/APCAP47827.2019.9472059
10.1109/TEVC.2019.2899030
10.1515/amcs-2017-0008
10.1145/3321707.3321760
10.1115/1.3653121
10.1109/TCYB.2020.2985081
10.1007/s00500-017-2965-0
10.1109/CEC.2014.6900641
10.1016/S0169-7439(97)00061-0
10.1109/TEVC.2016.2622301
10.1007/s11390-012-1282-4
10.1145/3205651.3205717
10.1007/978-3-642-15844-5_37
10.1145/1007730.1007733
10.1007/978-3-030-74640-7_7
10.1109/TEVC.2018.2869001
10.1109/CEC.2015.7257247
10.1023/A:1008306431147
10.1109/TEVC.2021.3098257
10.1109/TEVC.2020.2986348
10.1109/TEVC.2018.2802784
10.1109/TEVC.2013.2281533
10.1007/11844297_106
10.1007/978-3-319-09584-4_29
10.1109/IJCNN48605.2020.9207558
10.1504/IJBIC.2018.092807
10.1109/TEVC.2018.2869247
10.1109/MCI.2017.2742868
10.1109/TEVC.2005.851274
10.1109/TEVC.2017.2675628
10.1007/s40747-021-00362-5
10.1109/TEVC.2013.2248012
10.1109/TEVC.2019.2924461
10.2307/1268522
10.1016/j.asoc.2017.08.024
10.1109/TCYB.2020.2967553
10.1080/10426914.2016.1269923
10.1109/TEVC.2005.851275
10.1109/TEVC.2005.861417
10.1109/TEVC.2021.3073648
10.1016/j.swevo.2011.05.001
10.1109/TEVC.2007.892759
10.1145/1276958.1277190
10.1109/TEVC.2017.2693320
10.1016/S0954-1810(96)00050-7
10.1007/1-84628-137-7_6
10.1109/TEVC.2009.2033671
10.1162/evco.2007.15.4.411
10.1109/TEVC.2013.2281535
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3152582
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1170
ExternalDocumentID 10_1109_TEVC_2022_3152582
9716917
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61731009; 61907015; 62106076
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 19511120601
  funderid: 10.13039/501100003399
– fundername: Scientific and Technological Innovation 2030 Major Projects
  grantid: 2018AAA0100902
– fundername: Natural Science Foundation of Shanghai
  grantid: 21ZR1420300
  funderid: 10.13039/100007219
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-9ecb1fb38756c62d780f97ea3c7f74d36a00661685ae2dc5b2da63ed3a3999a33
IEDL.DBID RIE
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862385200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 08:07:58 EST 2025
Sat Nov 29 03:13:49 EST 2025
Tue Nov 18 21:34:59 EST 2025
Wed Aug 27 02:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9ecb1fb38756c62d780f97ea3c7f74d36a00661685ae2dc5b2da63ed3a3999a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3171-6194
0000-0002-4768-5946
PQID 2719555024
PQPubID 85418
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2022_3152582
ieee_primary_9716917
proquest_journals_2719555024
crossref_primary_10_1109_TEVC_2022_3152582
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
hollander (ref53) 2013
ref52
ref55
ref11
ref54
ref10
zitzler (ref63) 2004
guo (ref5) 2016
ref17
ref16
ref19
ref18
el mrabet (ref67) 2006
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
zhou (ref12) 2005; 3
ref2
ref1
ref39
ref38
krizhevsky (ref65) 2009
ref24
ref23
ref26
ref25
ref64
ref20
ref66
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref54
  doi: 10.1007/s10710-005-6164-x
– ident: ref20
  doi: 10.1109/TEVC.2019.2919762
– ident: ref14
  doi: 10.1007/978-3-540-24854-5_71
– ident: ref1
  doi: 10.1145/3321707.3321729
– ident: ref21
  doi: 10.1109/TEVC.2005.859463
– ident: ref3
  doi: 10.1109/MAP.2017.2774140
– ident: ref37
  doi: 10.1609/aaai.v33i01.33012403
– ident: ref29
  doi: 10.1109/ICSMC.2008.4811334
– year: 2009
  ident: ref65
  article-title: Learning multiple layers of features from tiny images
– ident: ref59
  doi: 10.1007/s40747-017-0039-7
– ident: ref31
  doi: 10.1109/CEC.2011.5949859
– ident: ref61
  doi: 10.1109/4235.996017
– ident: ref30
  doi: 10.1109/TEVC.2009.2039141
– volume: 3
  start-page: 2832
  year: 2005
  ident: ref12
  article-title: A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref64
  doi: 10.1109/APCAP47827.2019.9472059
– ident: ref26
  doi: 10.1109/TEVC.2019.2899030
– ident: ref33
  doi: 10.1515/amcs-2017-0008
– ident: ref44
  doi: 10.1145/3321707.3321760
– ident: ref18
  doi: 10.1115/1.3653121
– start-page: 832
  year: 2004
  ident: ref63
  article-title: Indicator-based selection in multiobjective search
  publication-title: Parallel Problem Solving from Nature (PPSN VIII)
– ident: ref40
  doi: 10.1109/TCYB.2020.2985081
– ident: ref9
  doi: 10.1007/s00500-017-2965-0
– ident: ref46
  doi: 10.1109/CEC.2014.6900641
– ident: ref52
  doi: 10.1016/S0169-7439(97)00061-0
– ident: ref13
  doi: 10.1109/TEVC.2016.2622301
– ident: ref32
  doi: 10.1007/s11390-012-1282-4
– ident: ref36
  doi: 10.1145/3205651.3205717
– ident: ref43
  doi: 10.1007/978-3-642-15844-5_37
– ident: ref51
  doi: 10.1145/1007730.1007733
– ident: ref10
  doi: 10.1007/978-3-030-74640-7_7
– ident: ref7
  doi: 10.1109/TEVC.2018.2869001
– ident: ref38
  doi: 10.1109/CEC.2015.7257247
– ident: ref19
  doi: 10.1023/A:1008306431147
– ident: ref47
  doi: 10.1109/TEVC.2021.3098257
– ident: ref45
  doi: 10.1109/TEVC.2020.2986348
– ident: ref39
  doi: 10.1109/TEVC.2018.2802784
– year: 2006
  ident: ref67
  publication-title: High Frequency Structure Simulator (HFSS)
– ident: ref62
  doi: 10.1109/TEVC.2013.2281533
– ident: ref42
  doi: 10.1007/11844297_106
– ident: ref34
  doi: 10.1007/978-3-319-09584-4_29
– ident: ref2
  doi: 10.1109/IJCNN48605.2020.9207558
– ident: ref35
  doi: 10.1504/IJBIC.2018.092807
– ident: ref11
  doi: 10.1109/TEVC.2018.2869247
– ident: ref56
  doi: 10.1109/MCI.2017.2742868
– ident: ref24
  doi: 10.1109/TEVC.2005.851274
– ident: ref16
  doi: 10.1109/TEVC.2017.2675628
– start-page: 1
  year: 2016
  ident: ref5
  article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces
  publication-title: Proc IEEE Symp Ser Comput Intell (SSCI)
– ident: ref17
  doi: 10.1007/s40747-021-00362-5
– year: 2013
  ident: ref53
  publication-title: Nonparametric Statistical Methods
– ident: ref23
  doi: 10.1109/TEVC.2013.2248012
– ident: ref15
  doi: 10.1109/TEVC.2019.2924461
– ident: ref49
  doi: 10.2307/1268522
– ident: ref50
  doi: 10.1016/j.asoc.2017.08.024
– ident: ref4
  doi: 10.1109/TCYB.2020.2967553
– ident: ref6
  doi: 10.1080/10426914.2016.1269923
– ident: ref60
  doi: 10.1109/TEVC.2005.851275
– ident: ref58
  doi: 10.1109/TEVC.2005.861417
– ident: ref27
  doi: 10.1109/TEVC.2021.3073648
– ident: ref8
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref48
  doi: 10.1109/TEVC.2007.892759
– ident: ref66
  doi: 10.1145/1276958.1277190
– ident: ref22
  doi: 10.1109/TEVC.2017.2693320
– ident: ref28
  doi: 10.1016/S0954-1810(96)00050-7
– ident: ref57
  doi: 10.1007/1-84628-137-7_6
– ident: ref25
  doi: 10.1109/TEVC.2009.2033671
– ident: ref41
  doi: 10.1162/evco.2007.15.4.411
– ident: ref55
  doi: 10.1109/TEVC.2013.2281535
SSID ssj0014519
Score 2.6261673
Snippet Expensive multiobjective optimization problems pose great challenges to evolutionary algorithms due to their costly evaluation. Building cheap surrogate models...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1157
SubjectTerms Classifiers
Computational modeling
Data models
Evaluation
Evolutionary algorithms
Expensive optimization
Machine learning
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
Predictive models
relation model
surrogate-assisted evolutionary algorithm (SAEA)
Training
Training data
Title Expensive Multiobjective Optimization by Relation Learning and Prediction
URI https://ieeexplore.ieee.org/document/9716917
https://www.proquest.com/docview/2719555024
Volume 26
WOSCitedRecordID wos000862385200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED624YM-ON0Up1Py4JNY1yZt0jzK2FCQuYc59lbSNBVFO9kPwf_eJM2Kogi-lZKEksvl7uvdfQdwHmU5DagIPR5qbTKdYL1YUOnp4yFzoe2hsjwF0zs2GsWzGR_X4LKqhVFK2eQzdWUebSw_m8u1-VXW45bahdWhzhgta7WqiIGhSSmT6bn2GOOZi2AGPu9NBtO-RoIYa4Aa4SjG32yQbary4ya25mXY_N-H7cGucyPRdSn3faipogXNTYsG5DS2BTtf-AbbcGuIjW3COrKFt_P0ubzv0L2-OV5dSSZKP9AmRw45_tVHJIoMjRcmrGPeH8DDcDDp33iul4IntUFfeVzJNMhTouEJlRRnLPZzzpQgkuUszAgVxvkIaBwJhTMZpTgTlKiMCO3BcEHIITSKeaGOAHEN2VieCqIkDlNFRZALP6dESKbRT5h2wN_sbiId0bjpd_GSWMDh88QIJDECSZxAOnBRTXkrWTb-Gtw2EqgGus3vQHcjwsTp4TLBLOCRBmE4PP591glsm7XL9LwuNFaLtTqFLfm-elouzuwR-wQCEM5v
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED78BeqD06k4nZoHn8S6NmmT5lFkQ3FOH-bYW0nTVBTtZE7B_94kTYuiCL6VkpCSy-Xu6919B3AUZTkNqAg9HmptMp1gvVhQ6enjIXOh7aGyPAWjPhsM4vGY387BSV0Lo5SyyWfq1DzaWH42kW_mV1mHW2oXNg-LURhiv6zWqmMGhiilTKfn2meMxy6GGfi8M-yOzjUWxFhD1AhHMf5mhWxblR93sTUwvcb_Pm0d1pwjic5KyW_AnCqa0KiaNCCns01Y_cI4uAmXhtrYpqwjW3o7SR_LGw_d6Lvj2RVlovQDVVlyyDGw3iNRZOh2agI75v0W3PW6w_MLz3VT8KQ26TOPK5kGeUo0QKGS4ozFfs6ZEkSynIUZocK4HwGNI6FwJqMUZ4ISlRGhfRguCNmGhWJSqB1AXIM2lqeCKInDVFER5MLPKRGSafwTpi3wq91NpKMaNx0vnhILOXyeGIEkRiCJE0gLjuspLyXPxl-DN40E6oFu81vQrkSYOE18TTALeKRhGA53f591CMsXw-t-0r8cXO3BilmnTNZrw8Js-qb2YUm-zx5epwf2uH0C52vRtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expensive+Multiobjective+Optimization+by+Relation+Learning+and+Prediction&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Hao%2C+Hao&rft.au=Zhou%2C+Aimin&rft.au=Qian%2C+Hong&rft.au=Zhang%2C+Hu&rft.date=2022-10-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=26&rft.issue=5&rft.spage=1157&rft.epage=1170&rft_id=info:doi/10.1109%2FTEVC.2022.3152582&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3152582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon