Self-Regulated Evolutionary Multitask Optimization
Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple optimization problems (tasks) at the same time via evolutionary algorithms (EAs) to improve on the performance of solving each task independent...
Saved in:
| Published in: | IEEE transactions on evolutionary computation Vol. 24; no. 1; pp. 16 - 28 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple optimization problems (tasks) at the same time via evolutionary algorithms (EAs) to improve on the performance of solving each task independently, assuming if some component tasks are related then the useful knowledge (e.g., promising candidate solutions) acquired during the process of solving one task may assist in (and also benefit from) solving the other tasks. In EMTO, task relatedness is typically unknown in advance and needs to be captured via EA's population. Since the population of an EA can only cover a subregion of the solution space and keeps evolving during the search, thus captured task relatedness is local and dynamic. The multifactorial EA (MFEA) is one of the most representative EMTO techniques, inspired by the bio-cultural model of multifactorial inheritance, which transmits both biological and cultural traits from the parents to the offspring. MFEA has succeeded in solving various multitask optimization (MTO) problems. However, the intensity of knowledge transfer in MFEA is determined via its algorithmic configuration without considering the degree of task relatedness, which may prevent the effective sharing and utilization of the useful knowledge acquired in related tasks. To address this issue, we propose a self-regulated EMTO (SREMTO) algorithm to automatically adapt the intensity of cross-task knowledge transfer to different and varying degrees of relatedness between different tasks as the search proceeds so that the useful knowledge in common for solving related tasks can be captured, shared, and utilized to a great extent. We compare SREMTO with MFEA and its variants as well as the single-task optimization counterpart of SREMTO on two MTO test suites, which demonstrates the superiority of SREMTO. |
|---|---|
| AbstractList | Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple optimization problems (tasks) at the same time via evolutionary algorithms (EAs) to improve on the performance of solving each task independently, assuming if some component tasks are related then the useful knowledge (e.g., promising candidate solutions) acquired during the process of solving one task may assist in (and also benefit from) solving the other tasks. In EMTO, task relatedness is typically unknown in advance and needs to be captured via EA's population. Since the population of an EA can only cover a subregion of the solution space and keeps evolving during the search, thus captured task relatedness is local and dynamic. The multifactorial EA (MFEA) is one of the most representative EMTO techniques, inspired by the bio-cultural model of multifactorial inheritance, which transmits both biological and cultural traits from the parents to the offspring. MFEA has succeeded in solving various multitask optimization (MTO) problems. However, the intensity of knowledge transfer in MFEA is determined via its algorithmic configuration without considering the degree of task relatedness, which may prevent the effective sharing and utilization of the useful knowledge acquired in related tasks. To address this issue, we propose a self-regulated EMTO (SREMTO) algorithm to automatically adapt the intensity of cross-task knowledge transfer to different and varying degrees of relatedness between different tasks as the search proceeds so that the useful knowledge in common for solving related tasks can be captured, shared, and utilized to a great extent. We compare SREMTO with MFEA and its variants as well as the single-task optimization counterpart of SREMTO on two MTO test suites, which demonstrates the superiority of SREMTO. |
| Author | Zheng, Xiaolong Qin, A. K. Gong, Maoguo Zhou, Deyun |
| Author_xml | – sequence: 1 givenname: Xiaolong surname: Zheng fullname: Zheng, Xiaolong email: xlzheng@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: A. K. orcidid: 0000-0001-6631-1651 surname: Qin fullname: Qin, A. K. email: kqin@swin.edu.au organization: Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne, VIC, Australia – sequence: 3 givenname: Maoguo orcidid: 0000-0002-0415-8556 surname: Gong fullname: Gong, Maoguo email: gong@ieee.org organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, China – sequence: 4 givenname: Deyun surname: Zhou fullname: Zhou, Deyun email: dyzhounpu@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China |
| BookMark | eNp9kE1Lw0AQhhepYFv9AeKl4Dl1Z7-ye5RSP6BS0Crelm0ykdQ0qZuNoL_eDS0ePHiagXnemXfeERnUTY2EnAOdAlBztZq_zKaMgpkyQ4Uy6ogMwQhIKGVqEHuqTZKm-vWEjNp2QykICWZI2BNWRfKIb13lAuaT-WdTdaFsaue_Jg9dFcrg2vfJchfKbfnt-skpOS5c1eLZoY7J8818NbtLFsvb-9n1IsmY4SExqXYONeMKuIAcOU8xK7BglEkGecGE0nnOUiELiOx6LSWmLpMomEKUGR-Ty_3enW8-OmyD3TSdr-NJy7gwAForHql0T2W-aVuPhc2i5d5n8K6sLFDbB2T7gGwfkD0EFJXwR7nz5Tb-_a_mYq8pEfGX10opKjn_AbO9cs4 |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07787_6 crossref_primary_10_1007_s12559_022_10012_8 crossref_primary_10_1016_j_foodcont_2022_109389 crossref_primary_10_1016_j_eswa_2024_123336 crossref_primary_10_1016_j_ins_2022_08_103 crossref_primary_10_1007_s13369_022_06564_4 crossref_primary_10_1007_s10489_022_03626_w crossref_primary_10_1016_j_knosys_2022_108697 crossref_primary_10_1007_s12293_021_00347_4 crossref_primary_10_1016_j_asoc_2025_112732 crossref_primary_10_1080_09540091_2023_2275534 crossref_primary_10_1109_TEVC_2023_3258491 crossref_primary_10_1109_TEVC_2023_3291874 crossref_primary_10_1007_s40747_021_00624_2 crossref_primary_10_1016_j_eswa_2023_121833 crossref_primary_10_1016_j_knosys_2025_113931 crossref_primary_10_1109_TEVC_2022_3187512 crossref_primary_10_1007_s10489_021_03059_x crossref_primary_10_1109_TASE_2024_3498064 crossref_primary_10_1109_MCI_2023_3277770 crossref_primary_10_1016_j_cie_2023_109178 crossref_primary_10_1016_j_eswa_2024_126321 crossref_primary_10_1109_TCYB_2020_3043509 crossref_primary_10_1049_joe_2019_1230 crossref_primary_10_1007_s11227_024_06016_w crossref_primary_10_1016_j_knosys_2022_110027 crossref_primary_10_1007_s10489_022_03282_0 crossref_primary_10_1007_s12539_024_00621_2 crossref_primary_10_1109_TCYB_2022_3222101 crossref_primary_10_1109_TCYB_2020_2981733 crossref_primary_10_1007_s12065_024_00999_4 crossref_primary_10_1109_TCC_2023_3315014 crossref_primary_10_1109_TCYB_2020_2980888 crossref_primary_10_1109_TEVC_2022_3184988 crossref_primary_10_1007_s12065_022_00788_x crossref_primary_10_1016_j_ins_2021_09_021 crossref_primary_10_1016_j_aei_2023_102343 crossref_primary_10_1109_TCBBIO_2025_3564952 crossref_primary_10_1109_TEVC_2023_3319566 crossref_primary_10_1109_TETCI_2023_3281876 crossref_primary_10_1109_TCYB_2024_3469371 crossref_primary_10_1109_TEVC_2023_3306017 crossref_primary_10_1007_s10489_023_04918_5 crossref_primary_10_1016_j_eswa_2023_120110 crossref_primary_10_1016_j_knosys_2025_113361 crossref_primary_10_1109_MCI_2021_3108311 crossref_primary_10_1016_j_isatra_2022_09_046 crossref_primary_10_1016_j_ins_2025_121908 crossref_primary_10_1016_j_knosys_2025_113824 crossref_primary_10_1109_TEVC_2022_3211643 crossref_primary_10_1016_j_asoc_2024_111470 crossref_primary_10_1109_MCI_2022_3199625 crossref_primary_10_1016_j_asoc_2023_110182 crossref_primary_10_1109_MCI_2022_3155332 crossref_primary_10_1016_j_asoc_2024_111232 crossref_primary_10_1016_j_ins_2022_10_099 crossref_primary_10_1109_TEVC_2021_3139437 crossref_primary_10_1109_TEVC_2020_2975381 crossref_primary_10_1109_TEVC_2023_3263871 crossref_primary_10_1109_MCI_2022_3155325 crossref_primary_10_1016_j_ins_2022_05_037 crossref_primary_10_1109_TSC_2024_3463423 crossref_primary_10_1109_TCYB_2020_3029176 crossref_primary_10_1007_s00500_021_05876_1 crossref_primary_10_1109_TEVC_2022_3227120 crossref_primary_10_1016_j_swevo_2023_101394 crossref_primary_10_1016_j_asoc_2023_110070 crossref_primary_10_1109_ACCESS_2020_3042004 crossref_primary_10_1109_TEVC_2021_3068157 crossref_primary_10_1016_j_knosys_2023_110906 crossref_primary_10_1016_j_eswa_2025_129580 crossref_primary_10_3390_math9080864 crossref_primary_10_1007_s40747_023_01105_4 crossref_primary_10_1109_TEVC_2021_3110506 crossref_primary_10_1016_j_swevo_2024_101569 crossref_primary_10_1016_j_ins_2023_119568 crossref_primary_10_1016_j_ins_2023_119961 crossref_primary_10_1007_s12559_020_09777_7 crossref_primary_10_1109_ACCESS_2021_3114435 crossref_primary_10_3390_app13010602 crossref_primary_10_1016_j_aei_2023_101984 crossref_primary_10_1109_TCYB_2025_3571421 crossref_primary_10_1109_TNNLS_2021_3130896 crossref_primary_10_1109_TEVC_2022_3160196 crossref_primary_10_1016_j_swevo_2024_101798 crossref_primary_10_3390_drones9080556 crossref_primary_10_1109_TEVC_2022_3145582 crossref_primary_10_1007_s10489_022_03537_w crossref_primary_10_3233_JIFS_222267 crossref_primary_10_1109_TETCI_2024_3406689 crossref_primary_10_1109_TEVC_2024_3373131 crossref_primary_10_1016_j_ins_2022_07_174 crossref_primary_10_1109_ACCESS_2021_3065741 crossref_primary_10_1109_TCYB_2024_3456471 crossref_primary_10_1109_TEVC_2022_3159253 crossref_primary_10_1007_s10845_024_02339_w crossref_primary_10_3390_s21227499 crossref_primary_10_1109_TETCI_2022_3205384 crossref_primary_10_1016_j_swevo_2024_101823 crossref_primary_10_1109_TETCI_2023_3236633 crossref_primary_10_3390_electronics10232945 crossref_primary_10_1109_TCYB_2020_2969025 crossref_primary_10_1109_TEVC_2022_3141819 crossref_primary_10_1007_s40747_025_01908_7 crossref_primary_10_1109_TEVC_2020_3023480 crossref_primary_10_1016_j_asoc_2022_109827 crossref_primary_10_1109_TEVC_2021_3101697 crossref_primary_10_1109_TEVC_2021_3107435 crossref_primary_10_1109_TEVC_2022_3175065 crossref_primary_10_1016_j_asoc_2023_110780 crossref_primary_10_1109_TEVC_2021_3098523 crossref_primary_10_1109_TEVC_2021_3131236 crossref_primary_10_1007_s12559_024_10386_x crossref_primary_10_1016_j_eswa_2025_127599 crossref_primary_10_1016_j_knosys_2024_111530 crossref_primary_10_1109_TCYB_2021_3090769 crossref_primary_10_1109_TEVC_2022_3154416 crossref_primary_10_1109_TETC_2023_3268182 crossref_primary_10_1109_TEVC_2022_3166482 crossref_primary_10_1109_TSMC_2025_3577732 crossref_primary_10_1109_TEVC_2022_3199783 crossref_primary_10_1109_TSMC_2024_3520322 crossref_primary_10_1109_TETCI_2021_3115518 crossref_primary_10_1109_TETCI_2024_3360331 crossref_primary_10_1016_j_swevo_2024_101768 crossref_primary_10_1016_j_asoc_2023_110545 crossref_primary_10_1109_TR_2023_3324701 crossref_primary_10_1109_TEVC_2021_3097043 crossref_primary_10_1016_j_swevo_2024_101765 crossref_primary_10_1088_1757_899X_1261_1_012018 crossref_primary_10_1109_JSTARS_2020_3037353 |
| Cites_doi | 10.1016/j.swevo.2011.02.002 10.1007/978-3-319-68759-9_38 10.1109/TEVC.2003.819944 10.1109/SSCI.2016.7850040 10.1109/CEC.2017.7969407 10.1145/3205651.3205736 10.1007/978-3-319-94472-2_10 10.1007/s11047-005-1625-y 10.1145/3205651.3205761 10.1109/TEVC.2015.2458037 10.1109/CEC.2017.7969454 10.24963/ijcai.2018/538 10.1109/CEC.2017.7969596 10.1109/SSCI.2016.7850038 10.1109/4235.585888 10.1109/CIS.2017.00050 10.1109/TCYB.2016.2554622 10.1109/CEC.2016.7744178 10.1007/978-3-319-28270-1_5 10.1109/TENCON.2016.7848632 10.1287/ijoc.6.2.154 10.1007/978-3-662-03423-1 10.1109/CEC.2017.7969579 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2019.2904696 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 28 |
| ExternalDocumentID | 10_1109_TEVC_2019_2904696 8666053 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Research and Development Program of Shaanxi Province grantid: 2018ZDXM-GY-045 – fundername: National Natural Science Foundation of China grantid: 61772393; 61603299; 61602385 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFB0802200 funderid: 10.13039/501100012166 – fundername: Australian Research Council grantid: DP160103595; LP180100114 funderid: 10.13039/501100000923 – fundername: Shenzhen Research and Development Foundation grantid: JCYJ20170306153943097 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-978aae82361341de337ecfef202521df2468dd2745f1978bb55e7ac5e426ee5c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 158 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510708100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Mon Jun 30 06:17:56 EDT 2025 Tue Nov 18 22:24:22 EST 2025 Sat Nov 29 03:13:48 EST 2025 Wed Aug 27 06:30:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-978aae82361341de337ecfef202521df2468dd2745f1978bb55e7ac5e426ee5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6631-1651 0000-0002-0415-8556 |
| PQID | 2349118863 |
| PQPubID | 85418 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2349118863 crossref_primary_10_1109_TEVC_2019_2904696 ieee_primary_8666053 crossref_citationtrail_10_1109_TEVC_2019_2904696 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | baker (ref10) 1987 ref13 ref12 ref15 ref14 ref31 ref11 ref32 ref2 ref17 cloninger (ref24) 1979; 31 ref16 ref19 ref18 deb (ref26) 1995; 9 yuan (ref9) 2017 demšar (ref30) 2006; 7 ref23 sampath (ref21) 2017; 11 ref25 ref20 ref22 zhou (ref3) 2016 da (ref7) 2017 swersky (ref1) 2013 ref28 ref27 ref29 ref8 ref4 ref6 ref5 |
| References_xml | – volume: 11 year: 2017 ident: ref21 article-title: Evolutionary multitasking to support optimal power flow under rapid load variations publication-title: Southern Power System Technology in Chinese – ident: ref29 doi: 10.1016/j.swevo.2011.02.002 – ident: ref31 doi: 10.1007/978-3-319-68759-9_38 – volume: 31 start-page: 176 year: 1979 ident: ref24 article-title: Multifactorial inheritance with cultural transmission and assortative mating. II. A general model of combined polygenic and cultural inheritance publication-title: Amer J Human Genet – ident: ref28 doi: 10.1109/TEVC.2003.819944 – ident: ref22 doi: 10.1109/SSCI.2016.7850040 – ident: ref27 doi: 10.1109/CEC.2017.7969407 – ident: ref19 doi: 10.1145/3205651.3205736 – ident: ref23 doi: 10.1007/978-3-319-94472-2_10 – start-page: 1 year: 2016 ident: ref3 article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem publication-title: Proc SSSC – ident: ref5 doi: 10.1007/s11047-005-1625-y – ident: ref15 doi: 10.1145/3205651.3205761 – ident: ref2 doi: 10.1109/TEVC.2015.2458037 – ident: ref11 doi: 10.1109/CEC.2017.7969454 – ident: ref13 doi: 10.24963/ijcai.2018/538 – ident: ref12 doi: 10.1109/CEC.2017.7969596 – ident: ref16 doi: 10.1109/SSCI.2016.7850038 – year: 2017 ident: ref7 publication-title: Evolutionary Multitasking for Single-objective Continuous Optimization Benchmark Problems Performance Metric and Baseline Results – volume: 7 start-page: 1 year: 2006 ident: ref30 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref4 doi: 10.1109/4235.585888 – start-page: 2004 year: 2013 ident: ref1 article-title: Multi-task Bayesian optimization publication-title: Proc Adv Neural Inf Process Syst – ident: ref32 doi: 10.1109/CIS.2017.00050 – ident: ref8 doi: 10.1109/TCYB.2016.2554622 – ident: ref17 doi: 10.1109/CEC.2016.7744178 – ident: ref18 doi: 10.1007/978-3-319-28270-1_5 – ident: ref20 doi: 10.1109/TENCON.2016.7848632 – ident: ref25 doi: 10.1287/ijoc.6.2.154 – ident: ref6 doi: 10.1007/978-3-662-03423-1 – volume: 9 start-page: 115 year: 1995 ident: ref26 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – year: 2017 ident: ref9 publication-title: Evolutionary Multitasking for Multiobjective Continuous Optimization Benchmark Problems Performance Metrics and Baseline Results – start-page: 14 year: 1987 ident: ref10 article-title: Reducing bias and inefficiency in the selection algorithm publication-title: Proc 2nd Int Conf Genet Algorithms – ident: ref14 doi: 10.1109/CEC.2017.7969579 |
| SSID | ssj0014519 |
| Score | 2.6305103 |
| Snippet | Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16 |
| SubjectTerms | Evolutionary algorithm (EA) Evolutionary algorithms Knowledge acquisition Knowledge management Knowledge transfer multitask optimization (MTO) Multitasking Optimization Research and development Sociology Solution space Statistics Task analysis |
| Title | Self-Regulated Evolutionary Multitask Optimization |
| URI | https://ieeexplore.ieee.org/document/8666053 https://www.proquest.com/docview/2349118863 |
| Volume | 24 |
| WOSCitedRecordID | wos000510708100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8YAHUdCIounBk7HQbh_bHg2BeEKjaLg12-3sRQTDK_HfO7tdiEZj4q1NdjfNzOw8Oo8P4CoJfSFDT7gqj6QbYirdJGLKFbH0mBI-6UNlwCb4aJRMJulDBW52vTCIaIrPsKsfTS6_mMu1_lXWS8jXJqGpQpVzXvZq7TIGekxKWUyfkseYTGwG0_fS3njw0tdFXGmXpTocjL_ZIAOq8kMTG_MybPzvww7hwLqRzm3J9yOo4KwJjS1Eg2NvbBP2v8wbbEJdu5blZOYWsCecKvexxKLHwhlsrBSKxYdT9uWK5atzTzrlzTZrHsPzcDDu37kWQcGVZMZXLoWIQqDGNNdz2woMAo5SoWLk6TC_UCyMk6KgwDRSPq3N8yhCLmSEZLcRIxmcQG02n-EpOPSCZMo5I6saoifyGAuf09kpIz0QizZ4W5pm0o4X1ygX08yEGV6aaTZkmg2ZZUMbrndb3svZGn8tbmm67xZakrehs2VcZm_fMmNBSDo8SeLg7Pdd51BnOm421dcdqK0Wa7yAPbkhHiwujWB9Aql5yoo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFawHq61itWoOnsS0yeZ9lNJSsVbRKr2F7Wb2Ym2lL_DfO5tsg6II3hLYXcLM7Dwyjw_gInRtLlyLm3LkCdPFSJihx6TJfWExyW3ShzIFmwj6_XA4jB4KcJX3wiBiWnyGDfWY5vKTqViqX2XNkHxtEpoN2PRcl9lZt1aeM1CDUrJy-oh8xnCoc5i2FTUH7ZeWKuOKGixSAaH_zQqlsCo_dHFqYDrl_33aHuxqR9K4zji_DwWcVKC8Bmkw9J2twM6XiYMVKCnnMpvNXAX2hGNpPmZo9JgY7ZWWQz77MLLOXD5_Ne5Jq7zpds0DeO60B62uqTEUTEGGfGFSkMg5KlRzNbktQccJUEiUjHwdZieSuX6YJBSaetKmtaOR52HAhYdkuRE94RxCcTKd4BEY9IJkzANGdtVFi498TOyAzo4YaQKf18Ba0zQWesC4wrkYx2mgYUWxYkOs2BBrNtTgMt_ynk3X-GtxVdE9X6hJXoP6mnGxvn_zmDkuafEw9J3j33edw3Z3cNeLezf92xMoMRVFp7XYdSguZks8hS2xIn7MzlIh-wReIc3R |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Regulated+Evolutionary+Multitask+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zheng%2C+Xiaolong&rft.au=Qin%2C+A.+K.&rft.au=Gong%2C+Maoguo&rft.au=Zhou%2C+Deyun&rft.date=2020-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=24&rft.issue=1&rft.spage=16&rft.epage=28&rft_id=info:doi/10.1109%2FTEVC.2019.2904696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2019_2904696 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |