Self-Regulated Evolutionary Multitask Optimization

Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple optimization problems (tasks) at the same time via evolutionary algorithms (EAs) to improve on the performance of solving each task independent...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 24; číslo 1; s. 16 - 28
Hlavní autoři: Zheng, Xiaolong, Qin, A. K., Gong, Maoguo, Zhou, Deyun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple optimization problems (tasks) at the same time via evolutionary algorithms (EAs) to improve on the performance of solving each task independently, assuming if some component tasks are related then the useful knowledge (e.g., promising candidate solutions) acquired during the process of solving one task may assist in (and also benefit from) solving the other tasks. In EMTO, task relatedness is typically unknown in advance and needs to be captured via EA's population. Since the population of an EA can only cover a subregion of the solution space and keeps evolving during the search, thus captured task relatedness is local and dynamic. The multifactorial EA (MFEA) is one of the most representative EMTO techniques, inspired by the bio-cultural model of multifactorial inheritance, which transmits both biological and cultural traits from the parents to the offspring. MFEA has succeeded in solving various multitask optimization (MTO) problems. However, the intensity of knowledge transfer in MFEA is determined via its algorithmic configuration without considering the degree of task relatedness, which may prevent the effective sharing and utilization of the useful knowledge acquired in related tasks. To address this issue, we propose a self-regulated EMTO (SREMTO) algorithm to automatically adapt the intensity of cross-task knowledge transfer to different and varying degrees of relatedness between different tasks as the search proceeds so that the useful knowledge in common for solving related tasks can be captured, shared, and utilized to a great extent. We compare SREMTO with MFEA and its variants as well as the single-task optimization counterpart of SREMTO on two MTO test suites, which demonstrates the superiority of SREMTO.
AbstractList Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple optimization problems (tasks) at the same time via evolutionary algorithms (EAs) to improve on the performance of solving each task independently, assuming if some component tasks are related then the useful knowledge (e.g., promising candidate solutions) acquired during the process of solving one task may assist in (and also benefit from) solving the other tasks. In EMTO, task relatedness is typically unknown in advance and needs to be captured via EA's population. Since the population of an EA can only cover a subregion of the solution space and keeps evolving during the search, thus captured task relatedness is local and dynamic. The multifactorial EA (MFEA) is one of the most representative EMTO techniques, inspired by the bio-cultural model of multifactorial inheritance, which transmits both biological and cultural traits from the parents to the offspring. MFEA has succeeded in solving various multitask optimization (MTO) problems. However, the intensity of knowledge transfer in MFEA is determined via its algorithmic configuration without considering the degree of task relatedness, which may prevent the effective sharing and utilization of the useful knowledge acquired in related tasks. To address this issue, we propose a self-regulated EMTO (SREMTO) algorithm to automatically adapt the intensity of cross-task knowledge transfer to different and varying degrees of relatedness between different tasks as the search proceeds so that the useful knowledge in common for solving related tasks can be captured, shared, and utilized to a great extent. We compare SREMTO with MFEA and its variants as well as the single-task optimization counterpart of SREMTO on two MTO test suites, which demonstrates the superiority of SREMTO.
Author Zheng, Xiaolong
Qin, A. K.
Gong, Maoguo
Zhou, Deyun
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Zheng
  fullname: Zheng, Xiaolong
  email: xlzheng@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: A. K.
  orcidid: 0000-0001-6631-1651
  surname: Qin
  fullname: Qin, A. K.
  email: kqin@swin.edu.au
  organization: Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne, VIC, Australia
– sequence: 3
  givenname: Maoguo
  orcidid: 0000-0002-0415-8556
  surname: Gong
  fullname: Gong, Maoguo
  email: gong@ieee.org
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, China
– sequence: 4
  givenname: Deyun
  surname: Zhou
  fullname: Zhou, Deyun
  email: dyzhounpu@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kE1Lw0AQhhepYFv9AeKl4Dl1Z7-ye5RSP6BS0Crelm0ykdQ0qZuNoL_eDS0ePHiagXnemXfeERnUTY2EnAOdAlBztZq_zKaMgpkyQ4Uy6ogMwQhIKGVqEHuqTZKm-vWEjNp2QykICWZI2BNWRfKIb13lAuaT-WdTdaFsaue_Jg9dFcrg2vfJchfKbfnt-skpOS5c1eLZoY7J8818NbtLFsvb-9n1IsmY4SExqXYONeMKuIAcOU8xK7BglEkGecGE0nnOUiELiOx6LSWmLpMomEKUGR-Ty_3enW8-OmyD3TSdr-NJy7gwAForHql0T2W-aVuPhc2i5d5n8K6sLFDbB2T7gGwfkD0EFJXwR7nz5Tb-_a_mYq8pEfGX10opKjn_AbO9cs4
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s11227_025_07787_6
crossref_primary_10_1007_s12559_022_10012_8
crossref_primary_10_1016_j_foodcont_2022_109389
crossref_primary_10_1016_j_eswa_2024_123336
crossref_primary_10_1016_j_ins_2022_08_103
crossref_primary_10_1007_s13369_022_06564_4
crossref_primary_10_1007_s10489_022_03626_w
crossref_primary_10_1016_j_knosys_2022_108697
crossref_primary_10_1007_s12293_021_00347_4
crossref_primary_10_1016_j_asoc_2025_112732
crossref_primary_10_1080_09540091_2023_2275534
crossref_primary_10_1109_TEVC_2023_3258491
crossref_primary_10_1109_TEVC_2023_3291874
crossref_primary_10_1007_s40747_021_00624_2
crossref_primary_10_1016_j_eswa_2023_121833
crossref_primary_10_1016_j_knosys_2025_113931
crossref_primary_10_1109_TEVC_2022_3187512
crossref_primary_10_1007_s10489_021_03059_x
crossref_primary_10_1109_TASE_2024_3498064
crossref_primary_10_1109_MCI_2023_3277770
crossref_primary_10_1016_j_cie_2023_109178
crossref_primary_10_1016_j_eswa_2024_126321
crossref_primary_10_1109_TCYB_2020_3043509
crossref_primary_10_1049_joe_2019_1230
crossref_primary_10_1007_s11227_024_06016_w
crossref_primary_10_1016_j_knosys_2022_110027
crossref_primary_10_1007_s10489_022_03282_0
crossref_primary_10_1007_s12539_024_00621_2
crossref_primary_10_1109_TCYB_2022_3222101
crossref_primary_10_1109_TCYB_2020_2981733
crossref_primary_10_1007_s12065_024_00999_4
crossref_primary_10_1109_TCC_2023_3315014
crossref_primary_10_1109_TCYB_2020_2980888
crossref_primary_10_1109_TEVC_2022_3184988
crossref_primary_10_1007_s12065_022_00788_x
crossref_primary_10_1016_j_ins_2021_09_021
crossref_primary_10_1016_j_aei_2023_102343
crossref_primary_10_1109_TCBBIO_2025_3564952
crossref_primary_10_1109_TEVC_2023_3319566
crossref_primary_10_1109_TETCI_2023_3281876
crossref_primary_10_1109_TCYB_2024_3469371
crossref_primary_10_1109_TEVC_2023_3306017
crossref_primary_10_1007_s10489_023_04918_5
crossref_primary_10_1016_j_eswa_2023_120110
crossref_primary_10_1016_j_knosys_2025_113361
crossref_primary_10_1109_MCI_2021_3108311
crossref_primary_10_1016_j_isatra_2022_09_046
crossref_primary_10_1016_j_ins_2025_121908
crossref_primary_10_1016_j_knosys_2025_113824
crossref_primary_10_1109_TEVC_2022_3211643
crossref_primary_10_1016_j_asoc_2024_111470
crossref_primary_10_1109_MCI_2022_3199625
crossref_primary_10_1016_j_asoc_2023_110182
crossref_primary_10_1109_MCI_2022_3155332
crossref_primary_10_1016_j_asoc_2024_111232
crossref_primary_10_1016_j_ins_2022_10_099
crossref_primary_10_1109_TEVC_2021_3139437
crossref_primary_10_1109_TEVC_2020_2975381
crossref_primary_10_1109_TEVC_2023_3263871
crossref_primary_10_1109_MCI_2022_3155325
crossref_primary_10_1016_j_ins_2022_05_037
crossref_primary_10_1109_TSC_2024_3463423
crossref_primary_10_1109_TCYB_2020_3029176
crossref_primary_10_1007_s00500_021_05876_1
crossref_primary_10_1109_TEVC_2022_3227120
crossref_primary_10_1016_j_swevo_2023_101394
crossref_primary_10_1016_j_asoc_2023_110070
crossref_primary_10_1109_ACCESS_2020_3042004
crossref_primary_10_1109_TEVC_2021_3068157
crossref_primary_10_1016_j_knosys_2023_110906
crossref_primary_10_1016_j_eswa_2025_129580
crossref_primary_10_3390_math9080864
crossref_primary_10_1007_s40747_023_01105_4
crossref_primary_10_1109_TEVC_2021_3110506
crossref_primary_10_1016_j_swevo_2024_101569
crossref_primary_10_1016_j_ins_2023_119568
crossref_primary_10_1016_j_ins_2023_119961
crossref_primary_10_1007_s12559_020_09777_7
crossref_primary_10_1109_ACCESS_2021_3114435
crossref_primary_10_3390_app13010602
crossref_primary_10_1016_j_aei_2023_101984
crossref_primary_10_1109_TCYB_2025_3571421
crossref_primary_10_1109_TNNLS_2021_3130896
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1016_j_swevo_2024_101798
crossref_primary_10_3390_drones9080556
crossref_primary_10_1109_TEVC_2022_3145582
crossref_primary_10_1007_s10489_022_03537_w
crossref_primary_10_3233_JIFS_222267
crossref_primary_10_1109_TETCI_2024_3406689
crossref_primary_10_1109_TEVC_2024_3373131
crossref_primary_10_1016_j_ins_2022_07_174
crossref_primary_10_1109_ACCESS_2021_3065741
crossref_primary_10_1109_TCYB_2024_3456471
crossref_primary_10_1109_TEVC_2022_3159253
crossref_primary_10_1007_s10845_024_02339_w
crossref_primary_10_3390_s21227499
crossref_primary_10_1109_TETCI_2022_3205384
crossref_primary_10_1016_j_swevo_2024_101823
crossref_primary_10_1109_TETCI_2023_3236633
crossref_primary_10_3390_electronics10232945
crossref_primary_10_1109_TCYB_2020_2969025
crossref_primary_10_1109_TEVC_2022_3141819
crossref_primary_10_1007_s40747_025_01908_7
crossref_primary_10_1109_TEVC_2020_3023480
crossref_primary_10_1016_j_asoc_2022_109827
crossref_primary_10_1109_TEVC_2021_3101697
crossref_primary_10_1109_TEVC_2021_3107435
crossref_primary_10_1109_TEVC_2022_3175065
crossref_primary_10_1016_j_asoc_2023_110780
crossref_primary_10_1109_TEVC_2021_3098523
crossref_primary_10_1109_TEVC_2021_3131236
crossref_primary_10_1007_s12559_024_10386_x
crossref_primary_10_1016_j_eswa_2025_127599
crossref_primary_10_1016_j_knosys_2024_111530
crossref_primary_10_1109_TCYB_2021_3090769
crossref_primary_10_1109_TEVC_2022_3154416
crossref_primary_10_1109_TETC_2023_3268182
crossref_primary_10_1109_TEVC_2022_3166482
crossref_primary_10_1109_TSMC_2025_3577732
crossref_primary_10_1109_TEVC_2022_3199783
crossref_primary_10_1109_TSMC_2024_3520322
crossref_primary_10_1109_TETCI_2021_3115518
crossref_primary_10_1109_TETCI_2024_3360331
crossref_primary_10_1016_j_swevo_2024_101768
crossref_primary_10_1016_j_asoc_2023_110545
crossref_primary_10_1109_TR_2023_3324701
crossref_primary_10_1109_TEVC_2021_3097043
crossref_primary_10_1016_j_swevo_2024_101765
crossref_primary_10_1088_1757_899X_1261_1_012018
crossref_primary_10_1109_JSTARS_2020_3037353
Cites_doi 10.1016/j.swevo.2011.02.002
10.1007/978-3-319-68759-9_38
10.1109/TEVC.2003.819944
10.1109/SSCI.2016.7850040
10.1109/CEC.2017.7969407
10.1145/3205651.3205736
10.1007/978-3-319-94472-2_10
10.1007/s11047-005-1625-y
10.1145/3205651.3205761
10.1109/TEVC.2015.2458037
10.1109/CEC.2017.7969454
10.24963/ijcai.2018/538
10.1109/CEC.2017.7969596
10.1109/SSCI.2016.7850038
10.1109/4235.585888
10.1109/CIS.2017.00050
10.1109/TCYB.2016.2554622
10.1109/CEC.2016.7744178
10.1007/978-3-319-28270-1_5
10.1109/TENCON.2016.7848632
10.1287/ijoc.6.2.154
10.1007/978-3-662-03423-1
10.1109/CEC.2017.7969579
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2019.2904696
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 28
ExternalDocumentID 10_1109_TEVC_2019_2904696
8666053
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Program of Shaanxi Province
  grantid: 2018ZDXM-GY-045
– fundername: National Natural Science Foundation of China
  grantid: 61772393; 61603299; 61602385
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2017YFB0802200
  funderid: 10.13039/501100012166
– fundername: Australian Research Council
  grantid: DP160103595; LP180100114
  funderid: 10.13039/501100000923
– fundername: Shenzhen Research and Development Foundation
  grantid: JCYJ20170306153943097
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-978aae82361341de337ecfef202521df2468dd2745f1978bb55e7ac5e426ee5c3
IEDL.DBID RIE
ISICitedReferencesCount 158
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510708100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 06:17:56 EDT 2025
Tue Nov 18 22:24:22 EST 2025
Sat Nov 29 03:13:48 EST 2025
Wed Aug 27 06:30:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-978aae82361341de337ecfef202521df2468dd2745f1978bb55e7ac5e426ee5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6631-1651
0000-0002-0415-8556
PQID 2349118863
PQPubID 85418
PageCount 13
ParticipantIDs proquest_journals_2349118863
crossref_primary_10_1109_TEVC_2019_2904696
ieee_primary_8666053
crossref_citationtrail_10_1109_TEVC_2019_2904696
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References baker (ref10) 1987
ref13
ref12
ref15
ref14
ref31
ref11
ref32
ref2
ref17
cloninger (ref24) 1979; 31
ref16
ref19
ref18
deb (ref26) 1995; 9
yuan (ref9) 2017
demšar (ref30) 2006; 7
ref23
sampath (ref21) 2017; 11
ref25
ref20
ref22
zhou (ref3) 2016
da (ref7) 2017
swersky (ref1) 2013
ref28
ref27
ref29
ref8
ref4
ref6
ref5
References_xml – volume: 11
  year: 2017
  ident: ref21
  article-title: Evolutionary multitasking to support optimal power flow under rapid load variations
  publication-title: Southern Power System Technology in Chinese
– ident: ref29
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref31
  doi: 10.1007/978-3-319-68759-9_38
– volume: 31
  start-page: 176
  year: 1979
  ident: ref24
  article-title: Multifactorial inheritance with cultural transmission and assortative mating. II. A general model of combined polygenic and cultural inheritance
  publication-title: Amer J Human Genet
– ident: ref28
  doi: 10.1109/TEVC.2003.819944
– ident: ref22
  doi: 10.1109/SSCI.2016.7850040
– ident: ref27
  doi: 10.1109/CEC.2017.7969407
– ident: ref19
  doi: 10.1145/3205651.3205736
– ident: ref23
  doi: 10.1007/978-3-319-94472-2_10
– start-page: 1
  year: 2016
  ident: ref3
  article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem
  publication-title: Proc SSSC
– ident: ref5
  doi: 10.1007/s11047-005-1625-y
– ident: ref15
  doi: 10.1145/3205651.3205761
– ident: ref2
  doi: 10.1109/TEVC.2015.2458037
– ident: ref11
  doi: 10.1109/CEC.2017.7969454
– ident: ref13
  doi: 10.24963/ijcai.2018/538
– ident: ref12
  doi: 10.1109/CEC.2017.7969596
– ident: ref16
  doi: 10.1109/SSCI.2016.7850038
– year: 2017
  ident: ref7
  publication-title: Evolutionary Multitasking for Single-objective Continuous Optimization Benchmark Problems Performance Metric and Baseline Results
– volume: 7
  start-page: 1
  year: 2006
  ident: ref30
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1109/4235.585888
– start-page: 2004
  year: 2013
  ident: ref1
  article-title: Multi-task Bayesian optimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref32
  doi: 10.1109/CIS.2017.00050
– ident: ref8
  doi: 10.1109/TCYB.2016.2554622
– ident: ref17
  doi: 10.1109/CEC.2016.7744178
– ident: ref18
  doi: 10.1007/978-3-319-28270-1_5
– ident: ref20
  doi: 10.1109/TENCON.2016.7848632
– ident: ref25
  doi: 10.1287/ijoc.6.2.154
– ident: ref6
  doi: 10.1007/978-3-662-03423-1
– volume: 9
  start-page: 115
  year: 1995
  ident: ref26
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– year: 2017
  ident: ref9
  publication-title: Evolutionary Multitasking for Multiobjective Continuous Optimization Benchmark Problems Performance Metrics and Baseline Results
– start-page: 14
  year: 1987
  ident: ref10
  article-title: Reducing bias and inefficiency in the selection algorithm
  publication-title: Proc 2nd Int Conf Genet Algorithms
– ident: ref14
  doi: 10.1109/CEC.2017.7969579
SSID ssj0014519
Score 2.6305103
Snippet Evolutionary multitask optimization (EMTO) is a newly emerging research area in the field of evolutionary computation. It investigates how to solve multiple...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16
SubjectTerms Evolutionary algorithm (EA)
Evolutionary algorithms
Knowledge acquisition
Knowledge management
Knowledge transfer
multitask optimization (MTO)
Multitasking
Optimization
Research and development
Sociology
Solution space
Statistics
Task analysis
Title Self-Regulated Evolutionary Multitask Optimization
URI https://ieeexplore.ieee.org/document/8666053
https://www.proquest.com/docview/2349118863
Volume 24
WOSCitedRecordID wos000510708100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8YAHUdCIotmDJ-PCbvfR9mgIxBMaRcNt08fsRQTDK_Hf2-4WotGYeOth2mxm2s7Mdub7AK4s5FUipUlLAiH9mJgRZyLyQyUjwXigpCrJJuhoxCYT_lCBm10vDCIWxWfYtcPiLV_P1dr-KusxE2ubTVOFKqW07NXavRhYmJSymJ6biJFN3AtmGPDeePDSt0VcvEu4TQfTbz6oIFX5cRMX7mXY-N-HHcKBCyO929LuR1DBWRMaW4oGz53YJux_wRtsQt2GliUycwvIE05z_7HkokftDTZuF4rFh1f25Yrlq3dv7pQ316x5DM_Dwbh_5zsGBV8ZN77yTYooBFpOc4vbpjGKKKocc2IiHRLqnMQp09okpkkeGlkpkwSpUAkav42YqOgEarP5DE_BC6lOGdUiTDGPzToywCAXyFWcoOJx2oZgq9NMOXhxy3IxzYo0I-CZNUNmzZA5M7ThejflvcTW-Eu4ZfW-E3Qqb0Nna7jMnb5lRqLY3OGMpdHZ77POoU5s3lxUX3egtlqs8QL21MbYYHFZbKxPkmfKVQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmogHUdCIou7Bk3Fht_tqj4ZAMCIaRcNt021nLyIYXon_3na3EI3GxFsP02Yz03ZmtjPfB3ChIa-CJFFpicMT2ydqxCj3bFckHqfMEYnIySaifp8Oh-yhAFfrXhhEzIrPsKGH2Vu-nIiF_lXWpCrWVptmAzYD3ydu3q21fjPQQCl5OT1TMSMdmjdM12HNQfulpcu4WIMwnRCG37xQRqvy4y7OHEyn_L9P24NdE0ha17nl96GA4wqUVyQNljmzFdj5gjhYgZIOLnNs5iqQJxyl9mPORo_Sai_NPuTTDyvvzOWzV-te3Spvpl3zAJ477UGraxsOBVsoRz63VZLIOWpWc43cJtHzIhQppkTFOsSVKfFDKqVKTYPUVbJJEgQYcRGg8tyIgfAOoTiejPEILDeSIY0kd0NMfbVO4qCTcmTCD1AwP6yBs9JpLAzAuOa5GMVZouGwWJsh1maIjRlqcLme8p6ja_wlXNV6XwsaldegvjJcbM7fLCaer25xSkPv-PdZ57DdHdz14t5N__YESkRn0Vktdh2K8-kCT2FLLJU9pmfZJvsEQ6PNnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Regulated+Evolutionary+Multitask+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zheng%2C+Xiaolong&rft.au=Qin%2C+A.+K.&rft.au=Gong%2C+Maoguo&rft.au=Zhou%2C+Deyun&rft.date=2020-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=24&rft.issue=1&rft.spage=16&rft.epage=28&rft_id=info:doi/10.1109%2FTEVC.2019.2904696&rft.externalDocID=8666053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon