Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks

This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on circuits and systems. I, Regular papers Ročník 68; číslo 4; s. 1760 - 1768
Hlavní autoři: Dong, Weizhen, Li, Shuhui, Fu, Xingang, Li, Zhongwen, Fairbank, Michael, Gao, Yixiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-8328, 1558-0806
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain error signals and integrals of the error signals, enabling the ANN to have PI control ability; 2) The ANN receives voltage feedback signals from the dc/dc converter, making the combined system equivalent to a recurrent neural network; 3) The ANN is trained to minimize a cost function over a long time horizon, making the ANN have a stronger predictive control ability than a conventional predictive controller; 4) The ANN is trained offline, preventing the instability of the network caused by weight adjustments of an on-line training algorithm. The ANN performance is evaluated through simulation and hardware experiments and compared with conventional control methods, which shows that the ANN controller has a strong ability to track rapidly changing reference commands, maintain stable output voltage for a variable load, and manage maximum duty-ratio and current constraints properly.
AbstractList This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain error signals and integrals of the error signals, enabling the ANN to have PI control ability; 2) The ANN receives voltage feedback signals from the dc/dc converter, making the combined system equivalent to a recurrent neural network; 3) The ANN is trained to minimize a cost function over a long time horizon, making the ANN have a stronger predictive control ability than a conventional predictive controller; 4) The ANN is trained offline, preventing the instability of the network caused by weight adjustments of an on-line training algorithm. The ANN performance is evaluated through simulation and hardware experiments and compared with conventional control methods, which shows that the ANN controller has a strong ability to track rapidly changing reference commands, maintain stable output voltage for a variable load, and manage maximum duty-ratio and current constraints properly.
Author Li, Shuhui
Fairbank, Michael
Gao, Yixiang
Dong, Weizhen
Fu, Xingang
Li, Zhongwen
Author_xml – sequence: 1
  givenname: Weizhen
  orcidid: 0000-0002-0355-1858
  surname: Dong
  fullname: Dong, Weizhen
  email: wdong5@crimson.ua.edu
  organization: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA
– sequence: 2
  givenname: Shuhui
  orcidid: 0000-0001-6754-8976
  surname: Li
  fullname: Li, Shuhui
  email: sli@eng.ua.edu
  organization: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA
– sequence: 3
  givenname: Xingang
  surname: Fu
  fullname: Fu, Xingang
  email: xingang.fu@tamuk.edu
  organization: Department of Electrical Engineering and Computer Science, Texas A&M University Kingsville, Kingsville, TX, USA
– sequence: 4
  givenname: Zhongwen
  orcidid: 0000-0002-0846-4219
  surname: Li
  fullname: Li, Zhongwen
  email: lzw@zzu.edu.cn
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 5
  givenname: Michael
  orcidid: 0000-0003-3833-7875
  surname: Fairbank
  fullname: Fairbank, Michael
  email: m.fairbank@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K
– sequence: 6
  givenname: Yixiang
  surname: Gao
  fullname: Gao, Yixiang
  email: ygao43@crimson.ua.edu
  organization: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA
BookMark eNp9kMtOAzEMRSNUJErhAxCbSKyndZJ5JMsy5VEJARKwHqXBqdLHpGRSoH_PDEUsWLCyZfv62ueY9GpfIyFnDIaMgRo9l0_TIQfOhgIykebygPRZlskEJOS9Lk9VIgWXR-S4aRYAXIFgfWJLX8fgV9Rbqunl1izppBxNStrW3zFEDPSlcfWcjjeb4D_dWkekk12t187Qx-DnQa_XXV_Xr3QcorPOOL2i97gN3yF--LBsTsih1asGT3_igDxdXz2Xt8ndw820HN8lhisRE5WqGeNYoLasQAWpZaCL3NrCzDKGYLixwCwXXAjNAWSeoRX5LEerQYgBudhvbU9922ITq4Xfhro1rHiqpCzyQsh2iu2nTPBNE9BWm9D-FXYVg6qDWXUwqw5m9QOz1RR_NMZFHV0HT7vVv8rzvdIh4q-TEmmLX4ovBH2DpA
CODEN ITCSCH
CitedBy_id crossref_primary_10_1007_s00500_022_07797_z
crossref_primary_10_3390_fractalfract7070542
crossref_primary_10_3390_s23177450
crossref_primary_10_35414_akufemubid_1559119
crossref_primary_10_1007_s43236_025_01191_2
crossref_primary_10_1002_asjc_3167
crossref_primary_10_3390_en17143578
crossref_primary_10_1016_j_est_2023_108170
crossref_primary_10_1109_ACCESS_2021_3100857
crossref_primary_10_1007_s10470_023_02237_w
crossref_primary_10_1109_TCSI_2023_3264536
crossref_primary_10_1109_JESTPE_2023_3253561
crossref_primary_10_1007_s40313_024_01086_w
crossref_primary_10_3389_fenrg_2022_858601
crossref_primary_10_1007_s00202_024_02882_y
crossref_primary_10_1049_cit2_12121
crossref_primary_10_3390_en16227614
crossref_primary_10_1177_01423312241312706
crossref_primary_10_1016_j_jprocont_2023_02_006
crossref_primary_10_1109_ACCESS_2024_3441512
crossref_primary_10_1007_s43236_025_01142_x
crossref_primary_10_1002_2050_7038_12916
crossref_primary_10_1016_j_compeleceng_2024_109731
crossref_primary_10_1109_TPEL_2024_3389588
crossref_primary_10_3390_en17061325
crossref_primary_10_1049_pel2_12618
crossref_primary_10_3390_a18090555
crossref_primary_10_1007_s00202_022_01631_3
crossref_primary_10_1016_j_eswa_2023_120362
crossref_primary_10_1109_JESTPE_2022_3192354
crossref_primary_10_3390_s23156936
crossref_primary_10_3390_electronics13010084
crossref_primary_10_1007_s42835_021_00970_8
crossref_primary_10_1109_JESTPE_2023_3242299
crossref_primary_10_1109_TEC_2021_3118664
crossref_primary_10_1007_s00202_025_03152_1
crossref_primary_10_3390_en16031016
crossref_primary_10_1049_tje2_12316
crossref_primary_10_1016_j_jestch_2023_101390
crossref_primary_10_1109_TCSI_2022_3151464
crossref_primary_10_1109_TPEL_2022_3199234
crossref_primary_10_1109_TII_2021_3136562
crossref_primary_10_1109_ACCESS_2022_3144836
crossref_primary_10_3390_jmse10091285
crossref_primary_10_1002_cta_3814
crossref_primary_10_3390_math12121893
crossref_primary_10_3390_su14127396
crossref_primary_10_3934_electreng_2025016
crossref_primary_10_1080_15325008_2024_2316245
crossref_primary_10_1109_TPEL_2024_3462808
crossref_primary_10_1002_cta_4587
crossref_primary_10_1109_ACCESS_2024_3524378
crossref_primary_10_1049_pel2_12847
crossref_primary_10_1016_j_egyr_2022_10_407
crossref_primary_10_1016_j_ijepes_2023_109175
Cites_doi 10.1109/TIA.2005.857461
10.1109/LCSYS.2020.3025411
10.1109/TNN.2011.2168538
10.1109/TPEL.2015.2431193
10.1109/TCSII.2019.2955711
10.1109/TPEL.2020.2986283
10.1109/TNNLS.2013.2280906
10.1109/TIE.2016.2532846
10.1109/TMECH.2004.842227
10.1016/j.ijepes.2020.105950
10.1109/TIE.2016.2636798
10.1109/TNNLS.2014.2361267
10.1109/72.329697
10.1109/TPEL.2006.879049
10.1109/TIE.2007.909058
10.1109/TPEL.2020.3009619
10.1109/ECCE.2010.5617741
10.1109/TPEL.2011.2169685
10.1049/ip-epa:20045198
10.1002/9781118453988
10.1109/ACCESS.2018.2869043
10.1109/TIA.2020.3029755
10.1109/TNNLS.2016.2635586
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2021.3053468
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 1768
ExternalDocumentID 10_1109_TCSI_2021_3053468
9340318
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-949b12e7eaf17e904f10a76ff7cb51e0c2cf01f23233a200865ef36b6efa033
IEDL.DBID RIE
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626527600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Mon Jun 30 03:51:26 EDT 2025
Tue Nov 18 21:32:25 EST 2025
Sat Nov 29 06:23:54 EST 2025
Wed Aug 27 02:48:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-949b12e7eaf17e904f10a76ff7cb51e0c2cf01f23233a200865ef36b6efa033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0355-1858
0000-0002-0846-4219
0000-0001-6754-8976
0000-0003-3833-7875
PQID 2498876738
PQPubID 85411
PageCount 9
ParticipantIDs crossref_primary_10_1109_TCSI_2021_3053468
ieee_primary_9340318
proquest_journals_2498876738
crossref_citationtrail_10_1109_TCSI_2021_3053468
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
tan (ref7) 2008; 55
ref11
ref10
ref2
mammano (ref6) 2017
ref1
ref16
ref19
ref18
mohan (ref5) 2011
ref24
ref23
ref20
franklin (ref26) 1998
ref22
ref21
ref28
ref27
ref8
bertsekas (ref17) 2012
ref9
ref4
ref3
mohan (ref25) 2002
References_xml – ident: ref15
  doi: 10.1109/TIA.2005.857461
– year: 1998
  ident: ref26
  publication-title: Digital Control of Dynamic Systems
– ident: ref4
  doi: 10.1109/LCSYS.2020.3025411
– ident: ref19
  doi: 10.1109/TNN.2011.2168538
– ident: ref9
  doi: 10.1109/TPEL.2015.2431193
– ident: ref11
  doi: 10.1109/TCSII.2019.2955711
– ident: ref1
  doi: 10.1109/TPEL.2020.2986283
– ident: ref21
  doi: 10.1109/TNNLS.2013.2280906
– ident: ref12
  doi: 10.1109/TIE.2016.2532846
– year: 2002
  ident: ref25
  publication-title: POWER ELECTRONICS Converters Applications and Design
– ident: ref14
  doi: 10.1109/TMECH.2004.842227
– ident: ref10
  doi: 10.1016/j.ijepes.2020.105950
– ident: ref24
  doi: 10.1109/TIE.2016.2636798
– ident: ref28
  doi: 10.1109/TNNLS.2014.2361267
– ident: ref27
  doi: 10.1109/72.329697
– ident: ref8
  doi: 10.1109/TPEL.2006.879049
– volume: 55
  start-page: 1160
  year: 2008
  ident: ref7
  article-title: General design issues of sliding-mode controllers in DC-DC converters
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2007.909058
– year: 2012
  ident: ref17
  publication-title: Dynamic Programming and Optimal Control Approximate Dynamic Programming
– ident: ref2
  doi: 10.1109/TPEL.2020.3009619
– ident: ref22
  doi: 10.1109/ECCE.2010.5617741
– ident: ref16
  doi: 10.1109/TPEL.2011.2169685
– year: 2011
  ident: ref5
  publication-title: Power Electronics A First Course
– ident: ref23
  doi: 10.1049/ip-epa:20045198
– ident: ref18
  doi: 10.1002/9781118453988
– ident: ref13
  doi: 10.1109/ACCESS.2018.2869043
– year: 2017
  ident: ref6
  publication-title: Fundamentals of designing power supply devices
– ident: ref3
  doi: 10.1109/TIA.2020.3029755
– ident: ref20
  doi: 10.1109/TNNLS.2016.2635586
SSID ssj0029031
Score 2.5809274
Snippet This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1760
SubjectTerms Algorithms
approximate dynamic programming
artificial neural network
Artificial neural networks
Buck converters
Control methods
Control stability
Control systems
Controllers
Cost function
dc/dc buck converter
Dynamic programming
Electric potential
Error signals
Inductors
Neural networks
Optimal control
Predictive control
Recurrent neural networks
Switches
Switching frequency
Transfer functions
Voltage
Voltage control
Voltage converters (DC to DC)
Title Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks
URI https://ieeexplore.ieee.org/document/9340318
https://www.proquest.com/docview/2498876738
Volume 68
WOSCitedRecordID wos000626527600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3H9IgdPYt2kyTbNUbqKXkTQg7eSphMQdFd2V_Hnm0nqIiiCpxaatKVvmplJXt4AnAxKPkAuMCuUxUwptFnZqjxTRSlsw71z0sdiE_r2tnx8NHcLcDbfC4OIkXyG53Qa1_LbsXujqbK-kYpscBEWtS7SXq15cmW4TNqoymTBSstuBVNw03-o7m9CJpiL82DcUpGq6jcfFIuq_BiJo3u5Wv_fi23AWhdGsouE-yYs4GgLVr-JC26DrxILnY09s4zWcNmw6g8rVhHRnJicLPIF2AXJin88hdAV2TAVqGd3ibb1QtftqI0PSloTjOQ84iHyx6c7cH91-VBdZ11VhcwF1z7LjDKNyFGj9UKj4coLbnXhvXbNQCB3ufNc-BBpSWmJHVEM0MuiKdBbLuUuLI3GI9wDVoZQo0GubZ63Krh5iwa5cXnutGkb1fSAf33l2nWC41T34rmOiQc3NQFTEzB1B0wPTuddXpPaxl-NtwmJecMOhB4cfkFZd__jtA5JZhhNqcLp_u-9DmCF7p04OYewNJu84REsu_fZ03RyHE3tE9Dq0Ig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHDyJdZMm2zZH6SqKugjuwVtJ0wks6K64q_jzzaR1ERTBUwtNSOlMMzPJl-8DOO5kvINcYJQog5FSaKKsUnGkkkyYkjtrpQtiE2mvlz0-6vsZOJ2ehUHEAD7DM7oNe_nVyL7RUllbS0U-OAvzpJzVnNaalleay5odVenI-2nW7GEKrtv9_OHa14KxOPPuLRXxqn6LQkFW5cdcHALM5er_Xm0NVppEkp3Xll-HGRxuwPI3esFNcHmNQ2cjxwyjXVzWzdvdnOUENScsJwuIAXZOxOIfA5-8IuvWEvXsvgZuPdNzM6zCQDXbBCNCj3AJCPLxFjxcXvTzq6jRVYisD-6TSCtdihhTNE6kqLlygps0cS61ZUcgt7F1XDifa0lpCB-RdNDJpEzQGS7lNswNR0PcAZb5ZKNEnpo4rpQP9AY1cm3j2Ka6KlXZAv71lQvbUI6T8sVTEUoPrgsyTEGGKRrDtOBk2uWl5tv4q_EmWWLasDFCC_a_TFk0f-S48GWmn09J43T3915HsHjVv7stbq97N3uwROPUCJ19mJu8vuEBLNj3yWD8ehjc7hPYc9PR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+a+Buck+DC%2FDC+Converter+Using+Approximate+Dynamic+Programming+and+Artificial+Neural+Networks&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Dong%2C+Weizhen&rft.au=Li%2C+Shuhui&rft.au=Fu%2C+Xingang&rft.au=Li%2C+Zhongwen&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=68&rft.issue=4&rft.spage=1760&rft_id=info:doi/10.1109%2FTCSI.2021.3053468&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon