Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks
This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain e...
Uložené v:
| Vydané v: | IEEE transactions on circuits and systems. I, Regular papers Ročník 68; číslo 4; s. 1760 - 1768 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1549-8328, 1558-0806 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain error signals and integrals of the error signals, enabling the ANN to have PI control ability; 2) The ANN receives voltage feedback signals from the dc/dc converter, making the combined system equivalent to a recurrent neural network; 3) The ANN is trained to minimize a cost function over a long time horizon, making the ANN have a stronger predictive control ability than a conventional predictive controller; 4) The ANN is trained offline, preventing the instability of the network caused by weight adjustments of an on-line training algorithm. The ANN performance is evaluated through simulation and hardware experiments and compared with conventional control methods, which shows that the ANN controller has a strong ability to track rapidly changing reference commands, maintain stable output voltage for a variable load, and manage maximum duty-ratio and current constraints properly. |
|---|---|
| AbstractList | This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control based on approximate dynamic programming (ADP). Special characteristics of the proposed ANN control include: 1) The inputs to the ANN contain error signals and integrals of the error signals, enabling the ANN to have PI control ability; 2) The ANN receives voltage feedback signals from the dc/dc converter, making the combined system equivalent to a recurrent neural network; 3) The ANN is trained to minimize a cost function over a long time horizon, making the ANN have a stronger predictive control ability than a conventional predictive controller; 4) The ANN is trained offline, preventing the instability of the network caused by weight adjustments of an on-line training algorithm. The ANN performance is evaluated through simulation and hardware experiments and compared with conventional control methods, which shows that the ANN controller has a strong ability to track rapidly changing reference commands, maintain stable output voltage for a variable load, and manage maximum duty-ratio and current constraints properly. |
| Author | Li, Shuhui Fairbank, Michael Gao, Yixiang Dong, Weizhen Fu, Xingang Li, Zhongwen |
| Author_xml | – sequence: 1 givenname: Weizhen orcidid: 0000-0002-0355-1858 surname: Dong fullname: Dong, Weizhen email: wdong5@crimson.ua.edu organization: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA – sequence: 2 givenname: Shuhui orcidid: 0000-0001-6754-8976 surname: Li fullname: Li, Shuhui email: sli@eng.ua.edu organization: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA – sequence: 3 givenname: Xingang surname: Fu fullname: Fu, Xingang email: xingang.fu@tamuk.edu organization: Department of Electrical Engineering and Computer Science, Texas A&M University Kingsville, Kingsville, TX, USA – sequence: 4 givenname: Zhongwen orcidid: 0000-0002-0846-4219 surname: Li fullname: Li, Zhongwen email: lzw@zzu.edu.cn organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China – sequence: 5 givenname: Michael orcidid: 0000-0003-3833-7875 surname: Fairbank fullname: Fairbank, Michael email: m.fairbank@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K – sequence: 6 givenname: Yixiang surname: Gao fullname: Gao, Yixiang email: ygao43@crimson.ua.edu organization: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA |
| BookMark | eNp9kMtOAzEMRSNUJErhAxCbSKyndZJ5JMsy5VEJARKwHqXBqdLHpGRSoH_PDEUsWLCyZfv62ueY9GpfIyFnDIaMgRo9l0_TIQfOhgIykebygPRZlskEJOS9Lk9VIgWXR-S4aRYAXIFgfWJLX8fgV9Rbqunl1izppBxNStrW3zFEDPSlcfWcjjeb4D_dWkekk12t187Qx-DnQa_XXV_Xr3QcorPOOL2i97gN3yF--LBsTsih1asGT3_igDxdXz2Xt8ndw820HN8lhisRE5WqGeNYoLasQAWpZaCL3NrCzDKGYLixwCwXXAjNAWSeoRX5LEerQYgBudhvbU9922ITq4Xfhro1rHiqpCzyQsh2iu2nTPBNE9BWm9D-FXYVg6qDWXUwqw5m9QOz1RR_NMZFHV0HT7vVv8rzvdIh4q-TEmmLX4ovBH2DpA |
| CODEN | ITCSCH |
| CitedBy_id | crossref_primary_10_1007_s00500_022_07797_z crossref_primary_10_3390_fractalfract7070542 crossref_primary_10_3390_s23177450 crossref_primary_10_35414_akufemubid_1559119 crossref_primary_10_1007_s43236_025_01191_2 crossref_primary_10_1002_asjc_3167 crossref_primary_10_3390_en17143578 crossref_primary_10_1016_j_est_2023_108170 crossref_primary_10_1109_ACCESS_2021_3100857 crossref_primary_10_1007_s10470_023_02237_w crossref_primary_10_1109_TCSI_2023_3264536 crossref_primary_10_1109_JESTPE_2023_3253561 crossref_primary_10_1007_s40313_024_01086_w crossref_primary_10_3389_fenrg_2022_858601 crossref_primary_10_1007_s00202_024_02882_y crossref_primary_10_1049_cit2_12121 crossref_primary_10_3390_en16227614 crossref_primary_10_1177_01423312241312706 crossref_primary_10_1016_j_jprocont_2023_02_006 crossref_primary_10_1109_ACCESS_2024_3441512 crossref_primary_10_1007_s43236_025_01142_x crossref_primary_10_1002_2050_7038_12916 crossref_primary_10_1016_j_compeleceng_2024_109731 crossref_primary_10_1109_TPEL_2024_3389588 crossref_primary_10_3390_en17061325 crossref_primary_10_1049_pel2_12618 crossref_primary_10_3390_a18090555 crossref_primary_10_1007_s00202_022_01631_3 crossref_primary_10_1016_j_eswa_2023_120362 crossref_primary_10_1109_JESTPE_2022_3192354 crossref_primary_10_3390_s23156936 crossref_primary_10_3390_electronics13010084 crossref_primary_10_1007_s42835_021_00970_8 crossref_primary_10_1109_JESTPE_2023_3242299 crossref_primary_10_1109_TEC_2021_3118664 crossref_primary_10_1007_s00202_025_03152_1 crossref_primary_10_3390_en16031016 crossref_primary_10_1049_tje2_12316 crossref_primary_10_1016_j_jestch_2023_101390 crossref_primary_10_1109_TCSI_2022_3151464 crossref_primary_10_1109_TPEL_2022_3199234 crossref_primary_10_1109_TII_2021_3136562 crossref_primary_10_1109_ACCESS_2022_3144836 crossref_primary_10_3390_jmse10091285 crossref_primary_10_1002_cta_3814 crossref_primary_10_3390_math12121893 crossref_primary_10_3390_su14127396 crossref_primary_10_3934_electreng_2025016 crossref_primary_10_1080_15325008_2024_2316245 crossref_primary_10_1109_TPEL_2024_3462808 crossref_primary_10_1002_cta_4587 crossref_primary_10_1109_ACCESS_2024_3524378 crossref_primary_10_1049_pel2_12847 crossref_primary_10_1016_j_egyr_2022_10_407 crossref_primary_10_1016_j_ijepes_2023_109175 |
| Cites_doi | 10.1109/TIA.2005.857461 10.1109/LCSYS.2020.3025411 10.1109/TNN.2011.2168538 10.1109/TPEL.2015.2431193 10.1109/TCSII.2019.2955711 10.1109/TPEL.2020.2986283 10.1109/TNNLS.2013.2280906 10.1109/TIE.2016.2532846 10.1109/TMECH.2004.842227 10.1016/j.ijepes.2020.105950 10.1109/TIE.2016.2636798 10.1109/TNNLS.2014.2361267 10.1109/72.329697 10.1109/TPEL.2006.879049 10.1109/TIE.2007.909058 10.1109/TPEL.2020.3009619 10.1109/ECCE.2010.5617741 10.1109/TPEL.2011.2169685 10.1049/ip-epa:20045198 10.1002/9781118453988 10.1109/ACCESS.2018.2869043 10.1109/TIA.2020.3029755 10.1109/TNNLS.2016.2635586 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCSI.2021.3053468 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0806 |
| EndPage | 1768 |
| ExternalDocumentID | 10_1109_TCSI_2021_3053468 9340318 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RNS VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c293t-949b12e7eaf17e904f10a76ff7cb51e0c2cf01f23233a200865ef36b6efa033 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626527600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-8328 |
| IngestDate | Mon Jun 30 03:51:26 EDT 2025 Tue Nov 18 21:32:25 EST 2025 Sat Nov 29 06:23:54 EST 2025 Wed Aug 27 02:48:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-949b12e7eaf17e904f10a76ff7cb51e0c2cf01f23233a200865ef36b6efa033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0355-1858 0000-0002-0846-4219 0000-0001-6754-8976 0000-0003-3833-7875 |
| PQID | 2498876738 |
| PQPubID | 85411 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_TCSI_2021_3053468 ieee_primary_9340318 proquest_journals_2498876738 crossref_citationtrail_10_1109_TCSI_2021_3053468 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
| PublicationTitleAbbrev | TCSI |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 tan (ref7) 2008; 55 ref11 ref10 ref2 mammano (ref6) 2017 ref1 ref16 ref19 ref18 mohan (ref5) 2011 ref24 ref23 ref20 franklin (ref26) 1998 ref22 ref21 ref28 ref27 ref8 bertsekas (ref17) 2012 ref9 ref4 ref3 mohan (ref25) 2002 |
| References_xml | – ident: ref15 doi: 10.1109/TIA.2005.857461 – year: 1998 ident: ref26 publication-title: Digital Control of Dynamic Systems – ident: ref4 doi: 10.1109/LCSYS.2020.3025411 – ident: ref19 doi: 10.1109/TNN.2011.2168538 – ident: ref9 doi: 10.1109/TPEL.2015.2431193 – ident: ref11 doi: 10.1109/TCSII.2019.2955711 – ident: ref1 doi: 10.1109/TPEL.2020.2986283 – ident: ref21 doi: 10.1109/TNNLS.2013.2280906 – ident: ref12 doi: 10.1109/TIE.2016.2532846 – year: 2002 ident: ref25 publication-title: POWER ELECTRONICS Converters Applications and Design – ident: ref14 doi: 10.1109/TMECH.2004.842227 – ident: ref10 doi: 10.1016/j.ijepes.2020.105950 – ident: ref24 doi: 10.1109/TIE.2016.2636798 – ident: ref28 doi: 10.1109/TNNLS.2014.2361267 – ident: ref27 doi: 10.1109/72.329697 – ident: ref8 doi: 10.1109/TPEL.2006.879049 – volume: 55 start-page: 1160 year: 2008 ident: ref7 article-title: General design issues of sliding-mode controllers in DC-DC converters publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2007.909058 – year: 2012 ident: ref17 publication-title: Dynamic Programming and Optimal Control Approximate Dynamic Programming – ident: ref2 doi: 10.1109/TPEL.2020.3009619 – ident: ref22 doi: 10.1109/ECCE.2010.5617741 – ident: ref16 doi: 10.1109/TPEL.2011.2169685 – year: 2011 ident: ref5 publication-title: Power Electronics A First Course – ident: ref23 doi: 10.1049/ip-epa:20045198 – ident: ref18 doi: 10.1002/9781118453988 – ident: ref13 doi: 10.1109/ACCESS.2018.2869043 – year: 2017 ident: ref6 publication-title: Fundamentals of designing power supply devices – ident: ref3 doi: 10.1109/TIA.2020.3029755 – ident: ref20 doi: 10.1109/TNNLS.2016.2635586 |
| SSID | ssj0029031 |
| Score | 2.5809274 |
| Snippet | This paper proposes a novel artificial neural network (ANN) based control method for a dc/dc buck converter. The ANN is trained to implement optimal control... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1760 |
| SubjectTerms | Algorithms approximate dynamic programming artificial neural network Artificial neural networks Buck converters Control methods Control stability Control systems Controllers Cost function dc/dc buck converter Dynamic programming Electric potential Error signals Inductors Neural networks Optimal control Predictive control Recurrent neural networks Switches Switching frequency Transfer functions Voltage Voltage control Voltage converters (DC to DC) |
| Title | Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks |
| URI | https://ieeexplore.ieee.org/document/9340318 https://www.proquest.com/docview/2498876738 |
| Volume | 68 |
| WOSCitedRecordID | wos000626527600034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-0806 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029031 issn: 1549-8328 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5swwd98DbFeSMPPondkt6yPI7OoS9jsD3sraRpAgPdZBfx55uTdGOgCD610KQt_U6b8zVfvgPwwIuEMs3ioFtauhqXiQykSmhgU1tjeY9QNJSu2AQfDrvTqRjV4Gm3FkZr7cRnuo27bi6_XKgN_irriCjGGKxDnfPUr9XakStBI--NGovARmm3msFkVHQm2fjVMsGQtW1wRzG6qu6NQa6oyo8vsRteBif_u7FTOK7SSNLzuJ9BTc_P4WjPXLAJJvMqdLIwRBKcwyX9rNPPSIZCc1RyEqcXID20Ff-a2dRVk74vUE9GXrb1jsflvHQX8l4TBO083Mbpx1cXMB48T7KXoKqqECg7tK8DEYuChZpraRjXgsaGUWmRMVwVCdNUhcpQZmymFUUS1RFpok2UFqk2kkbRJTTmi7m-AqJNwWXIC6W6Jk4sb5NClSZJuc3pqKRhC-j2KeeqMhzHuhdvuSMeVOQITI7A5BUwLXjcdfnwbht_NW4iEruGFQgtuN1CmVfv4yq3JNN-TbHC6fXvvW7gEM_tNTm30FgvN_oODtTnerZa3rtQ-waD9tAz |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3qY4r3nwSeyW9Lo8js6x4RyD7WFvJU0TGOgmu4g_35y0GwNF8KmFJrT0O03O13z5DsBDlAaUKeY7jczQVT8LhCNkQB2T2mrDe7ikrrDFJqJ-vzEe80EJnjZ7YZRSVnymanhq1_KzmVzhr7I693yMwR3YxcpZxW6tDb3i1MvdUX3umDhtFGuYjPL6KB52DRd0Wc2Et-ejr-rWLGTLqvwYi-0E0z7-36OdwFGRSJJmjvwplNT0DA637AUroONch05mmgiCq7ikFddbMYlRao5aTmIVA6SJxuJfE5O8KtLKS9STQS7cesfrYprZG-VuEwQNPezBKsgX5zBsP4_ijlPUVXCkmdyXDvd5ylwVKaFZpDj1NaPCYKMjmQZMUelKTZk2uZbnCdRHhIHSXpiGSgvqeRdQns6m6hKI0mkk3CiVsqH9wDA3wWWmgzAyWR0V1K0CXb_lRBaW41j54i2x1IPyBIFJEJikAKYKj5suH7nfxl-NK4jEpmEBQhVu1lAmxRe5SAzNNOMp1ji9-r3XPex3Rq-9pNftv1zDAd4nV-jcQHk5X6lb2JOfy8lifmfD7huGWdN8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+a+Buck+DC%2FDC+Converter+Using+Approximate+Dynamic+Programming+and+Artificial+Neural+Networks&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Dong%2C+Weizhen&rft.au=Li%2C+Shuhui&rft.au=Fu%2C+Xingang&rft.au=Li%2C+Zhongwen&rft.date=2021-04-01&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=68&rft.issue=4&rft.spage=1760&rft.epage=1768&rft_id=info:doi/10.1109%2FTCSI.2021.3053468&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSI_2021_3053468 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |