Adaptive Radar Detection in the Presence of Missing-data

This article deals with the problem of adaptive radar detection in a missing-data context, where the complete observations (i.e., downstream information loss mechanisms) are characterized by homogeneous Gaussian disturbance with an unknown but possibly structured covariance matrix. The detection pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on aerospace and electronic systems Ročník 58; číslo 4; s. 3283 - 3296
Hlavní autoři: Aubry, Augusto, Carotenuto, Vincenzo, De Maio, Antonio, Rosamilia, Massimo, Marano, Stefano
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9251, 1557-9603
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article deals with the problem of adaptive radar detection in a missing-data context, where the complete observations (i.e., downstream information loss mechanisms) are characterized by homogeneous Gaussian disturbance with an unknown but possibly structured covariance matrix. The detection problem, formulated as a composite hypothesis test, is tackled by resorting to suboptimal design strategies, leveraging the generalized likelihood ratio criterion demanding appropriate maximum likelihood estimates (MLEs) of the unknowns under both hypotheses. Capitalizing on some possible a priori knowledge about the interference covariance matrix structure, the optimization problems involved in the MLE computation are handled by employing the expectation-maximization (EM) algorithm or its expectation-conditional maximization and multicycle EM variants. At the analysis stage, the performance of the devised architectures is assessed both via Monte Carlo simulations and on measured data for some covariance matrix structures of practical interest.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3147443