Stability Analysis of Denoising Autoencoders Based on Dynamical Projection System

In this study, we give a stability analysis of denoising autoencoder(DAE) from the novel perspective of dynamical systems when the input density is defined as a distribution on a manifold. We demonstrate the connection between the corrupted distribution and the learned reconstruction function of a n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 33; no. 8; pp. 3155 - 3159
Main Authors: Park, Saerom, Lee, Jaewook
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we give a stability analysis of denoising autoencoder(DAE) from the novel perspective of dynamical systems when the input density is defined as a distribution on a manifold. We demonstrate the connection between the corrupted distribution and the learned reconstruction function of a nonlinear DAE, which motivates the use of a dynamic projection system (DPS) associated with the learned reconstruction function. Utilizing the constructed DPS, we prove that the high-density region of the corrupted data distribution asymptotically converges to the data manifold. Then, we show that the region is the attracting stable equilibrium manifold of the DPS which is completely stable. These results serve a theoretical basis of the DAE in recognizing the high-density region of the highly corrupted data with large deviations through the DPS. The effectiveness of this analysis is verified by conducting experiments on several toy examples and real image datasets with various types of noise.
AbstractList In this study, we give a stability analysis of denoising autoencoder(DAE) from the novel perspective of dynamical systems when the input density is defined as a distribution on a manifold. We demonstrate the connection between the corrupted distribution and the learned reconstruction function of a nonlinear DAE, which motivates the use of a dynamic projection system (DPS) associated with the learned reconstruction function. Utilizing the constructed DPS, we prove that the high-density region of the corrupted data distribution asymptotically converges to the data manifold. Then, we show that the region is the attracting stable equilibrium manifold of the DPS which is completely stable. These results serve a theoretical basis of the DAE in recognizing the high-density region of the highly corrupted data with large deviations through the DPS. The effectiveness of this analysis is verified by conducting experiments on several toy examples and real image datasets with various types of noise.
Author Park, Saerom
Lee, Jaewook
Author_xml – sequence: 1
  givenname: Saerom
  orcidid: 0000-0002-2687-7105
  surname: Park
  fullname: Park, Saerom
  email: psr6275@sungshin.ac.kr
  organization: Department of Convergence Security Engineering, Sungshin Women's University, Seoul, Korea
– sequence: 2
  givenname: Jaewook
  orcidid: 0000-0001-5720-8337
  surname: Lee
  fullname: Lee, Jaewook
  email: jaewook@snu.ac.kr
  organization: Department of Industrial Engineering, Seoul National University, Seoul, Korea
BookMark eNp9kMtOwzAQRS1UJErhAxCbSKxTxnn4sSxteYhKgFrWkZNMkKvULra7yN-TqBULFsxmRqN7RnfuJRkZa5CQGwpTSkHeb14Xy2kCCUxToJBwfkbGNM9FnFBJR_0MGY2zNOMX5NL7LQAILuiYfKyDKnWrQxfNjGo7r31km2iBxmqvzVc0OwSLprI1Oh89KI91ZE206Iza6Uq10buzW6yC7pfrzgfcXZHzRrUer099Qj4fl5v5c7x6e3qZz1Zxlcg0xDLF3o6QTcIBSs64VKzGNANWp7mQNJcolSwlMKQlY8hKiqoGJlRdiiyp0wm5O97dO_t9QB-KrT24_gdfJHkmec65ZL2KH1WVs947bIpKBzXYDU7ptqBQDPkVQ37FkF9xyq8n6R9y7_ROue5f5vbIaET81Uua9SXSH4z1fMk
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_knosys_2025_114334
crossref_primary_10_1109_TKDE_2023_3332784
Cites_doi 10.1162/089976603321780317
10.1162/089976698300017467
10.1109/TAC.2004.829603
10.1109/TPAMI.2014.2362140
10.1080/14786440109462720
10.1109/81.983867
10.1109/TPAMI.2014.2318727
10.1126/science.290.5500.2323
10.1126/science.290.5500.2319
10.1007/BF02288916
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.3010277
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 3159
ExternalDocumentID 10_1109_TKDE_2020_3010277
9144448
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2019R1A2C2002358
  funderid: 10.13039/501100003725
– fundername: National Research Foundation of Korea
  grantid: 2018R1D1A1A02085851
  funderid: 10.13039/501100003725
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-93e43489f2700b7679a6de3406d3589159e9a9b906e1b66e6b1ead068adb842d3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671775200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 08:01:34 EST 2025
Tue Nov 18 22:35:36 EST 2025
Sat Nov 29 02:36:02 EST 2025
Wed Aug 27 02:26:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-93e43489f2700b7679a6de3406d3589159e9a9b906e1b66e6b1ead068adb842d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5720-8337
0000-0002-2687-7105
PQID 2549757796
PQPubID 85438
PageCount 5
ParticipantIDs proquest_journals_2549757796
ieee_primary_9144448
crossref_citationtrail_10_1109_TKDE_2020_3010277
crossref_primary_10_1109_TKDE_2020_3010277
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bojchevski (ref13) 2017
kurakin (ref21) 2017
ref15
ref11
lecun (ref18) 2010; 2
ref10
xiao (ref19) 2017
ref2
madry (ref22) 2018
zhang (ref17) 2007
ref1
ref16
ref7
krizhevsky (ref20) 2009
bracewell (ref14) 1999
ref4
ref3
maaten (ref6) 2008; 9
goodfellow (ref8) 2016
alain (ref9) 2014; 15
kingma (ref12) 2010
roweis (ref5) 2000; 290
References_xml – year: 2018
  ident: ref22
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: Proc Int Conf Learn Representations
– ident: ref7
  doi: 10.1162/089976603321780317
– year: 2017
  ident: ref21
  article-title: Adversarial machine learning at scale
  publication-title: Proc Int Conf Learn Representations
– ident: ref3
  doi: 10.1162/089976698300017467
– year: 2017
  ident: ref13
  article-title: Learning by denoising part 2. connection between data distribution and denoising function
– year: 2017
  ident: ref19
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
– volume: 15
  start-page: 3563
  year: 2014
  ident: ref9
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1109/TAC.2004.829603
– ident: ref10
  doi: 10.1109/TPAMI.2014.2362140
– year: 2016
  ident: ref8
  publication-title: Deep Learning
– start-page: 1126
  year: 2010
  ident: ref12
  article-title: Regularized estimation of image statistics by score matching
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref1
  doi: 10.1080/14786440109462720
– ident: ref16
  doi: 10.1109/81.983867
– start-page: 1593
  year: 2007
  ident: ref17
  article-title: Mlle: Modified locally linear embedding using multiple weights
  publication-title: Proc Advances Neural Inf Process Syst
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref6
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref11
  doi: 10.1109/TPAMI.2014.2318727
– year: 2009
  ident: ref20
  article-title: Learning multiple layers of features from tiny images
– start-page: 74
  year: 1999
  ident: ref14
  article-title: The sifting property
  publication-title: The Fourier Transform and Its Applications
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref5
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref4
  doi: 10.1126/science.290.5500.2319
– volume: 2
  year: 2010
  ident: ref18
  article-title: MNIST handwritten digit database
  publication-title: AT&T Labs
– ident: ref2
  doi: 10.1007/BF02288916
SSID ssj0008781
Score 2.3645272
Snippet In this study, we give a stability analysis of denoising autoencoder(DAE) from the novel perspective of dynamical systems when the input density is defined as...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3155
SubjectTerms autoencoders
data manifold
Data models
Density
Dynamic stability
dynamical systems
Image reconstruction
Manifolds
Noise measurement
Noise reduction
Nonlinear projection
Perturbation methods
Reconstruction
Stability analysis
Title Stability Analysis of Denoising Autoencoders Based on Dynamical Projection System
URI https://ieeexplore.ieee.org/document/9144448
https://www.proquest.com/docview/2549757796
Volume 33
WOSCitedRecordID wos000671775200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEPTjfF6ZQcPIl17dLmx3G6DUEZEybsVtYmhYG0snWC_70v6Q8URfBWaEJLviTvfXkv3wO48jmNqUgCo1NJHV_4ylkyFTkqiRQTXoKUwoq4PvHpVCwWctaAm_oujNbaJp_pW_NoY_kqi7fmqKwv0ftHOrEDO5yz4q5WvesKbguSIrtATkR9XkYwPVf254-jMTLBARJUo6DG-TcbZIuq_NiJrXmZtP73Y4dwULqRZFjgfgQNnbahVZVoIOWKbcP-F73BDjyja2mTYT9IJUZCsoSMdJqtzJkBGW7zzChbmuxmcocGTpEsJaOiaj1-b1ac2yCWpJA6P4aXyXh-_-CUNRWcGA177kiqcXSETEzAOeKMS4RGUzTripoCg4HUcikj6TLtRYxpFnk411wmlioS_kDRE2imWapPgUgjrhd7Po9Vgk4Xup6x8IUKEvQZ8B3tgluNchiXguOm7sVraImHK0MDTGiACUtgunBdd3kr1Db-atwxSNQNSxC60KugDMv1uAkNDeYB55Kd_d7rHPYGJlvFpvb1oJmvt_oCduP3fLVZX9qp9gnjAc7x
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBJrGuXLpdHdY6JcyhM8K2sTQoDaWVugv_ec9JsKIrgW6EJLf2SnPMlp98HcBpLnnGVN0mnkgexik0wECYNTJ4aoaIcKYUTce3KXk89P-uHOTif_QtjrXXFZ_aCLt1ZvimzCW2V1TVm_0gn5mGRnLP831qzdVdJZ0mK_AJZEY-lP8OMQl3v37VukAs2kKKShpqU36KQs1X5sRa7ANNe_9-rbcCaTyTZZYX8JszZYgvWpyYNzM_ZLVj9oji4DY-YXLpy2A82lSNhZc5atiiHtGvALifjkrQtqb6ZXWGIM6wsWKvyrcfnPVQ7N4gmq8TOd-CpfdO_7gTeVSHIMLSPA80tfh2lczpyTqWQGsGxHAO74WQx2NRWD3SqQ2GjVAgr0ghHWyjUwKQqbhi-CwtFWdg9YJrk9bIolpnJMe3C5DNTsTLNHLMGvMdrEE6_cpJ5yXFyvnhJHPUIdULAJARM4oGpwdmsy2ult_FX421CYtbQg1CDwymUiZ-RbwkRYdmUUov933udwHKnf99Nure9uwNYaVDtiiv0O4SF8Whij2Apex8P30bHbth9AtbG0jo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Analysis+of+Denoising+Autoencoders+Based+on+Dynamical+Projection+System&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Park%2C+Saerom&rft.au=Lee%2C+Jaewook&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=33&rft.issue=8&rft.spage=3155&rft_id=info:doi/10.1109%2FTKDE.2020.3010277&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon