Online Vehicle Routing With Neural Combinatorial Optimization and Deep Reinforcement Learning

Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the transportation system, especially small-parcel last-mile delivery requests, vehicle route generation is becoming more computationally complex than bef...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems Ročník 20; číslo 10; s. 3806 - 3817
Hlavní autori: Yu, James J. Q., Yu, Wen, Gu, Jiatao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the transportation system, especially small-parcel last-mile delivery requests, vehicle route generation is becoming more computationally complex than before. The existing routing algorithms are mostly based on mathematical programming, which requires huge computation time in city-size transportation networks. To develop routes with minimal time, in this paper, we propose a novel deep reinforcement learning-based neural combinatorial optimization strategy. Specifically, we transform the online routing problem to a vehicle tour generation problem, and propose a structural graph embedded pointer network to develop these tours iteratively. Furthermore, since constructing supervised training data for the neural network is impractical due to the high computation complexity, we propose a deep reinforcement learning mechanism with an unsupervised auxiliary network to train the model parameters. A multisampling scheme is also devised to further improve the system performance. Since the parameter training process is offline, the proposed strategy can achieve a superior online route generation speed. To assess the proposed strategy, we conduct comprehensive case studies with a real-world transportation network. The simulation results show that the proposed strategy can significantly outperform conventional strategies with limited computation time in both static and dynamic logistic systems. In addition, the influence of control parameters on the system performance is investigated.
AbstractList Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the transportation system, especially small-parcel last-mile delivery requests, vehicle route generation is becoming more computationally complex than before. The existing routing algorithms are mostly based on mathematical programming, which requires huge computation time in city-size transportation networks. To develop routes with minimal time, in this paper, we propose a novel deep reinforcement learning-based neural combinatorial optimization strategy. Specifically, we transform the online routing problem to a vehicle tour generation problem, and propose a structural graph embedded pointer network to develop these tours iteratively. Furthermore, since constructing supervised training data for the neural network is impractical due to the high computation complexity, we propose a deep reinforcement learning mechanism with an unsupervised auxiliary network to train the model parameters. A multisampling scheme is also devised to further improve the system performance. Since the parameter training process is offline, the proposed strategy can achieve a superior online route generation speed. To assess the proposed strategy, we conduct comprehensive case studies with a real-world transportation network. The simulation results show that the proposed strategy can significantly outperform conventional strategies with limited computation time in both static and dynamic logistic systems. In addition, the influence of control parameters on the system performance is investigated.
Author Yu, James J. Q.
Yu, Wen
Gu, Jiatao
Author_xml – sequence: 1
  givenname: James J. Q.
  orcidid: 0000-0002-6392-6711
  surname: Yu
  fullname: Yu, James J. Q.
  email: yujq3@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Wen
  orcidid: 0000-0002-9540-7924
  surname: Yu
  fullname: Yu, Wen
  organization: Department of Automatic Control, National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
– sequence: 3
  givenname: Jiatao
  surname: Gu
  fullname: Gu, Jiatao
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
BookMark eNp9UMtOwzAQtFCRaAsfgLhY4pziR5zGR1RelSoqlQInFLnJhrpK7OA4B_h6HFpx4MBpd0czuzszQgNjDSB0TsmEUiKv1vP104QRKidMEhmQIzSkQqQRITQZ9D2LI0kEOUGjtt0FNBaUDtHb0lTaAH6Brc4rwCvbeW3e8av2W_wInVMVntl6o43y1ukwLRuva_2lvLYGK1PgG4AGr0Cb0rocajAeL0A5E9acouNSVS2cHeoYPd_drmcP0WJ5P59dL6KcSe4jKWkR5yoVaaFUyXmasyQh06IIX5YlYwmQPBYACQclhCiDF6WAbiTfyEIwwcfocr-3cfajg9ZnO9s5E05mjBPCOUlSFljTPSt3tm0dlFmu_Y8P75SuMkqyPsuszzLrs8wOWQYl_aNsnK6V-_xXc7HXaAD45aeJ5IIm_Btt_4I4
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TVT_2021_3102161
crossref_primary_10_1109_COMST_2021_3073036
crossref_primary_10_1109_TITS_2024_3352143
crossref_primary_10_1016_j_cie_2023_109840
crossref_primary_10_1109_JETCAS_2023_3290319
crossref_primary_10_1109_TNNLS_2021_3113158
crossref_primary_10_59717_j_xinn_energy_2024_100064
crossref_primary_10_1088_2632_2153_ad33e0
crossref_primary_10_3390_electronics12204191
crossref_primary_10_1002_net_22213
crossref_primary_10_1016_j_rser_2023_113873
crossref_primary_10_1109_TITS_2023_3293507
crossref_primary_10_3390_math12193025
crossref_primary_10_1109_TITS_2022_3150151
crossref_primary_10_3390_jmse11071407
crossref_primary_10_1007_s10489_023_05212_0
crossref_primary_10_1007_s00291_020_00615_8
crossref_primary_10_1016_j_wasman_2022_02_027
crossref_primary_10_1109_TETCI_2024_3402685
crossref_primary_10_1016_j_heliyon_2024_e38528
crossref_primary_10_1016_j_jksuci_2023_101787
crossref_primary_10_1109_ACCESS_2024_3366517
crossref_primary_10_1016_j_cie_2021_107252
crossref_primary_10_1109_TCAD_2020_3028350
crossref_primary_10_3390_s22124561
crossref_primary_10_1371_journal_pone_0304422
crossref_primary_10_1002_cpe_7694
crossref_primary_10_1109_TWC_2022_3163422
crossref_primary_10_3390_biomimetics9030150
crossref_primary_10_1109_TITS_2021_3085217
crossref_primary_10_1088_1742_6596_2181_1_012002
crossref_primary_10_1080_00207543_2021_2013566
crossref_primary_10_3390_math13183050
crossref_primary_10_1016_j_comcom_2024_108036
crossref_primary_10_1016_j_cor_2025_107217
crossref_primary_10_1109_JIOT_2023_3292903
crossref_primary_10_3390_drones8090470
crossref_primary_10_1016_j_rcim_2022_102412
crossref_primary_10_1109_TITS_2022_3162635
crossref_primary_10_1016_j_trc_2025_105022
crossref_primary_10_1007_s10489_025_06829_z
crossref_primary_10_1002_cpe_8307
crossref_primary_10_1145_3769070
crossref_primary_10_1109_TITS_2023_3319135
crossref_primary_10_1109_TITS_2022_3193852
crossref_primary_10_1007_s11425_023_2364_2
crossref_primary_10_1016_j_orp_2025_100338
crossref_primary_10_1016_j_trpro_2025_03_054
crossref_primary_10_1109_JIOT_2022_3176604
crossref_primary_10_1109_TITS_2024_3360420
crossref_primary_10_1007_s00521_022_07989_6
crossref_primary_10_1109_TITS_2020_3036696
crossref_primary_10_3390_math12081252
crossref_primary_10_3390_biomimetics9020105
crossref_primary_10_1016_j_neunet_2024_106359
crossref_primary_10_1016_j_tre_2023_103234
crossref_primary_10_1145_3459664
crossref_primary_10_1016_j_ijpe_2021_108362
crossref_primary_10_1016_j_knosys_2024_111698
crossref_primary_10_1016_j_ejor_2023_11_038
crossref_primary_10_1109_TEVC_2021_3050465
crossref_primary_10_1109_TCC_2023_3287552
crossref_primary_10_1016_j_eswa_2025_129178
crossref_primary_10_1109_JIOT_2020_2991401
crossref_primary_10_1016_j_ejor_2025_01_012
crossref_primary_10_3390_app15052679
crossref_primary_10_3390_math12162557
crossref_primary_10_1080_15472450_2025_2559242
crossref_primary_10_1109_ACCESS_2020_3014076
crossref_primary_10_1145_3695986
crossref_primary_10_1109_ACCESS_2020_2983609
crossref_primary_10_3390_s20205794
crossref_primary_10_1109_TITS_2023_3265517
crossref_primary_10_1109_TITS_2025_3528961
crossref_primary_10_1016_j_procir_2021_11_305
crossref_primary_10_3390_fi12020022
crossref_primary_10_1016_j_cor_2024_106881
crossref_primary_10_1016_j_asoc_2020_106790
crossref_primary_10_3390_pr9101728
crossref_primary_10_1109_TITS_2020_3003163
crossref_primary_10_3390_en13133371
crossref_primary_10_1109_TNNLS_2021_3105905
crossref_primary_10_1007_s10479_022_04612_8
crossref_primary_10_1109_TITS_2020_3015530
crossref_primary_10_28925_2663_4023_2025_28_815
crossref_primary_10_1109_TITS_2023_3334976
crossref_primary_10_1109_ACCESS_2024_3395430
crossref_primary_10_1016_j_knosys_2020_106592
crossref_primary_10_1080_21650020_2023_2216768
crossref_primary_10_1016_j_apenergy_2021_116856
crossref_primary_10_1016_j_ins_2022_06_015
crossref_primary_10_1016_j_adhoc_2024_103575
crossref_primary_10_26599_TST_2023_9010076
crossref_primary_10_1109_TITS_2022_3162609
crossref_primary_10_1016_j_rser_2023_114248
crossref_primary_10_1109_JIOT_2022_3176145
crossref_primary_10_1016_j_cja_2024_09_005
crossref_primary_10_1016_j_knosys_2022_110060
crossref_primary_10_1016_j_eswa_2025_127331
crossref_primary_10_1016_j_trc_2022_103852
crossref_primary_10_1007_s10462_024_11045_1
crossref_primary_10_1016_j_compag_2024_108766
crossref_primary_10_1016_j_energy_2021_122626
crossref_primary_10_1080_15472450_2023_2245750
crossref_primary_10_1109_TNNLS_2020_3015858
crossref_primary_10_1109_TETCI_2022_3145706
crossref_primary_10_3390_math12132004
crossref_primary_10_1016_j_trc_2020_01_003
crossref_primary_10_3390_e25040565
crossref_primary_10_1088_1757_899X_982_1_012054
crossref_primary_10_1016_j_trc_2023_104417
crossref_primary_10_1109_TITS_2022_3195521
crossref_primary_10_1016_j_artint_2023_104064
crossref_primary_10_1109_TITS_2019_2910560
crossref_primary_10_1016_j_tre_2022_102890
crossref_primary_10_1145_3708325
crossref_primary_10_1680_jtran_24_00163
crossref_primary_10_1080_03081060_2023_2268601
crossref_primary_10_1016_j_engappai_2023_107790
crossref_primary_10_1109_ACCESS_2024_3422479
crossref_primary_10_3390_electronics11203356
crossref_primary_10_1016_j_cor_2025_107139
crossref_primary_10_1109_TASE_2023_3292921
crossref_primary_10_1109_ACCESS_2024_3501775
crossref_primary_10_1109_TAI_2021_3087666
crossref_primary_10_1109_TITS_2024_3416412
crossref_primary_10_1109_TITS_2021_3105232
crossref_primary_10_1109_JAS_2022_105677
crossref_primary_10_1016_j_scs_2021_103344
crossref_primary_10_1109_JSYST_2022_3231346
crossref_primary_10_1038_s41598_025_10064_4
crossref_primary_10_1109_TITS_2024_3438788
crossref_primary_10_1007_s40747_021_00444_4
crossref_primary_10_1109_TITS_2021_3122438
crossref_primary_10_1007_s10479_024_05876_y
crossref_primary_10_3390_s22103799
crossref_primary_10_1007_s10479_024_05879_9
crossref_primary_10_3390_math12101476
crossref_primary_10_1016_j_icte_2022_02_001
crossref_primary_10_1109_TITS_2024_3515997
crossref_primary_10_1109_TITS_2021_3056120
crossref_primary_10_1007_s00500_023_08381_9
crossref_primary_10_1016_j_energy_2024_130999
crossref_primary_10_1080_21680566_2024_2337216
crossref_primary_10_3390_app14198642
crossref_primary_10_1007_s10489_022_03456_w
crossref_primary_10_1016_j_apenergy_2023_121711
crossref_primary_10_1016_j_knosys_2023_110562
crossref_primary_10_1016_j_swevo_2025_102105
crossref_primary_10_1109_TITS_2021_3052834
crossref_primary_10_3390_math13132039
crossref_primary_10_1007_s40747_023_01259_1
crossref_primary_10_1109_TITS_2023_3313688
crossref_primary_10_1016_j_trc_2022_103886
crossref_primary_10_1016_j_trb_2021_08_015
crossref_primary_10_1016_j_tre_2022_102712
crossref_primary_10_1007_s40747_021_00433_7
crossref_primary_10_1109_TII_2022_3210264
crossref_primary_10_1016_j_autcon_2025_106123
crossref_primary_10_1016_j_neunet_2023_02_014
crossref_primary_10_1109_JIOT_2021_3133278
crossref_primary_10_1287_inte_2021_1108
crossref_primary_10_1155_2022_2780711
crossref_primary_10_1007_s10489_023_04881_1
crossref_primary_10_1016_j_trc_2023_104355
crossref_primary_10_1016_j_cor_2024_106965
crossref_primary_10_1049_itr2_12394
crossref_primary_10_1016_j_cie_2020_107029
crossref_primary_10_1016_j_tre_2022_102790
crossref_primary_10_1080_21693277_2024_2393614
crossref_primary_10_1109_TITS_2021_3105057
crossref_primary_10_1146_annurev_control_042920_012811
Cites_doi 10.1016/j.compenvurbsys.2017.05.004
10.1287/opre.2015.1462
10.1109/TITS.2010.2060218
10.1109/TITS.2018.2849091
10.3390/en8088573
10.1109/JIOT.2014.2306328
10.1016/0377-2217(93)90051-N
10.1162/neco.1997.9.8.1735
10.1109/TITS.2010.2090521
10.1016/j.cor.2015.04.009
10.1109/TSG.2018.2834543
10.1109/TITS.2005.848362
10.1109/TITS.2015.2395536
10.1049/iet-its.2013.0006
10.1057/jors.2011.136
10.1007/BF00992696
10.1109/TSG.2014.2373150
10.1016/j.seta.2016.03.006
10.1109/TMC.2013.27
10.1016/j.trd.2018.04.007
10.1109/JESTPE.2013.2294738
10.3390/en9020086
10.1109/TITS.2017.2766682
10.1016/j.eswa.2018.10.036
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2019.2909109
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 3817
ExternalDocumentID 10_1109_TITS_2019_2909109
8693516
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-991d4ca858daaf338c26607dd014ff226e0c45ee63ea555f524aae1b93b9d5253
IEDL.DBID RIE
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489747100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Mon Jun 30 04:58:52 EDT 2025
Tue Nov 18 22:17:42 EST 2025
Sat Nov 29 06:34:53 EST 2025
Wed Aug 27 02:43:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-991d4ca858daaf338c26607dd014ff226e0c45ee63ea555f524aae1b93b9d5253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6392-6711
0000-0002-9540-7924
PQID 2300330682
PQPubID 75735
PageCount 12
ParticipantIDs ieee_primary_8693516
crossref_citationtrail_10_1109_TITS_2019_2909109
proquest_journals_2300330682
crossref_primary_10_1109_TITS_2019_2909109
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref36
ref14
ref31
ref11
ref32
ref10
ref2
(ref39) 2017
ref1
ref38
ref16
dai (ref23) 2016
(ref34) 2017
ref18
shi (ref17) 2015; 6
goodfellow (ref20) 2016
joerss (ref6) 2016
bahdanau (ref26) 2015
dai (ref24) 2017
ref25
(ref33) 2017
bello (ref19) 2017
(ref35) 2017
ref21
(ref30) 2017
ref8
(ref37) 2017
mnih (ref28) 2016
ref7
ref9
ref4
ref3
kingma (ref29) 2015
williams (ref27) 1992
mohr (ref5) 2016
ref40
vinyals (ref22) 2015
References_xml – ident: ref31
  doi: 10.1016/j.compenvurbsys.2017.05.004
– ident: ref11
  doi: 10.1287/opre.2015.1462
– year: 2017
  ident: ref33
  publication-title: Nissan LEAF Electric Car
– ident: ref1
  doi: 10.1109/TITS.2010.2060218
– ident: ref18
  doi: 10.1109/TITS.2018.2849091
– year: 2017
  ident: ref37
  publication-title: Eastern and Western Data Sets-Grid Modernization-NREL
– ident: ref36
  doi: 10.3390/en8088573
– year: 2017
  ident: ref34
  publication-title: Model S-Tesla
– ident: ref2
  doi: 10.1109/JIOT.2014.2306328
– ident: ref12
  doi: 10.1016/0377-2217(93)90051-N
– start-page: 1928
  year: 2016
  ident: ref28
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Mach Learn Res
– start-page: 6348
  year: 2017
  ident: ref24
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Proc Adv Neu Inf Proc Sys
– year: 2015
  ident: ref29
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref25
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref7
  doi: 10.1109/TITS.2010.2090521
– ident: ref40
  doi: 10.1016/j.cor.2015.04.009
– ident: ref21
  doi: 10.1109/TSG.2018.2834543
– ident: ref13
  doi: 10.1109/TITS.2005.848362
– ident: ref8
  doi: 10.1109/TITS.2015.2395536
– ident: ref14
  doi: 10.1049/iet-its.2013.0006
– ident: ref10
  doi: 10.1057/jors.2011.136
– year: 2016
  ident: ref5
  article-title: Automotive revolution: Perspective towards 2030: How the convergence of disruptive technology-driven trends could transform the auto industry
– year: 2016
  ident: ref20
  publication-title: Deep Learning
– start-page: 229
  year: 1992
  ident: ref27
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Machine Learning
  doi: 10.1007/BF00992696
– volume: 6
  start-page: 1137
  year: 2015
  ident: ref17
  article-title: Distributed optimal energy management in microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2373150
– ident: ref4
  doi: 10.1016/j.seta.2016.03.006
– year: 2016
  ident: ref6
  article-title: Parcel delivery-The future of last mile
– start-page: 473
  year: 2015
  ident: ref26
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc Int Conf Learn Represent
– ident: ref32
  doi: 10.1109/TMC.2013.27
– year: 2017
  ident: ref30
  publication-title: OpenStreetMap
– year: 2017
  ident: ref19
  article-title: Neural combinatorial optimization with reinforcement learning
  publication-title: Proc Int Conf Learn Represent
– ident: ref15
  doi: 10.1016/j.trd.2018.04.007
– year: 2017
  ident: ref39
  publication-title: Gurobi Optimizer State of the Art Mathematical Programming Solver
– ident: ref38
  doi: 10.1109/JESTPE.2013.2294738
– ident: ref3
  doi: 10.3390/en9020086
– ident: ref9
  doi: 10.1109/TITS.2017.2766682
– start-page: 2702
  year: 2016
  ident: ref23
  article-title: Discriminative embeddings of latent variable models for structured data
  publication-title: Proc Int Conf Mach Learn
– start-page: 2692
  year: 2015
  ident: ref22
  article-title: Pointer networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref35
  publication-title: Model X-Tesla
– ident: ref16
  doi: 10.1016/j.eswa.2018.10.036
SSID ssj0014511
Score 2.6344032
Snippet Online vehicle routing is an important task of the modern transportation service provider. Contributed by the ever-increasing real-time demand on the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3806
SubjectTerms Algorithms
Combinatorial analysis
Complexity
Computational modeling
Computer simulation
Computing time
deep reinforcement learning
Green products
intelligent transportation
logistic system
Logistics
Machine learning
Mathematical programming
neural combinatorial optimization
Neural networks
Online vehicle routing
Optimization
Process parameters
Production scheduling
Route planning
Routing
Strategy
Training
Transportation
Transportation networks
Transportation services
Transportation systems
Vehicle routing
Title Online Vehicle Routing With Neural Combinatorial Optimization and Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/8693516
https://www.proquest.com/docview/2300330682
Volume 20
WOSCitedRecordID wos000489747100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-LqKjl4EqvpI23mKD7Qi4quj4uUmEx1QVfR1d_vJO0uiiJ4K3RSSr5kHpnJNwAbKaZo2ZWIMNcyyiwi77ksiSpUSV7pPHVOhmYTxcmJvrnBszHYGt2FIaJQfEbb_jHk8t2zffdHZTs6x1TF-TiMF0VR39UaZQw8z1bgRk2yCKUaZjBjiTvd4-6FL-LC7QS9ecRvNig0VfmhiYN5OZz534_NwnTjRordGvc5GKP-PEx9IRdcgNuaRVRc0YOXEb72h1-I697gQXhODh7P2oAjYx938zIUp6w-npp7mcL0ndgnehHnFMhVbThHFA0f6_0iXB4edPeOoqaZQmTZog8i9gNdZo1W2hlTcWBq2TTLgqGIs6piJ4ykzRRRnpJRSlU8j8ZQfIfpHTqVqHQJWv3nPi2DUM5okyl2DSjJKhkbic7GqK0uHJpEt0EOp7e0DdO4b3jxWIaIQ2LpESk9ImWDSBs2R0NeapqNv4QXPAQjwWb229AZYlg2G_Gt5AhLphwW6WTl91GrMOm_XdfndaA1eH2nNZiwH4Pe2-t6WGOfI7zN-Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RWqlwgLZQsTxaH3pCDTiOnfUcES0ClW6rdnlcUGTsSUGC3RUs_H7GTnYFaoXUW6SMlcifPQ_P-BuATwUW6NmVyLC0MtMekfecVlmNRpW1LYsQZGo20e317Okp_pyBz9O7MESUis9oKz6mXH4Y-rt4VLZtSyxMXr6Al0ZrlTe3taY5g8i0ldhRlc5QmkkOM5e43T_o_45lXLilMBpIfGKFUluVv3RxMjB7i__3a29goXUkxU6D_FuYocE7mH9EL7gEZw2PqDimiygjYvUPvxAnl-MLEVk5eDzrA46NY-TNC1H8YAVy3d7MFG4QxBeikfhFiV7Vp5NE0TKy_lmGo72v_d39rG2nkHm26eOMPcGgvbPGBudqDk09G2fZZTByXdfshpH02hCVBTljTM3z6Bzl51icYzDKFO9hdjAc0AoIE5x12rBzQErXMncSg8_RetsN6JTtgJxMb-VbrvHY8uKqSjGHxCoiUkVEqhaRDmxOh4waoo3nhJciBFPBdvY7sD7BsGq34m3FMZYsODCyavXfoz7C6_3-98Pq8KD3bQ3m4neaar11mB3f3NEGvPL348vbmw9pvT0AAqPRQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Vehicle+Routing+With+Neural+Combinatorial+Optimization+and+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Yu%2C+James+J.+Q.&rft.au=Yu%2C+Wen&rft.au=Gu%2C+Jiatao&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=20&rft.issue=10&rft.spage=3806&rft.epage=3817&rft_id=info:doi/10.1109%2FTITS.2019.2909109&rft.externalDocID=8693516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon