Large-Scale Quantum Approximate Optimization via Divide-and-Conquer

Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However, it cannot overcome qubit limitation for large-scale problems. Furthermore, the simulation time of QAOA scales poorly with the problem size. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems Jg. 42; H. 6; S. 1852 - 1860
Hauptverfasser: Li, Junde, Alam, Mahabubul, Ghosh, Swaroop
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0070, 1937-4151
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However, it cannot overcome qubit limitation for large-scale problems. Furthermore, the simulation time of QAOA scales poorly with the problem size. We propose a divide-and-conquer QAOA (DC-QAOA) to address the above challenges for graph maximum cut (MaxCut) problem. The algorithm works by recursively partitioning a larger graph into smaller ones whose MaxCut solutions are obtained with small-size noisy intermediate-scale quantum computers. The overall solution is retrieved from the subsolutions by applying the combination policy of measurement distribution reconstruction (MDR). The solution quality depends on the graph partitioning algorithm and MDR policy. Multiple partitioning and reconstruction methods are proposed and compared. Results are evaluated by metrics, such as quantum program runtime, measurement expectation value (EV), and approximation ratio (AR). The results show that DC-QAOA achieves 97.14% AR (20.32% higher than classical counterpart), and 94.79% EV (15.80% higher than quantum annealing). DC-QAOA solves large-scale graph instances with a polynomial rate or returns unsuccessful partition if graph connectivity requirement is not fulfilled otherwise.
AbstractList Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However, it cannot overcome qubit limitation for large-scale problems. Furthermore, the simulation time of QAOA scales poorly with the problem size. We propose a divide-and-conquer QAOA (DC-QAOA) to address the above challenges for graph maximum cut (MaxCut) problem. The algorithm works by recursively partitioning a larger graph into smaller ones whose MaxCut solutions are obtained with small-size noisy intermediate-scale quantum computers. The overall solution is retrieved from the subsolutions by applying the combination policy of measurement distribution reconstruction (MDR). The solution quality depends on the graph partitioning algorithm and MDR policy. Multiple partitioning and reconstruction methods are proposed and compared. Results are evaluated by metrics, such as quantum program runtime, measurement expectation value (EV), and approximation ratio (AR). The results show that DC-QAOA achieves 97.14% AR (20.32% higher than classical counterpart), and 94.79% EV (15.80% higher than quantum annealing). DC-QAOA solves large-scale graph instances with a polynomial rate or returns unsuccessful partition if graph connectivity requirement is not fulfilled otherwise.
Author Li, Junde
Ghosh, Swaroop
Alam, Mahabubul
Author_xml – sequence: 1
  givenname: Junde
  orcidid: 0000-0003-2470-8233
  surname: Li
  fullname: Li, Junde
  email: jul1512@psu.edu
  organization: Department of Computer Science and Engineering, The Pennsylvania State University, State College, PA, USA
– sequence: 2
  givenname: Mahabubul
  orcidid: 0000-0003-1441-2623
  surname: Alam
  fullname: Alam, Mahabubul
  organization: Department of Electrical Engineering, The Pennsylvania State University, State College, PA, USA
– sequence: 3
  givenname: Swaroop
  orcidid: 0000-0001-8753-490X
  surname: Ghosh
  fullname: Ghosh, Swaroop
  organization: School of Electrical Engineering and Computer Science, The Pennsylvania State University, State College, PA, USA
BookMark eNp9kD1PwzAQhi0EEm3hByCWSMwuPttx4rFK-ZIqVYgyW47tIFdtEhynAn49Ka0YGJhueZ97754xOq2b2iF0BWQKQOTtqpjNp5RQOmUUKEhxgkYgWYY5pHCKRoRmOSYkI-do3HVrQoCnVI5QsdDhzeEXozcuee51HfttMmvb0Hz4rY4uWbbRb_2Xjr6pk53XydzvvHVY1xYXTf3eu3CBziq96dzlcU7Q6_3dqnjEi-XDUzFbYEMli1jaKtPCGm7y0hAGqbMVldYIwrgTkmjBBJecygwsOKqhlKJkjgoQVpaMswm6Oewdrht6u6jWTR_qoVLRHFKRc0LokMoOKROarguuUsbHn_Nj0H6jgKi9MbU3pvbG1NHYQMIfsg2DhPD5L3N9YLxz7jcvJcDwEfsGmOR3hw
CODEN ITCSDI
CitedBy_id crossref_primary_10_1016_j_physa_2024_129951
crossref_primary_10_1109_JIOT_2024_3481373
crossref_primary_10_1016_j_physa_2023_129089
crossref_primary_10_1109_COMST_2024_3502762
crossref_primary_10_1109_TCAD_2023_3345251
crossref_primary_10_1103_PhysRevX_13_041057
crossref_primary_10_1038_s41598_024_69643_6
crossref_primary_10_1109_TCAD_2024_3471949
crossref_primary_10_3390_app132111817
crossref_primary_10_1088_2058_9565_acf59c
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_2478_qic_2025_0006
crossref_primary_10_1103_PhysRevApplied_19_064001
crossref_primary_10_1007_s10773_024_05826_1
Cites_doi 10.1038/s41567-018-0048-5
10.1038/ncomms5213
10.1126/sciadv.aav2761
10.1007/978-3-030-58526-6_10
10.1023/B:ANOR.0000039522.58036.68
10.1038/s41598-019-43176-9
10.1016/j.physrep.2009.11.002
10.1063/1.5119235
10.1103/PhysRevE.71.036113
10.25080/TCWV9851
10.1038/nature23474
10.1103/PhysRevA.98.062315
10.1103/PhysRevLett.121.250501
10.1103/PhysRevLett.74.4101
10.1609/aaai.v33i01.33012272
10.1007/978-3-540-70626-7
10.1145/3445814.3446758
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2022.3212196
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 1860
ExternalDocumentID 10_1109_TCAD_2022_3212196
9911690
Genre orig-research
GrantInformation_xml – fundername: Penn State Huck Institute of the Life Sciences
– fundername: Seed Grants from Penn State Institute for Computational and Data Sciences
– fundername: National Science Foundation
  grantid: OIA-2040667
  funderid: 10.13039/100000001
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-9df7a6dc4c8bc0315edf29dc6034e690a6364942971d1e2a1b96b3e2616d9b343
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001008200900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0070
IngestDate Mon Jun 30 08:31:46 EDT 2025
Tue Nov 18 20:52:09 EST 2025
Sat Nov 29 03:31:51 EST 2025
Wed Aug 27 02:50:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9df7a6dc4c8bc0315edf29dc6034e690a6364942971d1e2a1b96b3e2616d9b343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8753-490X
0000-0003-2470-8233
0000-0003-1441-2623
PQID 2815684002
PQPubID 85470
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TCAD_2022_3212196
proquest_journals_2815684002
crossref_primary_10_1109_TCAD_2022_3212196
ieee_primary_9911690
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref22
bergholm (ref7) 2018
schrijver (ref21) 1998
ref2
ref1
farhi (ref4) 2014
(ref20) 2015
ref17
ref19
ref18
ref8
ref9
guerreschi (ref10) 2021
ref3
ref6
ref5
hagberg (ref16) 2008
References_xml – year: 2014
  ident: ref4
  article-title: A quantum approximate optimization algorithm
  publication-title: arXiv 1411 4028
– ident: ref13
  doi: 10.1038/s41567-018-0048-5
– start-page: 29
  year: 2015
  ident: ref20
  publication-title: Gurobi Optimizer Reference Manual
– ident: ref1
  doi: 10.1038/ncomms5213
– ident: ref3
  doi: 10.1126/sciadv.aav2761
– ident: ref22
  doi: 10.1007/978-3-030-58526-6_10
– ident: ref19
  doi: 10.1023/B:ANOR.0000039522.58036.68
– ident: ref5
  doi: 10.1038/s41598-019-43176-9
– ident: ref15
  doi: 10.1016/j.physrep.2009.11.002
– ident: ref9
  doi: 10.1063/1.5119235
– ident: ref17
  doi: 10.1103/PhysRevE.71.036113
– year: 2008
  ident: ref16
  article-title: Exploring network structure, dynamics, and function using NetworkX
  doi: 10.25080/TCWV9851
– ident: ref2
  doi: 10.1038/nature23474
– ident: ref12
  doi: 10.1103/PhysRevA.98.062315
– ident: ref8
  doi: 10.1103/PhysRevLett.121.250501
– ident: ref6
  doi: 10.1103/PhysRevLett.74.4101
– ident: ref18
  doi: 10.1609/aaai.v33i01.33012272
– year: 2021
  ident: ref10
  article-title: Solving quadratic unconstrained binary optimization with divide-and-conquer and quantum algorithms
  publication-title: arXiv 2101 07813
– year: 1998
  ident: ref21
  publication-title: Theory of Linear and Integer Programming
– year: 2018
  ident: ref7
  article-title: Pennylane: Automatic differentiation of hybrid quantum-classical computations
  publication-title: arXiv 1811 04968
– ident: ref14
  doi: 10.1007/978-3-540-70626-7
– ident: ref11
  doi: 10.1145/3445814.3446758
SSID ssj0014529
Score 2.528941
Snippet Quantum approximate optimization algorithm (QAOA) is a promising hybrid quantum-classical algorithm for solving combinatorial optimization problems. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1852
SubjectTerms Algorithms
Approximation algorithms
Chemical partition
Combinatorial analysis
Computers
Graph maxcut
Graph theory
Logic gates
noisy intermediate-scale quantum computing (QC)
Optimization
Partitioning
Partitioning algorithms
Polynomials
quantum approximate optimization algorithm (QAOA)
Quantum computers
Quantum computing
Qubit
Qubits (quantum computing)
Reconstruction
Title Large-Scale Quantum Approximate Optimization via Divide-and-Conquer
URI https://ieeexplore.ieee.org/document/9911690
https://www.proquest.com/docview/2815684002
Volume 42
WOSCitedRecordID wos001008200900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-4151
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014529
  issn: 0278-0070
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-L6ogdPYrRpa9McZVU8yKqo4K3kMYEFtyv7wp_vTLcugiJ4KT0kkH6TZmYyM98AHFsnC4UhF0UITmRFQKGV0_zAjPxnNCbUzSZUt1u8vuqHFpzOa2EQsU4-wzN-rWP5fuAmfFV2TrYMR3UWYEEpNavVmkcMOIBY36cwYyzt4yaCKWN9_kwfRZ5gkpyldFBL5uf_poPqpio_TuJavdys_W9h67DamJHR5UzuG9DCahNWvpELbkHnjpO8xRMJAaPHCSE46UeXTCH-0SMzFaN7Oi36TRlmNO2Z6IpLs1CYyovOoKJlDrfh5eb6uXMrmpYJwpHeHgvtgzK5d5krrOMGDuhDor3L4zRDWqHJ0zzTpIOU9BITI63ObYrkRuVe2zRLd2CxGlS4C5ElWV1IY4PSJlMmNlYnhZRIBo63QRdtiL9ALF3DJ85tLd7K2q-Idcm4l4x72eDehpP5lPcZmcZfg7cY6PnABuM2HHxJqmx-t1GZMOcNuapxsvf7rH1Y5j7xsxyvA1gcDyd4CEtuOu6Nhkf1TvoExiTFeQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SbSDtoc2jpdumjQ85hSixbK1tHcO2ISWbTUK2kJvRYwQLjbfsi_78ztiOCbQUejE-SCB_I2tmNDPfABxZJ4scQyaKEJxQRUChc6f5gYr8ZzQm1M0m8vG4eHjQtxtw0tXCIGKdfIan_FrH8v3Mrfiq7IxsGY7qbMKLgVKJbKq1upgBhxDrGxXmjKWd3MYwZazPJvRZ5AsmyWlKR7Vkhv5nWqhuq_LHWVwrmIs3_7e0HXjdGpLReSP5XdjAag9ePaMX3IfhiNO8xT2JAaO7FWG4eozOmUT815QMVYxu6Lx4bAsxo_XURF-4OAuFqbwYzipa5vwtfL_4OhleirZpgnCkuZdC-5CbzDvlCuu4hQP6kGjvsjhVSCs0WZopTVool15iYqTVmU2RHKnMa5uq9B30qlmF7yGyJK2BNDbk2qjcxMbqpJASycTxNuiiD_ETiKVrGcW5scWPsvYsYl0y7iXjXra49-G4m_KzodP41-B9Brob2GLch4MnSZXtD7coE2a9IWc1Tj78fdYhbF9Orkfl6Nv46iO85K7xTcbXAfSW8xV-gi23Xk4X88_1rvoNOU3IwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Quantum+Approximate+Optimization+via+Divide-and-Conquer&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Li%2C+Junde&rft.au=Alam%2C+Mahabubul&rft.au=Ghosh%2C+Swaroop&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0070&rft.eissn=1937-4151&rft.volume=42&rft.issue=6&rft.spage=1852&rft_id=info:doi/10.1109%2FTCAD.2022.3212196&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon