Spectral Partitioning Residual Network With Spatial Attention Mechanism for Hyperspectral Image Classification

Hyperspectral image (HSI) classification is one of the most important tasks in hyperspectral data analysis. Convolutional neural networks (CNN) have been introduced to HSI classification and achieved good performance. In this article, an effective and efficient CNN-based spectral partitioning residu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 14
Hlavní autori: Zhang, Xiangrong, Shang, Shouwang, Tang, Xu, Feng, Jie, Jiao, Licheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hyperspectral image (HSI) classification is one of the most important tasks in hyperspectral data analysis. Convolutional neural networks (CNN) have been introduced to HSI classification and achieved good performance. In this article, an effective and efficient CNN-based spectral partitioning residual network (SPRN) is proposed for HSI classification. The SPRN splits the input spectral bands into several nonoverlapping continuous subbands and uses cascaded parallel improved residual blocks to extract spectral-spatial features from these subbands, respectively. Finally, the features are fused and fed into a classifier. By equivalently using grouped convolutions, the spectral partition and feature extraction are embedded into an end-to-end network. Experimental results show that the proposed SPRN achieves state-of-the-art performance, meanwhile, with relatively fewer parameters and computational costs. Usually, the CNN takes a patch that contains continuous spatial information as the input and results in a class label of the center pixel. The large size of the input patch includes more spatial information, whereas also introduces interfering pixels that may lead to a degradation of classification accuracies. For that reason, we propose a novel spatial attention module named homogeneous pixel detection module (HPDM). The module alleviates the degradation of performance as the input patch size increases by capturing the homogeneous pixels in the input patch. The module can be integrated into any CNN-based HSI classification framework.
AbstractList Hyperspectral image (HSI) classification is one of the most important tasks in hyperspectral data analysis. Convolutional neural networks (CNN) have been introduced to HSI classification and achieved good performance. In this article, an effective and efficient CNN-based spectral partitioning residual network (SPRN) is proposed for HSI classification. The SPRN splits the input spectral bands into several nonoverlapping continuous subbands and uses cascaded parallel improved residual blocks to extract spectral-spatial features from these subbands, respectively. Finally, the features are fused and fed into a classifier. By equivalently using grouped convolutions, the spectral partition and feature extraction are embedded into an end-to-end network. Experimental results show that the proposed SPRN achieves state-of-the-art performance, meanwhile, with relatively fewer parameters and computational costs. Usually, the CNN takes a patch that contains continuous spatial information as the input and results in a class label of the center pixel. The large size of the input patch includes more spatial information, whereas also introduces interfering pixels that may lead to a degradation of classification accuracies. For that reason, we propose a novel spatial attention module named homogeneous pixel detection module (HPDM). The module alleviates the degradation of performance as the input patch size increases by capturing the homogeneous pixels in the input patch. The module can be integrated into any CNN-based HSI classification framework.
Author Shang, Shouwang
Tang, Xu
Feng, Jie
Zhang, Xiangrong
Jiao, Licheng
Author_xml – sequence: 1
  givenname: Xiangrong
  orcidid: 0000-0003-0379-2042
  surname: Zhang
  fullname: Zhang, Xiangrong
  email: xrzhang@mail.xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 2
  givenname: Shouwang
  surname: Shang
  fullname: Shang, Shouwang
  email: swshang@stu.xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 3
  givenname: Xu
  orcidid: 0000-0003-1375-0778
  surname: Tang
  fullname: Tang, Xu
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-8032-7542
  surname: Feng
  fullname: Feng, Jie
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 5
  givenname: Licheng
  orcidid: 0000-0003-3354-9617
  surname: Jiao
  fullname: Jiao, Licheng
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
BookMark eNp9kMtOwkAUhicGExF9AOOmieviXHo7S0IUSPASwLhsptNTGIS2zgwxvL0toAsXrib5833nzPkvSaesSiTkhtE-YxTuF6PZvM8pZ31B44BBdEa6LAwTn0ZB0CFd2kQ-T4BfkEtr15SyIGRxl5TzGpUzcuO9SuO001Wpy6U3Q6vzXZM-o_uqzIf3rt3Km9fS6SYcOIdli3pPqFay1HbrFZXxxvsajf0ZONnKJXrDjbRWF1rJVrgi54XcWLw-vT3y9viwGI796ctoMhxMfcVBOB9yiDkgsIRJCEQOSCmqvOA8RFHIAuMoy7JESMggEQkFJbIcD3RzvBKiR-6Oc2tTfe7QunRd7UzZrEx5xIByEUHcUPGRUqay1mCRKu0O_2wO0JuU0bQtN23LTdty01O5jcn-mLXRW2n2_zq3R0cj4i8PQRhAxMQ34J6JSQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2022_3223664
crossref_primary_10_1109_TGRS_2024_3369075
crossref_primary_10_1109_TGRS_2024_3377610
crossref_primary_10_1109_LGRS_2023_3332226
crossref_primary_10_1109_TGRS_2022_3196771
crossref_primary_10_1109_TGRS_2023_3239411
crossref_primary_10_1109_TGRS_2025_3598375
crossref_primary_10_1109_TGRS_2021_3133582
crossref_primary_10_1109_TGRS_2023_3292929
crossref_primary_10_1109_JSTARS_2023_3328115
crossref_primary_10_1109_TGRS_2022_3179419
crossref_primary_10_1109_JSTARS_2022_3144339
crossref_primary_10_1109_TGRS_2023_3299442
crossref_primary_10_1109_TGRS_2023_3263851
crossref_primary_10_1109_TGRS_2022_3200153
crossref_primary_10_1109_TGRS_2023_3321840
crossref_primary_10_1109_TGRS_2025_3530993
crossref_primary_10_1109_JSTARS_2024_3371536
crossref_primary_10_1111_phor_12493
crossref_primary_10_1109_JSTARS_2022_3212983
crossref_primary_10_1080_14498596_2024_2364231
crossref_primary_10_1109_LGRS_2022_3208935
crossref_primary_10_1080_01431161_2024_2343133
crossref_primary_10_1109_JSTARS_2024_3440254
crossref_primary_10_1007_s00500_023_08439_8
crossref_primary_10_1109_TGRS_2022_3224604
crossref_primary_10_1080_01431161_2024_2398820
crossref_primary_10_1109_JSTARS_2024_3427839
crossref_primary_10_1109_LGRS_2023_3320406
crossref_primary_10_1007_s10489_023_04960_3
crossref_primary_10_1080_01431161_2022_2133579
crossref_primary_10_1109_TGRS_2023_3294518
crossref_primary_10_1109_TGRS_2025_3590154
crossref_primary_10_1109_TGRS_2025_3547824
crossref_primary_10_1109_TGRS_2024_3468876
crossref_primary_10_3390_rs17152705
crossref_primary_10_1109_LGRS_2023_3244758
crossref_primary_10_1109_LGRS_2025_3554265
crossref_primary_10_1109_TGRS_2025_3605262
crossref_primary_10_1109_JSTARS_2025_3533211
crossref_primary_10_1080_01431161_2024_2326042
crossref_primary_10_1109_TGRS_2023_3304716
crossref_primary_10_1109_JSTARS_2022_3179446
crossref_primary_10_1109_TGRS_2022_3207933
crossref_primary_10_1109_TGRS_2024_3352093
crossref_primary_10_1109_LGRS_2022_3199208
crossref_primary_10_1109_LGRS_2022_3225151
Cites_doi 10.3390/rs10020339
10.3390/rs11080963
10.1080/01431169308904316
10.1109/TGRS.2016.2646420
10.1109/JSTARS.2015.2437614
10.1109/TGRS.2011.2129595
10.1109/JSTARS.2016.2593907
10.1109/JSTARS.2019.2941454
10.1109/CVPR.2016.90
10.1109/TIP.2010.2045034
10.1016/j.rse.2015.04.032
10.1109/LGRS.2019.2936652
10.1109/CVPR.2018.00813
10.1109/TGRS.2010.2059707
10.1109/TGRS.2004.831865
10.1109/IGARSS.2015.7326945
10.1109/36.739109
10.1109/TGRS.2017.2755542
10.3390/rs10071068
10.1109/TGRS.2016.2543748
10.1007/s13398-014-0173-7.2
10.1109/TGRS.2019.2893180
10.1109/TCYB.2020.2977461
10.1109/TGRS.2018.2872590
10.1109/TGRS.2017.2705073
10.1109/TGRS.2017.2765364
10.1109/TGRS.2018.2794326
10.1109/TGRS.2019.2951160
10.1109/TGRS.2020.2995709
10.3390/rs11111307
10.1109/TGRS.2008.2005729
10.1016/s0034-4257(98)00064-9
10.1007/978-3-030-01234-2_1
10.1016/j.neucom.2015.11.044
10.1109/TIT.1968.1054102
10.1109/LGRS.2018.2830403
10.1109/TGRS.2018.2841823
10.1016/j.isprsjprs.2018.02.001
10.1109/TGRS.2012.2230268
10.1109/LGRS.2016.2630045
10.1016/j.patrec.2005.08.011
10.1109/CVPR.2017.634
10.1109/TGRS.2010.2060550
10.1109/TGRS.2016.2584107
10.1109/LGRS.2011.2172185
10.1016/S0034-4257(97)00049-7
10.1109/LGRS.2017.2755061
10.3390/rs8030172
10.1109/TGRS.2004.842478
10.1109/TGRS.2017.2762593
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3074196
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2021_3074196
9454961
Genre orig-research
GrantInformation_xml – fundername: 111 Project
  grantid: B07048
– fundername: National Natural Science Foundation of China
  grantid: 61772400; 61772399; 61801351; 61871306
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program in Shaanxi Province of China
  grantid: 2019ZDLGY03-08
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-9d9729e9181a943d9e00ecdf225e3fafe76bbb83a9b983809c3bde181a9741c33
IEDL.DBID RIE
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732792300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:34:18 EDT 2025
Sat Nov 29 02:50:13 EST 2025
Tue Nov 18 22:35:38 EST 2025
Wed Aug 27 03:03:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9d9729e9181a943d9e00ecdf225e3fafe76bbb83a9b983809c3bde181a9741c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3354-9617
0000-0003-1375-0778
0000-0002-8032-7542
0000-0003-0379-2042
PQID 2619023697
PQPubID 85465
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3074196
crossref_primary_10_1109_TGRS_2021_3074196
proquest_journals_2619023697
ieee_primary_9454961
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Kingma (ref51)
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref4
  doi: 10.3390/rs10020339
– ident: ref48
  doi: 10.3390/rs11080963
– ident: ref7
  doi: 10.1080/01431169308904316
– ident: ref2
  doi: 10.1109/TGRS.2016.2646420
– ident: ref20
  doi: 10.1109/JSTARS.2015.2437614
– ident: ref11
  doi: 10.1109/TGRS.2011.2129595
– ident: ref18
  doi: 10.1109/JSTARS.2016.2593907
– ident: ref23
  doi: 10.1109/JSTARS.2019.2941454
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– ident: ref29
  doi: 10.1109/TIP.2010.2045034
– ident: ref1
  doi: 10.1016/j.rse.2015.04.032
– ident: ref12
  doi: 10.1109/LGRS.2019.2936652
– ident: ref44
  doi: 10.1109/CVPR.2018.00813
– ident: ref22
  doi: 10.1109/TGRS.2010.2059707
– ident: ref8
  doi: 10.1109/TGRS.2004.831865
– ident: ref32
  doi: 10.1109/IGARSS.2015.7326945
– ident: ref21
  doi: 10.1109/36.739109
– ident: ref39
  doi: 10.1109/TGRS.2017.2755542
– ident: ref40
  doi: 10.3390/rs10071068
– ident: ref37
  doi: 10.1109/TGRS.2016.2543748
– ident: ref49
  doi: 10.1007/s13398-014-0173-7.2
– ident: ref19
  doi: 10.1109/TGRS.2019.2893180
– ident: ref16
  doi: 10.1109/TCYB.2020.2977461
– ident: ref5
  doi: 10.1109/TGRS.2018.2872590
– ident: ref24
  doi: 10.1109/TGRS.2017.2705073
– ident: ref26
  doi: 10.1109/TGRS.2017.2765364
– ident: ref33
  doi: 10.1109/TGRS.2018.2794326
– ident: ref46
  doi: 10.1109/TGRS.2019.2951160
– ident: ref17
  doi: 10.1109/TGRS.2020.2995709
– ident: ref47
  doi: 10.3390/rs11111307
– ident: ref15
  doi: 10.1109/TGRS.2008.2005729
– ident: ref25
  doi: 10.1016/s0034-4257(98)00064-9
– ident: ref45
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref42
  doi: 10.1016/j.neucom.2015.11.044
– ident: ref13
  doi: 10.1109/TIT.1968.1054102
– ident: ref35
  doi: 10.1109/LGRS.2018.2830403
– ident: ref36
  doi: 10.1109/TGRS.2018.2841823
– ident: ref43
  doi: 10.1016/j.isprsjprs.2018.02.001
– ident: ref30
  doi: 10.1109/TGRS.2012.2230268
– ident: ref41
  doi: 10.1109/LGRS.2016.2630045
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref51
  article-title: Adam: A method for stochastic optimization
– ident: ref10
  doi: 10.1016/j.patrec.2005.08.011
– ident: ref50
  doi: 10.1109/CVPR.2017.634
– ident: ref6
  doi: 10.1109/TGRS.2010.2060550
– ident: ref38
  doi: 10.1109/TGRS.2016.2584107
– ident: ref14
  doi: 10.1109/LGRS.2011.2172185
– ident: ref9
  doi: 10.1016/S0034-4257(97)00049-7
– ident: ref31
  doi: 10.1109/LGRS.2017.2755061
– ident: ref3
  doi: 10.3390/rs8030172
– ident: ref27
  doi: 10.1109/TGRS.2004.842478
– ident: ref28
  doi: 10.1109/TGRS.2017.2762593
SSID ssj0014517
Score 2.6201017
Snippet Hyperspectral image (HSI) classification is one of the most important tasks in hyperspectral data analysis. Convolutional neural networks (CNN) have been...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Classification
Computer applications
Correlation
Data analysis
Data mining
Degradation
Feature extraction
Grouped convolutions
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Iron
Modules
Neural networks
Partitioning
Performance degradation
Pixels
Residual neural networks
spatial attention mechanism
Spatial data
Spectra
Spectral bands
spectral partition (SP)
Title Spectral Partitioning Residual Network With Spatial Attention Mechanism for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/9454961
https://www.proquest.com/docview/2619023697
Volume 60
WOSCitedRecordID wos000732792300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KOiDX1OcTsmDT2K3tqlp71HEqaBD5tfeSpukOHBTbOffby6NY6AIvvUhOUp-l1x-l_sAOOIoDPUJMg-l0eBIKJ-2VO75SpE9UiKzDv2nm7jfT4ZDvFuAk1kujNbaBp_pDn3at3z1JqfkKutiZNgMcZ3FOBZ1rtbsxSA6DVxqtPAMiQjdC2bgY_fhcnBvmGAYdDgZUKrPP2eDbFOVHyexNS-99f_92AasuWskO6tx34QFPdmC1bnigluwbIM7ZdmECTWZJ48GuyNFcS5YNtClzcRi_ToUnD2PqhdGPYpHJLqq6khIdqspO3hUjpm54LIrQ1zr_EwSeD025xGznTUp5sjCvA2PvYuH8yvP9VnwpDH2lYcKzRVbozH2GUZcofZ9LVVhtrrmRVboWOR5nvAMc0x44qPkudJ2tFlOyfkONCZvE70LTBSJCiMZFByVkVSgjEMjQKiE64gL2QL_e-VT6YqQUy-M19SSER9TAislsFIHVguOZ1Pe6wocfw1uEjqzgQ6YFrS_4U3dHi1T4o5UPx_jvd9n7cNKSMkO1uHShkb1MdUHsCQ_q1H5cWjV7wucs9jS
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9kKuqDX1OcTs2DT2K3tqld71HEOXEbolP3VtokxYFOWTv_fnNpNgRF8K0PyVHyu-Tyu9wHwAnHUFMfL3FQaA0OQunSlkodV0qyRzJMjEP_qdvq96PhEO8W4GyeC6OUMsFnqkGf5i1fvospucqaGGg2Q1xnkTpn2Wyt-ZtBcO7Z5OjQ0TTCt2-YnovNwfX9g-aCvtfgZEKpQv83K2Taqvw4i42BaW_879c2Yd1eJNlFifwWLKjxNqx9Ky-4DcsmvFPkVRhTm3nyabA7UhXrhGX3Kje5WKxfBoOz51HxwqhL8YhEF0UZC8l6ivKDR_kb01dc1tHUtczQJIE3b_pEYqa3JkUdGaB34LF9NbjsOLbTgiO0uS8clKgv2Qq1uU8w4BKV6yohM73ZFc-STLXCNE0jnmCKEY9cFDyVyozWyyk434XK-H2s9oCFWST9QHgZR6klZShavhYQyoirgIeiBu5s5WNhy5BTN4zX2NARF2MCKyawYgtWDU7nUz7KGhx_Da4SOvOBFpga1GfwxnaX5jGxR6qgj63932cdw0pn0OvG3Zv-7QGs-pT6YNwvdagUk6k6hCXxWYzyyZFRxS8Nhdwb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+Partitioning+Residual+Network+With+Spatial+Attention+Mechanism+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Xiangrong&rft.au=Shang%2C+Shouwang&rft.au=Tang%2C+Xu&rft.au=Feng%2C+Jie&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3074196&rft.externalDocID=9454961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon