Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits

The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a back-propagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we pro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Vol. 66; no. 2; pp. 719 - 732
Main Authors: Krestinskaya, Olga, Salama, Khaled Nabil, James, Alex Pappachen
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1549-8328, 1558-0806
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a back-propagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we propose analog backpropagation learning circuits for various memristive learning architectures, such as deep neural network, binary neural network, multiple neural network, hierarchical temporal memory, and long short-term memory. The circuit design and verification are done using TSMC 180-nm CMOS process models and TiO 2 -based memristor models. The application level validations of the system are done using XOR problem, MNIST character, and Yale face image databases.
AbstractList The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a back-propagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we propose analog backpropagation learning circuits for various memristive learning architectures, such as deep neural network, binary neural network, multiple neural network, hierarchical temporal memory, and long short-term memory. The circuit design and verification are done using TSMC 180-nm CMOS process models and TiO 2 -based memristor models. The application level validations of the system are done using XOR problem, MNIST character, and Yale face image databases.
The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a back-propagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we propose analog backpropagation learning circuits for various memristive learning architectures, such as deep neural network, binary neural network, multiple neural network, hierarchical temporal memory, and long short-term memory. The circuit design and verification are done using TSMC 180-nm CMOS process models and TiO2-based memristor models. The application level validations of the system are done using XOR problem, MNIST character, and Yale face image databases.
Author Salama, Khaled Nabil
Krestinskaya, Olga
James, Alex Pappachen
Author_xml – sequence: 1
  givenname: Olga
  orcidid: 0000-0001-8038-4558
  surname: Krestinskaya
  fullname: Krestinskaya, Olga
  organization: Bioinspired Microelectronics Systems Group, Nazarbayev University, Astana, Kazakhstan
– sequence: 2
  givenname: Khaled Nabil
  surname: Salama
  fullname: Salama, Khaled Nabil
  organization: Sensors Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
– sequence: 3
  givenname: Alex Pappachen
  orcidid: 0000-0001-5655-1213
  surname: James
  fullname: James, Alex Pappachen
  email: apj@ieee.org
  organization: Electrical and Computer Engineering Department, School of Engineering, Nazarbayev University, Astana, Kazakhstan
BookMark eNp9kD1PwzAQhi1UJNrCD0AskZhTfE7s2GOp-KhUYKAdmCLXvRS3aVJsB8S_J6GIgYHpbnif03vPgPSqukJCzoGOAKi6mk-epyNGQY6YFIIDPSJ94FzGVFLR6_ZUxTJh8oQMvN9QyhRNoE9eZqhdZat1ZKvoAXfO-mDfMXrExumyHeGjdtto7MyrDWhC49BHC98B40qX9Tq61ma7d_Ver3WwdRVNrDONDf6UHBe69Hj2M4dkcXszn9zHs6e76WQ8iw1TSYhVisiKpaHMgEg450tYCUwkKsnaz5gwSrAll3SlCppRMKzgXKVKimSVAUIyJJeHu22JtwZ9yDd149puPmeQ0YzJVIg2lR1SxtXeOyxyY8N34eC0LXOgeecx7zzmncf8x2NLwh9y7-xOu89_mYsDYxHxN98WkSAh-QJxd3-w
CODEN ITCSCH
CitedBy_id crossref_primary_10_3390_s23125413
crossref_primary_10_1016_j_neucom_2025_131271
crossref_primary_10_1002_adma_202502915
crossref_primary_10_1007_s40820_025_01850_w
crossref_primary_10_1109_JIOT_2024_3409373
crossref_primary_10_1002_aisy_202200029
crossref_primary_10_1016_j_memori_2025_100125
crossref_primary_10_1109_TCSI_2023_3305679
crossref_primary_10_1109_TNANO_2019_2933806
crossref_primary_10_1063_1_5124027
crossref_primary_10_1002_adfm_202405618
crossref_primary_10_1007_s11071_024_10226_5
crossref_primary_10_1515_nanoph_2022_0137
crossref_primary_10_1109_TCSI_2019_2914125
crossref_primary_10_1016_j_neucom_2020_04_111
crossref_primary_10_1145_3474364
crossref_primary_10_1016_j_aeue_2025_155919
crossref_primary_10_1038_s41598_020_62718_0
crossref_primary_10_1109_TNNLS_2021_3082911
crossref_primary_10_1108_COMPEL_11_2024_0492
crossref_primary_10_1109_TCSI_2021_3081150
crossref_primary_10_1007_s10470_025_02480_3
crossref_primary_10_3390_rs14020413
crossref_primary_10_1088_1402_4896_ae04b0
crossref_primary_10_1109_TCAD_2024_3429410
crossref_primary_10_1007_s00521_020_05538_7
crossref_primary_10_1088_1402_4896_addfb8
crossref_primary_10_3390_s25113388
crossref_primary_10_1007_s12668_020_00795_1
crossref_primary_10_1109_TCAD_2021_3121347
crossref_primary_10_1109_ACCESS_2019_2907071
crossref_primary_10_1140_epjp_s13360_025_06663_9
crossref_primary_10_1016_j_sysarc_2022_102730
crossref_primary_10_1109_TCSI_2021_3060798
crossref_primary_10_1007_s10470_020_01720_y
crossref_primary_10_1155_2022_3394475
crossref_primary_10_1016_j_vlsi_2024_102206
crossref_primary_10_1109_TCSI_2019_2895216
crossref_primary_10_1038_s41467_024_45670_9
crossref_primary_10_1109_TCSI_2021_3105043
crossref_primary_10_1109_TNNLS_2022_3146570
crossref_primary_10_1002_adma_202203352
crossref_primary_10_1109_JBHI_2024_3375762
crossref_primary_10_3390_electronics13050893
crossref_primary_10_1016_j_neunet_2020_07_035
crossref_primary_10_1109_TCSII_2021_3128376
crossref_primary_10_3389_fnano_2021_645995
crossref_primary_10_1109_TCSII_2023_3241663
crossref_primary_10_1007_s10462_024_10787_2
crossref_primary_10_1038_s41598_020_62676_7
crossref_primary_10_1002_adma_202300023
crossref_primary_10_1016_j_memori_2023_100062
crossref_primary_10_1016_j_jpdc_2021_10_009
crossref_primary_10_1109_ACCESS_2023_3258360
crossref_primary_10_1007_s10489_024_05957_2
crossref_primary_10_1109_TCSI_2021_3077485
crossref_primary_10_1109_JETCAS_2023_3237582
crossref_primary_10_1109_TCSI_2022_3155443
crossref_primary_10_1109_TBCAS_2019_2956435
crossref_primary_10_1109_TETCI_2020_3005703
crossref_primary_10_3390_s24030999
crossref_primary_10_1016_j_chaos_2024_115452
crossref_primary_10_1002_cta_3701
crossref_primary_10_1007_s40747_021_00282_4
crossref_primary_10_1016_j_chaos_2022_112905
crossref_primary_10_1016_j_neucom_2022_02_043
crossref_primary_10_1016_j_neunet_2021_09_016
crossref_primary_10_1007_s11760_024_03697_x
crossref_primary_10_1007_s11571_024_10069_1
crossref_primary_10_1109_TNNLS_2019_2899262
crossref_primary_10_1038_s41565_021_00874_8
crossref_primary_10_1080_14778238_2021_1955630
crossref_primary_10_1016_j_chaos_2023_113885
crossref_primary_10_1109_ACCESS_2024_3482110
crossref_primary_10_1038_s41565_023_01339_w
crossref_primary_10_1063_5_0246293
crossref_primary_10_1109_TBCAS_2022_3218889
crossref_primary_10_1038_s41377_021_00686_4
crossref_primary_10_3390_mi14111990
crossref_primary_10_1002_aisy_202200058
crossref_primary_10_1016_j_vlsi_2022_05_007
crossref_primary_10_1016_j_sigpro_2024_109446
crossref_primary_10_1371_journal_pone_0270308
crossref_primary_10_1007_s40747_024_01407_1
crossref_primary_10_3390_electronics12234796
crossref_primary_10_1109_TBCAS_2020_3036081
crossref_primary_10_1002_aisy_202000075
crossref_primary_10_3389_fnins_2023_1177592
crossref_primary_10_3390_info16030222
crossref_primary_10_1109_TNNLS_2021_3082304
crossref_primary_10_1088_2634_4386_aceea9
Cites_doi 10.5573/JSTS.2014.14.3.356
10.1109/TASLP.2015.2400218
10.1147/JRD.2017.2716579
10.1162/neco.1997.9.8.1735
10.1080/23746149.2016.1259585
10.1109/ISCAS.2018.8351112
10.1109/IJCNN.2005.1556155
10.1109/MWSCAS.2017.8052915
10.1145/2897937.2898010
10.1109/PRIMEASIA.2017.8280366
10.1002/0471427950.ch13
10.1109/2.485891
10.1145/2228360.2228448
10.1038/ncomms15199
10.1145/3061639.3062326
10.1016/j.neucom.2016.10.061
10.1002/cta.2429
10.1088/1361-6463/aac8a5
10.1109/TII.2016.2555936
10.1021/nl201040y
10.1016/j.jnca.2016.04.006
10.1162/NECO_a_00504
10.1016/j.neucom.2017.08.014
10.1109/IJCNN.2014.6889951
10.1007/s10470-018-1180-y
10.1109/TNNLS.2016.2582924
10.1109/TBCAS.2016.2641983
10.1109/CC.2018.8290807
10.1016/0098-1354(90)87070-6
10.1109/72.557699
10.1109/ISCAS.2018.8351344
10.1109/TVLSI.2011.2109404
10.1109/ISCAS.2016.7527252
10.1109/ICIN.2015.7073817
10.1109/MSP.2012.2211477
10.1007/s10470-018-1155-z
10.1109/ASPDAC.2018.8297384
10.1109/EDSSC.2018.8487179
10.1109/TCAD.2018.2791468
10.1109/IJCNN.2017.7966300
10.1109/ACCESS.2018.2819986
10.1109/MWSCAS.2017.8052950
10.1038/nature06932
10.1109/TETCI.2018.2838124
10.1109/TCAD.2017.2748024
10.1109/TED.2017.2671433
10.1109/TASLP.2014.2364452
10.1109/72.125859
10.1109/JIOT.2016.2579198
10.1109/TASLP.2015.2392944
10.1109/TCSI.2017.2729787
10.1109/IJCNN.2016.7727380
10.1109/TNNLS.2014.2383395
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2018.2866510
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 732
ExternalDocumentID 10_1109_TCSI_2018_2866510
8468181
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-94ee2fbc02c163555b1d6e38e98211026c962b580d9f0701c2f55949863d71e13
IEDL.DBID RIE
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457357200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Sun Nov 09 07:46:29 EST 2025
Tue Nov 18 22:35:24 EST 2025
Sat Nov 29 06:23:50 EST 2025
Wed Aug 27 02:55:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-94ee2fbc02c163555b1d6e38e98211026c962b580d9f0701c2f55949863d71e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8038-4558
0000-0001-5655-1213
PQID 2170728466
PQPubID 85411
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCSI_2018_2866510
proquest_journals_2170728466
crossref_primary_10_1109_TCSI_2018_2866510
ieee_primary_8468181
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
hubara (ref32) 2016
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref18
ibrayev (ref61) 2017
ref51
golden (ref49) 1996
ref50
ref46
ref48
ref42
ref41
ref43
narayanan (ref4) 2017; 61
ref8
ref7
ref9
ref3
krestinskaya (ref31) 2018
ref6
ref5
ref40
vo (ref47) 2017
hawkins (ref33) 2004
ref35
ref34
ref37
patterson (ref16) 1996
ref30
kuzum (ref64) 2012; 12
ref1
ref39
chauvin (ref44) 1995
ref38
georghiades (ref66) 1997; 2
hawkins (ref36) 2016
ref24
ref67
ref23
ref26
ref25
ref20
mehrotra (ref45) 1997
ref63
ref22
ref65
ref21
ref28
ref27
ref29
hawkins (ref17) 2011
vermesan (ref2) 2017
ref60
ref62
krestinskaya (ref19) 2018
References_xml – ident: ref56
  doi: 10.5573/JSTS.2014.14.3.356
– ident: ref40
  doi: 10.1109/TASLP.2015.2400218
– volume: 61
  start-page: 11:1
  year: 2017
  ident: ref4
  article-title: Toward on-chip acceleration of the backpropagation algorithm using nonvolatile memory
  publication-title: IBM J Res Develop
  doi: 10.1147/JRD.2017.2716579
– year: 2018
  ident: ref19
  publication-title: Neuro-memristive circuits for edge computing A review
– start-page: 17
  year: 2017
  ident: ref2
  article-title: Internet of Things cognitive transformation technology research trends and applications
  publication-title: Cognitive Hyperconnected Digital Transformation
– start-page: 156
  year: 2004
  ident: ref33
  publication-title: Intelligence
– ident: ref18
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref6
  doi: 10.1080/23746149.2016.1259585
– ident: ref60
  doi: 10.1109/ISCAS.2018.8351112
– ident: ref37
  doi: 10.1109/IJCNN.2005.1556155
– ident: ref30
  doi: 10.1109/MWSCAS.2017.8052915
– ident: ref55
  doi: 10.1145/2897937.2898010
– ident: ref52
  doi: 10.1109/PRIMEASIA.2017.8280366
– ident: ref28
  doi: 10.1002/0471427950.ch13
– ident: ref20
  doi: 10.1109/2.485891
– ident: ref57
  doi: 10.1145/2228360.2228448
– ident: ref58
  doi: 10.1038/ncomms15199
– ident: ref5
  doi: 10.1145/3061639.3062326
– ident: ref12
  doi: 10.1016/j.neucom.2016.10.061
– ident: ref29
  doi: 10.1002/cta.2429
– ident: ref10
  doi: 10.1088/1361-6463/aac8a5
– ident: ref46
  doi: 10.1109/TII.2016.2555936
– volume: 12
  start-page: 2179
  year: 2012
  ident: ref64
  article-title: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
  publication-title: Nano Lett
  doi: 10.1021/nl201040y
– start-page: 538
  year: 2017
  ident: ref47
  article-title: Implementing the on-chip backpropagation learning algorithm on FPGA architecture
  publication-title: Proc IEEE Int Conf Syst Sci Eng (ICSSE)
– ident: ref21
  doi: 10.1016/j.jnca.2016.04.006
– ident: ref27
  doi: 10.1162/NECO_a_00504
– ident: ref50
  doi: 10.1016/j.neucom.2017.08.014
– ident: ref59
  doi: 10.1109/IJCNN.2014.6889951
– ident: ref42
  doi: 10.1007/s10470-018-1180-y
– ident: ref41
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref38
  doi: 10.1109/TBCAS.2016.2641983
– ident: ref24
  doi: 10.1109/CC.2018.8290807
– year: 2017
  ident: ref61
  publication-title: On-chip face recognition system design with memristive hierarchical temporal memory
– year: 2011
  ident: ref17
  article-title: Hierarchical temporal memory including HTM cortical learning algorithms, version: 0.2.1
– ident: ref48
  doi: 10.1016/0098-1354(90)87070-6
– start-page: 4107
  year: 2016
  ident: ref32
  article-title: Binarized neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/72.557699
– ident: ref14
  doi: 10.1109/ISCAS.2018.8351344
– year: 1997
  ident: ref45
  publication-title: Elements of Artificial Neural Networks
– volume: 2
  start-page: 6
  year: 1997
  ident: ref66
  article-title: Yale face database
  publication-title: Center Comput Vis Control Yale Univ
– year: 1996
  ident: ref49
  publication-title: Mathematical Methods for Neural Network Analysis and Design
– ident: ref54
  doi: 10.1109/TVLSI.2011.2109404
– ident: ref62
  doi: 10.1109/ISCAS.2016.7527252
– ident: ref3
  doi: 10.1109/ICIN.2015.7073817
– year: 2018
  ident: ref31
  publication-title: Binary weighted memristive analog deep neural network for near-sensor edge processing
– ident: ref65
  doi: 10.1109/MSP.2012.2211477
– ident: ref51
  doi: 10.1007/s10470-018-1155-z
– ident: ref15
  doi: 10.1109/ASPDAC.2018.8297384
– ident: ref43
  doi: 10.1109/EDSSC.2018.8487179
– year: 2016
  ident: ref36
  publication-title: Biological and Machine Intelligence (BAMI) Initial Online Release 0 4
– ident: ref67
  doi: 10.1109/TCAD.2018.2791468
– year: 1995
  ident: ref44
  publication-title: Backpropagation Theory Architectures and Applications
– year: 1996
  ident: ref16
  publication-title: Artificial Neural Networks Theory and Applications
– ident: ref8
  doi: 10.1109/IJCNN.2017.7966300
– ident: ref53
  doi: 10.1109/ACCESS.2018.2819986
– ident: ref9
  doi: 10.1109/MWSCAS.2017.8052950
– ident: ref63
  doi: 10.1038/nature06932
– ident: ref34
  doi: 10.1109/TETCI.2018.2838124
– ident: ref39
  doi: 10.1109/TCAD.2017.2748024
– ident: ref13
  doi: 10.1109/TED.2017.2671433
– ident: ref22
  doi: 10.1109/TASLP.2014.2364452
– ident: ref26
  doi: 10.1109/72.125859
– ident: ref1
  doi: 10.1109/JIOT.2016.2579198
– ident: ref23
  doi: 10.1109/TASLP.2015.2392944
– ident: ref11
  doi: 10.1109/TCSI.2017.2729787
– ident: ref35
  doi: 10.1109/IJCNN.2016.7727380
– ident: ref7
  doi: 10.1109/TNNLS.2014.2383395
SSID ssj0029031
Score 2.563183
Snippet The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 719
SubjectTerms Analog circuits
Artificial neural networks
Back propagation
Back propagation networks
Backpropagation
Backpropagation algorithms
binary neural network
Biological neural networks
Circuit design
CMOS
Computer architecture
crossbar
deep neural network
Hardware
hierarchical temporal memory
learning
long-short term memory
Machine learning
memristor
Memristors
multiple neural network
Neural networks
Titanium dioxide
Title Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits
URI https://ieeexplore.ieee.org/document/8468181
https://www.proquest.com/docview/2170728466
Volume 66
WOSCitedRecordID wos000457357200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9z-KAPfk1xOiUPPomdbZomzeMcDgUdglPmU1mT6yhqJ2u3v98k7cpAEXwrJVdCLvfVu_sdQhdCS5GiPnWo4syhIfiOEDR2FAf9lsRebMGqXx_4cBiOx-Kpga7qXhgAsMVn0DWPNpevZnJhfpVda1up7YuOdTY4Z2WvVh1cCdcvsVGpcPQtDasMpueK61H_-d4UcYVdYtDdTLPsmg2yQ1V-aGJrXga7_9vYHtqp3EjcK_m-jxqQHaDtNXDBFnqroFOnOM3wI3xaaV4CNnAcmnRY1n_j3lomIce2ggAbpJLZFN9M5Lver1Y5ln24n87lIi3yQ_QyuB3175xqkIIjtTUvHEEBSBJLl0jPOBhB7CkGfggiNPEfYVIwEgehq0SiVYAnSaIDDSpC5ivugecfoWY2y-AY4YASZbxEg6NHuRZ_ohKPTGLKRcwDYG3kro42khXKuBl28RHZaMMVkeFGZLgRVdxoo8ua5KuE2Phrccscf72wOvk26qz4F1VCmEc62nK5Nr-MnfxOdYq29LdFWYTdQc1ivoAztCmXRZrPz-39-gaOTcru
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8QNFEf_EIjitoHn4yDres--ohEAhGIiWjwaWHtjRAVDAP-fttuEBKNiW_L0suaXu9rd_c7gBuupEgyl1lMBr7FQnQtzllsyQDVWxo7sQGrfu0EvV44GPCnAtyte2EQ0RSfYVU_mly-nIqF_lVWU7ZS2RcV62zpyVl21q21Dq-47WboqIxb6p6GeQ7TsXmt33hu6zKusEo1vptul92wQmasyg9dbAxM8-B_WzuE_dyRJPWM80dQwMkx7G3AC5bgLQdPHZHxhHTx08jzEokG5FCkvawCnNQ3cgkpMTUERGOVTEfkfije1X6V0jEMJI3xTCzG8_QEXpoP_UbLykcpWELZ87nFGSJNYmFT4WgXw4sd6aMbIg91BEh9wX0ae6EteaKUgCNookINxkPflYGDjnsKxcl0gmdAPEal9hM1kh4LlAKgMnHoMGYBjwMP_TLYq6ONRI4zrsddfEQm3rB5pLkRaW5EOTfKcLsm-cpANv5aXNLHv16Yn3wZKiv-RbkYppGKt-xAGWDfP_-d6hp2Wv1uJ-q0e48XsKu-w7OS7AoU57MFXsK2WM7H6ezK3LVvRVLONA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+in+Memristive+Neural+Network+Architectures+Using+Analog+Backpropagation+Circuits&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Krestinskaya%2C+Olga&rft.au=Salama%2C+Khaled+Nabil&rft.au=James%2C+Alex+Pappachen&rft.date=2019-02-01&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=66&rft.issue=2&rft.spage=719&rft.epage=732&rft_id=info:doi/10.1109%2FTCSI.2018.2866510&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSI_2018_2866510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon