Embankment Project Monitoring Using the Time-Lapse Transient Electromagnetic Method: Numerical Simulation and Field Applications

To preserve flood control infrastructure, it is essential to quickly detect and accurately identify concealed leakage hazards within embankment projects. In this paper, we propose a novel embankment monitoring method based on the time-lapse transient electromagnetic method and complemented by a theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) Jg. 17; H. 9; S. 1341
Hauptverfasser: Wang, Ying, Wang, Bo, Chai, Lunwei, Qian, Wangping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.05.2025
Schlagworte:
ISSN:2073-4441, 2073-4441
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To preserve flood control infrastructure, it is essential to quickly detect and accurately identify concealed leakage hazards within embankment projects. In this paper, we propose a novel embankment monitoring method based on the time-lapse transient electromagnetic method and complemented by a theoretical framework for analyzing time-lapse data through the lens of resistivity change rates. A time-lapse model that scrutinizes dynamic response patterns associated with leakage anomalies is constructed, while the efficacy of this methodology is verified through rigorous field experiments. Our research findings reveal a well-defined negative correlation between the resistivity variation rate and the development stage of anomalies. Our proposed method demonstrates enhanced sensitivity in the detection of dynamic evolutionary patterns in latent seepage defects, particularly in low-resistivity environments. Moreover, it successfully delineates both the spatial expansions and electrical property alterations of anomalies, providing a novel technical approach for latent seepage defect monitoring and risk management in embankments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-4441
2073-4441
DOI:10.3390/w17091341