Online Vehicle Routing With Neural Combinatorial Optimization and Deep Reinforcement Learning
Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the transportation system, especially small-parcel last-mile delivery requests, vehicle route generation is becoming more computationally complex than bef...
Uložené v:
| Vydané v: | IEEE transactions on intelligent transportation systems Ročník 20; číslo 10; s. 3806 - 3817 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the transportation system, especially small-parcel last-mile delivery requests, vehicle route generation is becoming more computationally complex than before. The existing routing algorithms are mostly based on mathematical programming, which requires huge computation time in city-size transportation networks. To develop routes with minimal time, in this paper, we propose a novel deep reinforcement learning-based neural combinatorial optimization strategy. Specifically, we transform the online routing problem to a vehicle tour generation problem, and propose a structural graph embedded pointer network to develop these tours iteratively. Furthermore, since constructing supervised training data for the neural network is impractical due to the high computation complexity, we propose a deep reinforcement learning mechanism with an unsupervised auxiliary network to train the model parameters. A multisampling scheme is also devised to further improve the system performance. Since the parameter training process is offline, the proposed strategy can achieve a superior online route generation speed. To assess the proposed strategy, we conduct comprehensive case studies with a real-world transportation network. The simulation results show that the proposed strategy can significantly outperform conventional strategies with limited computation time in both static and dynamic logistic systems. In addition, the influence of control parameters on the system performance is investigated. |
|---|---|
| AbstractList | Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the transportation system, especially small-parcel last-mile delivery requests, vehicle route generation is becoming more computationally complex than before. The existing routing algorithms are mostly based on mathematical programming, which requires huge computation time in city-size transportation networks. To develop routes with minimal time, in this paper, we propose a novel deep reinforcement learning-based neural combinatorial optimization strategy. Specifically, we transform the online routing problem to a vehicle tour generation problem, and propose a structural graph embedded pointer network to develop these tours iteratively. Furthermore, since constructing supervised training data for the neural network is impractical due to the high computation complexity, we propose a deep reinforcement learning mechanism with an unsupervised auxiliary network to train the model parameters. A multisampling scheme is also devised to further improve the system performance. Since the parameter training process is offline, the proposed strategy can achieve a superior online route generation speed. To assess the proposed strategy, we conduct comprehensive case studies with a real-world transportation network. The simulation results show that the proposed strategy can significantly outperform conventional strategies with limited computation time in both static and dynamic logistic systems. In addition, the influence of control parameters on the system performance is investigated. |
| Author | Yu, James J. Q. Yu, Wen Gu, Jiatao |
| Author_xml | – sequence: 1 givenname: James J. Q. orcidid: 0000-0002-6392-6711 surname: Yu fullname: Yu, James J. Q. email: yujq3@sustech.edu.cn organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Wen orcidid: 0000-0002-9540-7924 surname: Yu fullname: Yu, Wen organization: Department of Automatic Control, National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico – sequence: 3 givenname: Jiatao surname: Gu fullname: Gu, Jiatao organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong |
| BookMark | eNp9UMtOwzAQtFCRaAsfgLhY4pziR5zGR1RelSoqlQInFLnJhrpK7OA4B_h6HFpx4MBpd0czuzszQgNjDSB0TsmEUiKv1vP104QRKidMEhmQIzSkQqQRITQZ9D2LI0kEOUGjtt0FNBaUDtHb0lTaAH6Brc4rwCvbeW3e8av2W_wInVMVntl6o43y1ukwLRuva_2lvLYGK1PgG4AGr0Cb0rocajAeL0A5E9acouNSVS2cHeoYPd_drmcP0WJ5P59dL6KcSe4jKWkR5yoVaaFUyXmasyQh06IIX5YlYwmQPBYACQclhCiDF6WAbiTfyEIwwcfocr-3cfajg9ZnO9s5E05mjBPCOUlSFljTPSt3tm0dlFmu_Y8P75SuMkqyPsuszzLrs8wOWQYl_aNsnK6V-_xXc7HXaAD45aeJ5IIm_Btt_4I4 |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1109_TVT_2021_3102161 crossref_primary_10_1109_COMST_2021_3073036 crossref_primary_10_1109_TITS_2024_3352143 crossref_primary_10_1016_j_cie_2023_109840 crossref_primary_10_1109_JETCAS_2023_3290319 crossref_primary_10_1109_TNNLS_2021_3113158 crossref_primary_10_59717_j_xinn_energy_2024_100064 crossref_primary_10_1088_2632_2153_ad33e0 crossref_primary_10_3390_electronics12204191 crossref_primary_10_1002_net_22213 crossref_primary_10_1016_j_rser_2023_113873 crossref_primary_10_1109_TITS_2023_3293507 crossref_primary_10_3390_math12193025 crossref_primary_10_1109_TITS_2022_3150151 crossref_primary_10_3390_jmse11071407 crossref_primary_10_1007_s10489_023_05212_0 crossref_primary_10_1007_s00291_020_00615_8 crossref_primary_10_1016_j_wasman_2022_02_027 crossref_primary_10_1109_TETCI_2024_3402685 crossref_primary_10_1016_j_heliyon_2024_e38528 crossref_primary_10_1016_j_jksuci_2023_101787 crossref_primary_10_1109_ACCESS_2024_3366517 crossref_primary_10_1016_j_cie_2021_107252 crossref_primary_10_1109_TCAD_2020_3028350 crossref_primary_10_3390_s22124561 crossref_primary_10_1371_journal_pone_0304422 crossref_primary_10_1002_cpe_7694 crossref_primary_10_1109_TWC_2022_3163422 crossref_primary_10_3390_biomimetics9030150 crossref_primary_10_1109_TITS_2021_3085217 crossref_primary_10_1088_1742_6596_2181_1_012002 crossref_primary_10_1080_00207543_2021_2013566 crossref_primary_10_3390_math13183050 crossref_primary_10_1016_j_comcom_2024_108036 crossref_primary_10_1016_j_cor_2025_107217 crossref_primary_10_1109_JIOT_2023_3292903 crossref_primary_10_3390_drones8090470 crossref_primary_10_1016_j_rcim_2022_102412 crossref_primary_10_1109_TITS_2022_3162635 crossref_primary_10_1016_j_trc_2025_105022 crossref_primary_10_1007_s10489_025_06829_z crossref_primary_10_1002_cpe_8307 crossref_primary_10_1145_3769070 crossref_primary_10_1109_TITS_2023_3319135 crossref_primary_10_1109_TITS_2022_3193852 crossref_primary_10_1007_s11425_023_2364_2 crossref_primary_10_1016_j_orp_2025_100338 crossref_primary_10_1016_j_trpro_2025_03_054 crossref_primary_10_1109_JIOT_2022_3176604 crossref_primary_10_1109_TITS_2024_3360420 crossref_primary_10_1007_s00521_022_07989_6 crossref_primary_10_1109_TITS_2020_3036696 crossref_primary_10_3390_math12081252 crossref_primary_10_3390_biomimetics9020105 crossref_primary_10_1016_j_neunet_2024_106359 crossref_primary_10_1016_j_tre_2023_103234 crossref_primary_10_1145_3459664 crossref_primary_10_1016_j_ijpe_2021_108362 crossref_primary_10_1016_j_knosys_2024_111698 crossref_primary_10_1016_j_ejor_2023_11_038 crossref_primary_10_1109_TEVC_2021_3050465 crossref_primary_10_1109_TCC_2023_3287552 crossref_primary_10_1016_j_eswa_2025_129178 crossref_primary_10_1109_JIOT_2020_2991401 crossref_primary_10_1016_j_ejor_2025_01_012 crossref_primary_10_3390_app15052679 crossref_primary_10_3390_math12162557 crossref_primary_10_1080_15472450_2025_2559242 crossref_primary_10_1109_ACCESS_2020_3014076 crossref_primary_10_1145_3695986 crossref_primary_10_1109_ACCESS_2020_2983609 crossref_primary_10_3390_s20205794 crossref_primary_10_1109_TITS_2023_3265517 crossref_primary_10_1109_TITS_2025_3528961 crossref_primary_10_1016_j_procir_2021_11_305 crossref_primary_10_3390_fi12020022 crossref_primary_10_1016_j_cor_2024_106881 crossref_primary_10_1016_j_asoc_2020_106790 crossref_primary_10_3390_pr9101728 crossref_primary_10_1109_TITS_2020_3003163 crossref_primary_10_3390_en13133371 crossref_primary_10_1109_TNNLS_2021_3105905 crossref_primary_10_1007_s10479_022_04612_8 crossref_primary_10_1109_TITS_2020_3015530 crossref_primary_10_28925_2663_4023_2025_28_815 crossref_primary_10_1109_TITS_2023_3334976 crossref_primary_10_1109_ACCESS_2024_3395430 crossref_primary_10_1016_j_knosys_2020_106592 crossref_primary_10_1080_21650020_2023_2216768 crossref_primary_10_1016_j_apenergy_2021_116856 crossref_primary_10_1016_j_ins_2022_06_015 crossref_primary_10_1016_j_adhoc_2024_103575 crossref_primary_10_26599_TST_2023_9010076 crossref_primary_10_1109_TITS_2022_3162609 crossref_primary_10_1016_j_rser_2023_114248 crossref_primary_10_1109_JIOT_2022_3176145 crossref_primary_10_1016_j_cja_2024_09_005 crossref_primary_10_1016_j_knosys_2022_110060 crossref_primary_10_1016_j_eswa_2025_127331 crossref_primary_10_1016_j_trc_2022_103852 crossref_primary_10_1007_s10462_024_11045_1 crossref_primary_10_1016_j_compag_2024_108766 crossref_primary_10_1016_j_energy_2021_122626 crossref_primary_10_1080_15472450_2023_2245750 crossref_primary_10_1109_TNNLS_2020_3015858 crossref_primary_10_1109_TETCI_2022_3145706 crossref_primary_10_3390_math12132004 crossref_primary_10_1016_j_trc_2020_01_003 crossref_primary_10_3390_e25040565 crossref_primary_10_1088_1757_899X_982_1_012054 crossref_primary_10_1016_j_trc_2023_104417 crossref_primary_10_1109_TITS_2022_3195521 crossref_primary_10_1016_j_artint_2023_104064 crossref_primary_10_1109_TITS_2019_2910560 crossref_primary_10_1016_j_tre_2022_102890 crossref_primary_10_1145_3708325 crossref_primary_10_1680_jtran_24_00163 crossref_primary_10_1080_03081060_2023_2268601 crossref_primary_10_1016_j_engappai_2023_107790 crossref_primary_10_1109_ACCESS_2024_3422479 crossref_primary_10_3390_electronics11203356 crossref_primary_10_1016_j_cor_2025_107139 crossref_primary_10_1109_TASE_2023_3292921 crossref_primary_10_1109_ACCESS_2024_3501775 crossref_primary_10_1109_TAI_2021_3087666 crossref_primary_10_1109_TITS_2024_3416412 crossref_primary_10_1109_TITS_2021_3105232 crossref_primary_10_1109_JAS_2022_105677 crossref_primary_10_1016_j_scs_2021_103344 crossref_primary_10_1109_JSYST_2022_3231346 crossref_primary_10_1038_s41598_025_10064_4 crossref_primary_10_1109_TITS_2024_3438788 crossref_primary_10_1007_s40747_021_00444_4 crossref_primary_10_1109_TITS_2021_3122438 crossref_primary_10_1007_s10479_024_05876_y crossref_primary_10_3390_s22103799 crossref_primary_10_1007_s10479_024_05879_9 crossref_primary_10_3390_math12101476 crossref_primary_10_1016_j_icte_2022_02_001 crossref_primary_10_1109_TITS_2024_3515997 crossref_primary_10_1109_TITS_2021_3056120 crossref_primary_10_1007_s00500_023_08381_9 crossref_primary_10_1016_j_energy_2024_130999 crossref_primary_10_1080_21680566_2024_2337216 crossref_primary_10_3390_app14198642 crossref_primary_10_1007_s10489_022_03456_w crossref_primary_10_1016_j_apenergy_2023_121711 crossref_primary_10_1016_j_knosys_2023_110562 crossref_primary_10_1016_j_swevo_2025_102105 crossref_primary_10_1109_TITS_2021_3052834 crossref_primary_10_3390_math13132039 crossref_primary_10_1007_s40747_023_01259_1 crossref_primary_10_1109_TITS_2023_3313688 crossref_primary_10_1016_j_trc_2022_103886 crossref_primary_10_1016_j_trb_2021_08_015 crossref_primary_10_1016_j_tre_2022_102712 crossref_primary_10_1007_s40747_021_00433_7 crossref_primary_10_1109_TII_2022_3210264 crossref_primary_10_1016_j_autcon_2025_106123 crossref_primary_10_1016_j_neunet_2023_02_014 crossref_primary_10_1109_JIOT_2021_3133278 crossref_primary_10_1287_inte_2021_1108 crossref_primary_10_1155_2022_2780711 crossref_primary_10_1007_s10489_023_04881_1 crossref_primary_10_1016_j_trc_2023_104355 crossref_primary_10_1016_j_cor_2024_106965 crossref_primary_10_1049_itr2_12394 crossref_primary_10_1016_j_cie_2020_107029 crossref_primary_10_1016_j_tre_2022_102790 crossref_primary_10_1080_21693277_2024_2393614 crossref_primary_10_1109_TITS_2021_3105057 crossref_primary_10_1146_annurev_control_042920_012811 |
| Cites_doi | 10.1016/j.compenvurbsys.2017.05.004 10.1287/opre.2015.1462 10.1109/TITS.2010.2060218 10.1109/TITS.2018.2849091 10.3390/en8088573 10.1109/JIOT.2014.2306328 10.1016/0377-2217(93)90051-N 10.1162/neco.1997.9.8.1735 10.1109/TITS.2010.2090521 10.1016/j.cor.2015.04.009 10.1109/TSG.2018.2834543 10.1109/TITS.2005.848362 10.1109/TITS.2015.2395536 10.1049/iet-its.2013.0006 10.1057/jors.2011.136 10.1007/BF00992696 10.1109/TSG.2014.2373150 10.1016/j.seta.2016.03.006 10.1109/TMC.2013.27 10.1016/j.trd.2018.04.007 10.1109/JESTPE.2013.2294738 10.3390/en9020086 10.1109/TITS.2017.2766682 10.1016/j.eswa.2018.10.036 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2019.2909109 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 3817 |
| ExternalDocumentID | 10_1109_TITS_2019_2909109 8693516 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-991d4ca858daaf338c26607dd014ff226e0c45ee63ea555f524aae1b93b9d5253 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 214 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489747100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Mon Jun 30 04:58:52 EDT 2025 Tue Nov 18 22:17:42 EST 2025 Sat Nov 29 06:34:53 EST 2025 Wed Aug 27 02:43:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-991d4ca858daaf338c26607dd014ff226e0c45ee63ea555f524aae1b93b9d5253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6392-6711 0000-0002-9540-7924 |
| PQID | 2300330682 |
| PQPubID | 75735 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8693516 crossref_citationtrail_10_1109_TITS_2019_2909109 proquest_journals_2300330682 crossref_primary_10_1109_TITS_2019_2909109 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref36 ref14 ref31 ref11 ref32 ref10 ref2 (ref39) 2017 ref1 ref38 ref16 dai (ref23) 2016 (ref34) 2017 ref18 shi (ref17) 2015; 6 goodfellow (ref20) 2016 joerss (ref6) 2016 bahdanau (ref26) 2015 dai (ref24) 2017 ref25 (ref33) 2017 bello (ref19) 2017 (ref35) 2017 ref21 (ref30) 2017 ref8 (ref37) 2017 mnih (ref28) 2016 ref7 ref9 ref4 ref3 kingma (ref29) 2015 williams (ref27) 1992 mohr (ref5) 2016 ref40 vinyals (ref22) 2015 |
| References_xml | – ident: ref31 doi: 10.1016/j.compenvurbsys.2017.05.004 – ident: ref11 doi: 10.1287/opre.2015.1462 – year: 2017 ident: ref33 publication-title: Nissan LEAF Electric Car – ident: ref1 doi: 10.1109/TITS.2010.2060218 – ident: ref18 doi: 10.1109/TITS.2018.2849091 – year: 2017 ident: ref37 publication-title: Eastern and Western Data Sets-Grid Modernization-NREL – ident: ref36 doi: 10.3390/en8088573 – year: 2017 ident: ref34 publication-title: Model S-Tesla – ident: ref2 doi: 10.1109/JIOT.2014.2306328 – ident: ref12 doi: 10.1016/0377-2217(93)90051-N – start-page: 1928 year: 2016 ident: ref28 article-title: Asynchronous methods for deep reinforcement learning publication-title: Mach Learn Res – start-page: 6348 year: 2017 ident: ref24 article-title: Learning combinatorial optimization algorithms over graphs publication-title: Proc Adv Neu Inf Proc Sys – year: 2015 ident: ref29 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Represent – ident: ref25 doi: 10.1162/neco.1997.9.8.1735 – ident: ref7 doi: 10.1109/TITS.2010.2090521 – ident: ref40 doi: 10.1016/j.cor.2015.04.009 – ident: ref21 doi: 10.1109/TSG.2018.2834543 – ident: ref13 doi: 10.1109/TITS.2005.848362 – ident: ref8 doi: 10.1109/TITS.2015.2395536 – ident: ref14 doi: 10.1049/iet-its.2013.0006 – ident: ref10 doi: 10.1057/jors.2011.136 – year: 2016 ident: ref5 article-title: Automotive revolution: Perspective towards 2030: How the convergence of disruptive technology-driven trends could transform the auto industry – year: 2016 ident: ref20 publication-title: Deep Learning – start-page: 229 year: 1992 ident: ref27 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Machine Learning doi: 10.1007/BF00992696 – volume: 6 start-page: 1137 year: 2015 ident: ref17 article-title: Distributed optimal energy management in microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2014.2373150 – ident: ref4 doi: 10.1016/j.seta.2016.03.006 – year: 2016 ident: ref6 article-title: Parcel delivery-The future of last mile – start-page: 473 year: 2015 ident: ref26 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc Int Conf Learn Represent – ident: ref32 doi: 10.1109/TMC.2013.27 – year: 2017 ident: ref30 publication-title: OpenStreetMap – year: 2017 ident: ref19 article-title: Neural combinatorial optimization with reinforcement learning publication-title: Proc Int Conf Learn Represent – ident: ref15 doi: 10.1016/j.trd.2018.04.007 – year: 2017 ident: ref39 publication-title: Gurobi Optimizer State of the Art Mathematical Programming Solver – ident: ref38 doi: 10.1109/JESTPE.2013.2294738 – ident: ref3 doi: 10.3390/en9020086 – ident: ref9 doi: 10.1109/TITS.2017.2766682 – start-page: 2702 year: 2016 ident: ref23 article-title: Discriminative embeddings of latent variable models for structured data publication-title: Proc Int Conf Mach Learn – start-page: 2692 year: 2015 ident: ref22 article-title: Pointer networks publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref35 publication-title: Model X-Tesla – ident: ref16 doi: 10.1016/j.eswa.2018.10.036 |
| SSID | ssj0014511 |
| Score | 2.6344032 |
| Snippet | Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3806 |
| SubjectTerms | Algorithms Combinatorial analysis Complexity Computational modeling Computer simulation Computing time deep reinforcement learning Green products intelligent transportation logistic system Logistics Machine learning Mathematical programming neural combinatorial optimization Neural networks Online vehicle routing Optimization Process parameters Production scheduling Route planning Routing Strategy Training Transportation Transportation networks Transportation services Transportation systems Vehicle routing |
| Title | Online Vehicle Routing With Neural Combinatorial Optimization and Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/8693516 https://www.proquest.com/docview/2300330682 |
| Volume | 20 |
| WOSCitedRecordID | wos000489747100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-LqKjl4EqvpI23mKD7Qi4quj4uUmEx1QVfR1d_vJO0uiiJ4K3RSSr5kHpnJNwAbKaZo2ZWIMNcyyiwi77ksiSpUSV7pPHVOhmYTxcmJvrnBszHYGt2FIaJQfEbb_jHk8t2zffdHZTs6x1TF-TiMF0VR39UaZQw8z1bgRk2yCKUaZjBjiTvd4-6FL-LC7QS9ecRvNig0VfmhiYN5OZz534_NwnTjRordGvc5GKP-PEx9IRdcgNuaRVRc0YOXEb72h1-I697gQXhODh7P2oAjYx938zIUp6w-npp7mcL0ndgnehHnFMhVbThHFA0f6_0iXB4edPeOoqaZQmTZog8i9gNdZo1W2hlTcWBq2TTLgqGIs6piJ4ykzRRRnpJRSlU8j8ZQfIfpHTqVqHQJWv3nPi2DUM5okyl2DSjJKhkbic7GqK0uHJpEt0EOp7e0DdO4b3jxWIaIQ2LpESk9ImWDSBs2R0NeapqNv4QXPAQjwWb229AZYlg2G_Gt5AhLphwW6WTl91GrMOm_XdfndaA1eH2nNZiwH4Pe2-t6WGOfI7zN-Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RWqlwgLZQsTxaH3pCDTiOnfUcES0ClW6rdnlcUGTsSUGC3RUs_H7GTnYFaoXUW6SMlcifPQ_P-BuATwUW6NmVyLC0MtMekfecVlmNRpW1LYsQZGo20e317Okp_pyBz9O7MESUis9oKz6mXH4Y-rt4VLZtSyxMXr6Al0ZrlTe3taY5g8i0ldhRlc5QmkkOM5e43T_o_45lXLilMBpIfGKFUluVv3RxMjB7i__3a29goXUkxU6D_FuYocE7mH9EL7gEZw2PqDimiygjYvUPvxAnl-MLEVk5eDzrA46NY-TNC1H8YAVy3d7MFG4QxBeikfhFiV7Vp5NE0TKy_lmGo72v_d39rG2nkHm26eOMPcGgvbPGBudqDk09G2fZZTByXdfshpH02hCVBTljTM3z6Bzl51icYzDKFO9hdjAc0AoIE5x12rBzQErXMncSg8_RetsN6JTtgJxMb-VbrvHY8uKqSjGHxCoiUkVEqhaRDmxOh4waoo3nhJciBFPBdvY7sD7BsGq34m3FMZYsODCyavXfoz7C6_3-98Pq8KD3bQ3m4neaar11mB3f3NEGvPL348vbmw9pvT0AAqPRQA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Vehicle+Routing+With+Neural+Combinatorial+Optimization+and+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yu%2C+James+J.+Q.&rft.au=Yu%2C+Wen&rft.au=Gu%2C+Jiatao&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=20&rft.issue=10&rft.spage=3806&rft.epage=3817&rft_id=info:doi/10.1109%2FTITS.2019.2909109&rft.externalDocID=8693516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |