Large-Scale Quantum Approximate Optimization via Divide-and-Conquer
Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However, it cannot overcome qubit limitation for large-scale problems. Furthermore, the simulation time of QAOA scales poorly with the problem size. We...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems Jg. 42; H. 6; S. 1852 - 1860 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0070, 1937-4151 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However, it cannot overcome qubit limitation for large-scale problems. Furthermore, the simulation time of QAOA scales poorly with the problem size. We propose a divide-and-conquer QAOA (DC-QAOA) to address the above challenges for graph maximum cut (MaxCut) problem. The algorithm works by recursively partitioning a larger graph into smaller ones whose MaxCut solutions are obtained with small-size noisy intermediate-scale quantum computers. The overall solution is retrieved from the subsolutions by applying the combination policy of measurement distribution reconstruction (MDR). The solution quality depends on the graph partitioning algorithm and MDR policy. Multiple partitioning and reconstruction methods are proposed and compared. Results are evaluated by metrics, such as quantum program runtime, measurement expectation value (EV), and approximation ratio (AR). The results show that DC-QAOA achieves 97.14% AR (20.32% higher than classical counterpart), and 94.79% EV (15.80% higher than quantum annealing). DC-QAOA solves large-scale graph instances with a polynomial rate or returns unsuccessful partition if graph connectivity requirement is not fulfilled otherwise. |
|---|---|
| AbstractList | Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However, it cannot overcome qubit limitation for large-scale problems. Furthermore, the simulation time of QAOA scales poorly with the problem size. We propose a divide-and-conquer QAOA (DC-QAOA) to address the above challenges for graph maximum cut (MaxCut) problem. The algorithm works by recursively partitioning a larger graph into smaller ones whose MaxCut solutions are obtained with small-size noisy intermediate-scale quantum computers. The overall solution is retrieved from the subsolutions by applying the combination policy of measurement distribution reconstruction (MDR). The solution quality depends on the graph partitioning algorithm and MDR policy. Multiple partitioning and reconstruction methods are proposed and compared. Results are evaluated by metrics, such as quantum program runtime, measurement expectation value (EV), and approximation ratio (AR). The results show that DC-QAOA achieves 97.14% AR (20.32% higher than classical counterpart), and 94.79% EV (15.80% higher than quantum annealing). DC-QAOA solves large-scale graph instances with a polynomial rate or returns unsuccessful partition if graph connectivity requirement is not fulfilled otherwise. |
| Author | Li, Junde Ghosh, Swaroop Alam, Mahabubul |
| Author_xml | – sequence: 1 givenname: Junde orcidid: 0000-0003-2470-8233 surname: Li fullname: Li, Junde email: jul1512@psu.edu organization: Department of Computer Science and Engineering, The Pennsylvania State University, State College, PA, USA – sequence: 2 givenname: Mahabubul orcidid: 0000-0003-1441-2623 surname: Alam fullname: Alam, Mahabubul organization: Department of Electrical Engineering, The Pennsylvania State University, State College, PA, USA – sequence: 3 givenname: Swaroop orcidid: 0000-0001-8753-490X surname: Ghosh fullname: Ghosh, Swaroop organization: School of Electrical Engineering and Computer Science, The Pennsylvania State University, State College, PA, USA |
| BookMark | eNp9kD1PwzAQhi0EEm3hByCWSMwuPttx4rFK-ZIqVYgyW47tIFdtEhynAn49Ka0YGJhueZ97754xOq2b2iF0BWQKQOTtqpjNp5RQOmUUKEhxgkYgWYY5pHCKRoRmOSYkI-do3HVrQoCnVI5QsdDhzeEXozcuee51HfttMmvb0Hz4rY4uWbbRb_2Xjr6pk53XydzvvHVY1xYXTf3eu3CBziq96dzlcU7Q6_3dqnjEi-XDUzFbYEMli1jaKtPCGm7y0hAGqbMVldYIwrgTkmjBBJecygwsOKqhlKJkjgoQVpaMswm6Oewdrht6u6jWTR_qoVLRHFKRc0LokMoOKROarguuUsbHn_Nj0H6jgKi9MbU3pvbG1NHYQMIfsg2DhPD5L3N9YLxz7jcvJcDwEfsGmOR3hw |
| CODEN | ITCSDI |
| CitedBy_id | crossref_primary_10_1016_j_physa_2024_129951 crossref_primary_10_1109_JIOT_2024_3481373 crossref_primary_10_1016_j_physa_2023_129089 crossref_primary_10_1109_COMST_2024_3502762 crossref_primary_10_1109_TCAD_2023_3345251 crossref_primary_10_1103_PhysRevX_13_041057 crossref_primary_10_1038_s41598_024_69643_6 crossref_primary_10_1109_TCAD_2024_3471949 crossref_primary_10_3390_app132111817 crossref_primary_10_1088_2058_9565_acf59c crossref_primary_10_1038_s41534_024_00825_w crossref_primary_10_2478_qic_2025_0006 crossref_primary_10_1103_PhysRevApplied_19_064001 crossref_primary_10_1007_s10773_024_05826_1 |
| Cites_doi | 10.1038/s41567-018-0048-5 10.1038/ncomms5213 10.1126/sciadv.aav2761 10.1007/978-3-030-58526-6_10 10.1023/B:ANOR.0000039522.58036.68 10.1038/s41598-019-43176-9 10.1016/j.physrep.2009.11.002 10.1063/1.5119235 10.1103/PhysRevE.71.036113 10.25080/TCWV9851 10.1038/nature23474 10.1103/PhysRevA.98.062315 10.1103/PhysRevLett.121.250501 10.1103/PhysRevLett.74.4101 10.1609/aaai.v33i01.33012272 10.1007/978-3-540-70626-7 10.1145/3445814.3446758 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCAD.2022.3212196 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-4151 |
| EndPage | 1860 |
| ExternalDocumentID | 10_1109_TCAD_2022_3212196 9911690 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Penn State Huck Institute of the Life Sciences – fundername: Seed Grants from Penn State Institute for Computational and Data Sciences – fundername: National Science Foundation grantid: OIA-2040667 funderid: 10.13039/100000001 |
| GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-9df7a6dc4c8bc0315edf29dc6034e690a6364942971d1e2a1b96b3e2616d9b343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001008200900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0070 |
| IngestDate | Mon Jun 30 08:31:46 EDT 2025 Tue Nov 18 20:52:09 EST 2025 Sat Nov 29 03:31:51 EST 2025 Wed Aug 27 02:50:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-9df7a6dc4c8bc0315edf29dc6034e690a6364942971d1e2a1b96b3e2616d9b343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8753-490X 0000-0003-2470-8233 0000-0003-1441-2623 |
| PQID | 2815684002 |
| PQPubID | 85470 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCAD_2022_3212196 proquest_journals_2815684002 crossref_primary_10_1109_TCAD_2022_3212196 ieee_primary_9911690 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
| PublicationTitleAbbrev | TCAD |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref22 bergholm (ref7) 2018 schrijver (ref21) 1998 ref2 ref1 farhi (ref4) 2014 (ref20) 2015 ref17 ref19 ref18 ref8 ref9 guerreschi (ref10) 2021 ref3 ref6 ref5 hagberg (ref16) 2008 |
| References_xml | – year: 2014 ident: ref4 article-title: A quantum approximate optimization algorithm publication-title: arXiv 1411 4028 – ident: ref13 doi: 10.1038/s41567-018-0048-5 – start-page: 29 year: 2015 ident: ref20 publication-title: Gurobi Optimizer Reference Manual – ident: ref1 doi: 10.1038/ncomms5213 – ident: ref3 doi: 10.1126/sciadv.aav2761 – ident: ref22 doi: 10.1007/978-3-030-58526-6_10 – ident: ref19 doi: 10.1023/B:ANOR.0000039522.58036.68 – ident: ref5 doi: 10.1038/s41598-019-43176-9 – ident: ref15 doi: 10.1016/j.physrep.2009.11.002 – ident: ref9 doi: 10.1063/1.5119235 – ident: ref17 doi: 10.1103/PhysRevE.71.036113 – year: 2008 ident: ref16 article-title: Exploring network structure, dynamics, and function using NetworkX doi: 10.25080/TCWV9851 – ident: ref2 doi: 10.1038/nature23474 – ident: ref12 doi: 10.1103/PhysRevA.98.062315 – ident: ref8 doi: 10.1103/PhysRevLett.121.250501 – ident: ref6 doi: 10.1103/PhysRevLett.74.4101 – ident: ref18 doi: 10.1609/aaai.v33i01.33012272 – year: 2021 ident: ref10 article-title: Solving quadratic unconstrained binary optimization with divide-and-conquer and quantum algorithms publication-title: arXiv 2101 07813 – year: 1998 ident: ref21 publication-title: Theory of Linear and Integer Programming – year: 2018 ident: ref7 article-title: Pennylane: Automatic differentiation of hybrid quantum-classical computations publication-title: arXiv 1811 04968 – ident: ref14 doi: 10.1007/978-3-540-70626-7 – ident: ref11 doi: 10.1145/3445814.3446758 |
| SSID | ssj0014529 |
| Score | 2.528941 |
| Snippet | Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1852 |
| SubjectTerms | Algorithms Approximation algorithms Chemical partition Combinatorial analysis Computers Graph maxcut Graph theory Logic gates noisy intermediate-scale quantum computing (QC) Optimization Partitioning Partitioning algorithms Polynomials quantum approximate optimization algorithm (QAOA) Quantum computers Quantum computing Qubit Qubits (quantum computing) Reconstruction |
| Title | Large-Scale Quantum Approximate Optimization via Divide-and-Conquer |
| URI | https://ieeexplore.ieee.org/document/9911690 https://www.proquest.com/docview/2815684002 |
| Volume | 42 |
| WOSCitedRecordID | wos001008200900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1937-4151 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014529 issn: 0278-0070 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-L6ogdPYrRpa9McZVU8yKqo4K3kMYEFtyv7wp_vTLcugiJ4KT0kkH6TZmYyM98AHFsnC4UhF0UITmRFQKGV0_zAjPxnNCbUzSZUt1u8vuqHFpzOa2EQsU4-wzN-rWP5fuAmfFV2TrYMR3UWYEEpNavVmkcMOIBY36cwYyzt4yaCKWN9_kwfRZ5gkpyldFBL5uf_poPqpio_TuJavdys_W9h67DamJHR5UzuG9DCahNWvpELbkHnjpO8xRMJAaPHCSE46UeXTCH-0SMzFaN7Oi36TRlmNO2Z6IpLs1CYyovOoKJlDrfh5eb6uXMrmpYJwpHeHgvtgzK5d5krrOMGDuhDor3L4zRDWqHJ0zzTpIOU9BITI63ObYrkRuVe2zRLd2CxGlS4C5ElWV1IY4PSJlMmNlYnhZRIBo63QRdtiL9ALF3DJ85tLd7K2q-Idcm4l4x72eDehpP5lPcZmcZfg7cY6PnABuM2HHxJqmx-t1GZMOcNuapxsvf7rH1Y5j7xsxyvA1gcDyd4CEtuOu6Nhkf1TvoExiTFeQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SbSDtoc2jpdumjQ85hSixbK1tHcO2ISWbTUK2kJvRYwQLjbfsi_78ztiOCbQUejE-SCB_I2tmNDPfABxZJ4scQyaKEJxQRUChc6f5gYr8ZzQm1M0m8vG4eHjQtxtw0tXCIGKdfIan_FrH8v3Mrfiq7IxsGY7qbMKLgVKJbKq1upgBhxDrGxXmjKWd3MYwZazPJvRZ5AsmyWlKR7Vkhv5nWqhuq_LHWVwrmIs3_7e0HXjdGpLReSP5XdjAag9ePaMX3IfhiNO8xT2JAaO7FWG4eozOmUT815QMVYxu6Lx4bAsxo_XURF-4OAuFqbwYzipa5vwtfL_4OhleirZpgnCkuZdC-5CbzDvlCuu4hQP6kGjvsjhVSCs0WZopTVool15iYqTVmU2RHKnMa5uq9B30qlmF7yGyJK2BNDbk2qjcxMbqpJASycTxNuiiD_ETiKVrGcW5scWPsvYsYl0y7iXjXra49-G4m_KzodP41-B9Brob2GLch4MnSZXtD7coE2a9IWc1Tj78fdYhbF9Orkfl6Nv46iO85K7xTcbXAfSW8xV-gi23Xk4X88_1rvoNOU3IwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Quantum+Approximate+Optimization+via+Divide-and-Conquer&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Li%2C+Junde&rft.au=Alam%2C+Mahabubul&rft.au=Ghosh%2C+Swaroop&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=42&rft.issue=6&rft.spage=1852&rft_id=info:doi/10.1109%2FTCAD.2022.3212196&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |