AREP: an adaptive, machine learning-based algorithm for real-time anomaly detection on network telemetry data

Abnormal behaviour detection is an essential task of real-time monitoring to secure the reliable operation of ICT infrastructures. This paper presents AREP, an adaptive, long short-term memory-based machine learning algorithm for real-time anomaly detection on network telemetry data. AREP is an impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 35; H. 8; S. 6079 - 6094
1. Verfasser: Farkas, Karoly
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.03.2023
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Abnormal behaviour detection is an essential task of real-time monitoring to secure the reliable operation of ICT infrastructures. This paper presents AREP, an adaptive, long short-term memory-based machine learning algorithm for real-time anomaly detection on network telemetry data. AREP is an improved version of Alter-Re 2 , the direct predecessor algorithm developed by our research team. AREP introduces automatic tuning of its two key parameters and includes an offset compensation component to increase accuracy. Unfortunately, AREP and its predecessors perform well only on time series showing specific patterns. Thus, we propose also a data type classification method to identify patterns on which AREP performs best. Moreover, we use an extended range of metrics in our performance evaluations, including area under the curve (AUC). AUC computation is based on receiver operating characteristic (ROC) curves. However, generating ROC curves is not straightforward due to the inherent adaptive threshold technique used by AREP and its predecessors, so we had to develop a novel ROC curve generation approach for these algorithms. We show through rigorous experiments that on network time series following specific data patterns AREP overperforms its predecessors and produces similar or even better performance than other state-of-the-art algorithms.
AbstractList Abnormal behaviour detection is an essential task of real-time monitoring to secure the reliable operation of ICT infrastructures. This paper presents AREP, an adaptive, long short-term memory-based machine learning algorithm for real-time anomaly detection on network telemetry data. AREP is an improved version of Alter-Re2, the direct predecessor algorithm developed by our research team. AREP introduces automatic tuning of its two key parameters and includes an offset compensation component to increase accuracy. Unfortunately, AREP and its predecessors perform well only on time series showing specific patterns. Thus, we propose also a data type classification method to identify patterns on which AREP performs best. Moreover, we use an extended range of metrics in our performance evaluations, including area under the curve (AUC). AUC computation is based on receiver operating characteristic (ROC) curves. However, generating ROC curves is not straightforward due to the inherent adaptive threshold technique used by AREP and its predecessors, so we had to develop a novel ROC curve generation approach for these algorithms. We show through rigorous experiments that on network time series following specific data patterns AREP overperforms its predecessors and produces similar or even better performance than other state-of-the-art algorithms.
Abnormal behaviour detection is an essential task of real-time monitoring to secure the reliable operation of ICT infrastructures. This paper presents AREP, an adaptive, long short-term memory-based machine learning algorithm for real-time anomaly detection on network telemetry data. AREP is an improved version of Alter-Re 2 , the direct predecessor algorithm developed by our research team. AREP introduces automatic tuning of its two key parameters and includes an offset compensation component to increase accuracy. Unfortunately, AREP and its predecessors perform well only on time series showing specific patterns. Thus, we propose also a data type classification method to identify patterns on which AREP performs best. Moreover, we use an extended range of metrics in our performance evaluations, including area under the curve (AUC). AUC computation is based on receiver operating characteristic (ROC) curves. However, generating ROC curves is not straightforward due to the inherent adaptive threshold technique used by AREP and its predecessors, so we had to develop a novel ROC curve generation approach for these algorithms. We show through rigorous experiments that on network time series following specific data patterns AREP overperforms its predecessors and produces similar or even better performance than other state-of-the-art algorithms.
Abnormal behaviour detection is an essential task of real-time monitoring to secure the reliable operation of ICT infrastructures. This paper presents AREP, an adaptive, long short-term memory-based machine learning algorithm for real-time anomaly detection on network telemetry data. AREP is an improved version of Alter-Re $$^2$$ 2 , the direct predecessor algorithm developed by our research team. AREP introduces automatic tuning of its two key parameters and includes an offset compensation component to increase accuracy. Unfortunately, AREP and its predecessors perform well only on time series showing specific patterns. Thus, we propose also a data type classification method to identify patterns on which AREP performs best. Moreover, we use an extended range of metrics in our performance evaluations, including area under the curve (AUC). AUC computation is based on receiver operating characteristic (ROC) curves. However, generating ROC curves is not straightforward due to the inherent adaptive threshold technique used by AREP and its predecessors, so we had to develop a novel ROC curve generation approach for these algorithms. We show through rigorous experiments that on network time series following specific data patterns AREP overperforms its predecessors and produces similar or even better performance than other state-of-the-art algorithms.
Author Farkas, Karoly
Author_xml – sequence: 1
  givenname: Karoly
  orcidid: 0000-0001-6965-2689
  surname: Farkas
  fullname: Farkas, Karoly
  email: farkas.karoly@vik.bme.hu, farkas.karoly@gloster.hu
  organization: Department of Networked Systems and Services, Budapest University of Technology and Economics, Gloster Infocommunications Public Company Limited by Shares
BookMark eNp9kN9LHDEQx0NR6Kn9B_oU8LWpk2Szm_VNRFtBsBR9DrN7c2fsbnJNonL_vbleodAHYZh5mO9nfnyP2EGIgRj7LOGrBOjOMoBRUoBSAiwAiO0HtpCN1kKDsQdsAX1T222jP7KjnJ-qpGmtWbD54ufVj3OOgeMSN8W_0Bc-4_joA_GJMAUf1mLATEuO0zomXx5nvoqJJ8JJFD9TZeOM05YvqdBYfAy8RqDyGtMvXmiimUqqbSx4wg5XOGX69Lces4frq_vL7-L27tvN5cWtGFWvi7DUybaxuDKD7BqFnR0sdkabcay5BT2oRg2Sur5XNcselF2aFluDCuQI-pid7uduUvz9TLm4p_icQl3pVGfBdFLZvqrsXjWmmHOilRt9wd0HJaGfnAS3M9ftzXXVXPfHXLetqPoP3SQ_Y9q-D-k9lKs4rCn9u-od6g2qd45b
CitedBy_id crossref_primary_10_1038_s41598_024_72982_z
crossref_primary_10_1142_S0129156425403444
crossref_primary_10_3233_JIFS_231114
crossref_primary_10_1016_j_engappai_2024_108996
crossref_primary_10_1007_s00521_025_11371_7
Cites_doi 10.1162/neco.1997.9.8.1735
10.1145/3229607.3229611
10.1137/1.9781611972757.40
10.36244/ICJ.2021.1.5
10.1007/s00521-022-07156-x
10.1007/978-3-030-44041-1_110
10.1007/s00521-022-07506-9
10.1109/ICMLA.2015.141
10.36244/ICJ.2020.2.6
10.1109/ACCESS.2018.2886457
10.1029/TM003i001p00013
10.1007/s00521-022-07101-y
10.1007/978-3-030-75100-5_13
10.1109/COMPSAC48688.2020.0-226
10.1137/1.9781611972764.29
10.1145/3292500.3330680
10.1002/aic.690370209
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-08000-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

CrossRef
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 6094
ExternalDocumentID 10_1007_s00521_022_08000_y
GrantInformation_xml – fundername: Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
  grantid: 2020-1.1.2-PIACI-KFI-2021-00203
  funderid: http://dx.doi.org/10.13039/501100012550
– fundername: Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
  grantid: BME-NVA-02 (TKP2021); Artificial Intelligence National Laboratory Program
  funderid: http://dx.doi.org/10.13039/501100012550
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c293t-8e71648af5b1742a78b8a7535cc753603b242b1e79921e719028d56a65a201c03
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000882759300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 03:08:21 EST 2025
Tue Nov 18 20:45:27 EST 2025
Sat Nov 29 02:59:31 EST 2025
Fri Feb 21 02:44:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Network telemetry
AREP
LSTM
Anomaly detection
Machine learning
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8e71648af5b1742a78b8a7535cc753603b242b1e79921e719028d56a65a201c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6965-2689
OpenAccessLink https://link.springer.com/10.1007/s00521-022-08000-y
PQID 2780571289
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2780571289
crossref_citationtrail_10_1007_s00521_022_08000_y
crossref_primary_10_1007_s00521_022_08000_y
springer_journals_10_1007_s00521_022_08000_y
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ren H, Xu B, Wang Y, Yi C, Huang C, Kou X, Xing T, Yang M, Tong J, Zhang Q (2019) Time-series anomaly detection service at microsoft. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. KDD’19. Association for Computing Machinery, New York, pp 3009–3017. https://doi.org/10.1145/3292500.3330680
Smirnov M ContextOSE [Online code repository]. https://github.com/smirmik/CAD
Hawkins J, Ahmad S, Purdy S, Lavin A (2016) Biological and machine intelligence (BAMI). Initial online release 0.4. https://numenta.com/resources/biological-and-machine-intelligence
Numenta Inc.: Hierarchial temporal memory [Online code repository]. https://github.com/numenta/htm.java
Lee M-C, Lin J-C, Gran EG (2021) How far should we look back to achieve effective real-time time-series anomaly detection?
Baeza-YatesRRibeiro-NetoBModern information retrieval: the concepts and technology behind search20112USAAddison-Wesley Publishing Company
JiangLXuHLiuJShenXLuSShiZAnomaly detection of industrial multi-sensor signals based on enhanced spatiotemporal featuresNeural Comput Appl202234118465847710.1007/s00521-022-07101-y
Vlachos M, Yu P, Castelli V (2005) On periodicity detection and structural periodic similarity, pp 449–460. https://doi.org/10.1137/1.9781611972757.40
FlusserMSomolPEfficient anomaly detection through surrogate neural networksNeural Comput Appl202210.1007/s00521-022-07506-9
Hochenbaum J, Vallis OS, Kejariwal A (2017) Automatic anomaly detection in the cloud via statistical learning
Singh AK DeepAnT [Online code repository]. https://github.com/dev-aadarsh/DeepAnT
Twitter: Twitter/AnomalyDetection [Online code repository]. https://github.com/twitter/AnomalyDetection
SchusterAOn the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomenaTerr Magn189831134110.1029/TM003i001p00013
Adams RP, MacKay DJC (2007) Bayesian online changepoint detection
Lee TJ, Gottschlich J, Tatbul N, Metcalf E, Zdonik S (2018) Greenhouse: a zero-positive machine learning system for time-series anomaly detection
Numenta Inc.: Numenta website. https://numenta.com
Numenta Inc.: Numenta NAB whitepaper. https://drive.google.com/file/d/0B1_XUjaAXeV3dW1kX1B3VkYwOFE/view?resourcekey=0-swTidTTt83zFVZTGvoYxXg
Lee M-C, Lin J-C, Gran EG (2020) RePAD: real-time proactive anomaly detection for time series. In: Barolli L, Amato F, Moscato F, Enokido T, Takizawa M (eds) Proceedings of the advanced information networking and applications. Springer, Cham, pp 1291–1302
Lavin A, Ahmad S (2015) Evaluating real-time anomaly detection algorithms—the Numenta anomaly benchmark. In: Proceedings of the IEEE 14th international conference on machine learning and applications (ICMLA), pp 38–44. https://doi.org/10.1109/ICMLA.2015.141
Putina A, Rossi D, Bifet A, Barth S, Pletcher D, Precup C, Nivaggioli P (2018) Telemetry-based stream-learning of BGP anomalies. In: Proceedings of the 2018 workshop on big data analytics and machine learning for data communication networks. Big-DAMA’18, pp 15–20. Association for Computing Machinery, New York. https://doi.org/10.1145/3229607.3229611
Kaiafas G, Hammerschmidt C, State R, Nguyen CD, Ries T, Ourdane M (2019) An experimental analysis of fraud detection methods in enterprise telecommunication data using unsupervised outlier ensembles. In: Proceedings of the 2019 IFIP/IEEE symposium on integrated network and service management (IM), pp 37–42. IEEE
Cao F, Estert M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM international conference on data mining, pp 328–339. https://doi.org/10.1137/1.9781611972764.29
HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
Pilinszki-NagyCGyires-TóthBPerformance analysis of sparse matrix representation in hierarchical temporal memory for sequence modelingInfocommunications J2020122414910.36244/ICJ.2020.2.6
Lee M-C, Lin J-C, Gran EG (2020) ReRe: a lightweight real-time ready-to-go anomaly detection approach for time series. In: 2020 IEEE 44th annual computers, software, and applications conference (COMPSAC), pp 322–327. https://doi.org/10.1109/COMPSAC48688.2020.0-226
MunirMSiddiquiSADengelAAhmedSDeepant: a deep learning approach for unsupervised anomaly detection in time seriesIEEE Access201971991200510.1109/ACCESS.2018.2886457
Numenta Inc.: NAB: Numenta Anomaly Benchmark [Online code repository]. https://github.com/numenta/NAB
Numenta Inc.: Numenta Labeling Instructions. https://drive.google.com/file/d/0B1_XUjaAXeV3YlgwRXdsb3Voa1k/view?resourcekey=0-xwJ4s3pBPeOh1rRLJdjV7A
VajdaDPekarAFarkasKTowards machine learning-based anomaly detection on time-series dataInfocommunications J2021XIII1364410.36244/ICJ.2021.1.5
ShiYShenHUnsupervised anomaly detection for network traffic using artificial immune networkNeural Comput Appl20223415130071302710.1007/s00521-022-07156-x
KramerMANonlinear principal component analysis using autoassociative neural networksAIChE J199137223324310.1002/aic.690370209
MaxionRARobertsRRProper use of ROC curves in intrusion/anomaly detection2004Computing Science Tyne, UKUniversity of Newcastle upon Tyne
Etsy I Skyline [Online code repository]. https://github.com/etsy/skyline
8000_CR28
8000_CR8
8000_CR9
8000_CR27
8000_CR6
8000_CR7
Y Shi (8000_CR13) 2022; 34
8000_CR25
R Baeza-Yates (8000_CR26) 2011
8000_CR22
L Jiang (8000_CR19) 2022; 34
8000_CR23
8000_CR21
A Schuster (8000_CR24) 1898; 3
S Hochreiter (8000_CR2) 1997; 9
MA Kramer (8000_CR20) 1991; 37
M Flusser (8000_CR18) 2022
D Vajda (8000_CR3) 2021; XIII
RA Maxion (8000_CR29) 2004
8000_CR15
8000_CR14
8000_CR11
8000_CR33
8000_CR12
8000_CR31
8000_CR10
8000_CR32
8000_CR30
C Pilinszki-Nagy (8000_CR16) 2020; 12
8000_CR4
8000_CR5
M Munir (8000_CR17) 2019; 7
8000_CR1
References_xml – reference: VajdaDPekarAFarkasKTowards machine learning-based anomaly detection on time-series dataInfocommunications J2021XIII1364410.36244/ICJ.2021.1.5
– reference: Lee M-C, Lin J-C, Gran EG (2021) How far should we look back to achieve effective real-time time-series anomaly detection?
– reference: Lavin A, Ahmad S (2015) Evaluating real-time anomaly detection algorithms—the Numenta anomaly benchmark. In: Proceedings of the IEEE 14th international conference on machine learning and applications (ICMLA), pp 38–44. https://doi.org/10.1109/ICMLA.2015.141
– reference: Numenta Inc.: Numenta NAB whitepaper. https://drive.google.com/file/d/0B1_XUjaAXeV3dW1kX1B3VkYwOFE/view?resourcekey=0-swTidTTt83zFVZTGvoYxXg
– reference: Singh AK DeepAnT [Online code repository]. https://github.com/dev-aadarsh/DeepAnT
– reference: Hawkins J, Ahmad S, Purdy S, Lavin A (2016) Biological and machine intelligence (BAMI). Initial online release 0.4. https://numenta.com/resources/biological-and-machine-intelligence/
– reference: Adams RP, MacKay DJC (2007) Bayesian online changepoint detection
– reference: Numenta Inc.: NAB: Numenta Anomaly Benchmark [Online code repository]. https://github.com/numenta/NAB
– reference: JiangLXuHLiuJShenXLuSShiZAnomaly detection of industrial multi-sensor signals based on enhanced spatiotemporal featuresNeural Comput Appl202234118465847710.1007/s00521-022-07101-y
– reference: FlusserMSomolPEfficient anomaly detection through surrogate neural networksNeural Comput Appl202210.1007/s00521-022-07506-9
– reference: MaxionRARobertsRRProper use of ROC curves in intrusion/anomaly detection2004Computing Science Tyne, UKUniversity of Newcastle upon Tyne
– reference: ShiYShenHUnsupervised anomaly detection for network traffic using artificial immune networkNeural Comput Appl20223415130071302710.1007/s00521-022-07156-x
– reference: Lee TJ, Gottschlich J, Tatbul N, Metcalf E, Zdonik S (2018) Greenhouse: a zero-positive machine learning system for time-series anomaly detection
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: Lee M-C, Lin J-C, Gran EG (2020) RePAD: real-time proactive anomaly detection for time series. In: Barolli L, Amato F, Moscato F, Enokido T, Takizawa M (eds) Proceedings of the advanced information networking and applications. Springer, Cham, pp 1291–1302
– reference: Hochenbaum J, Vallis OS, Kejariwal A (2017) Automatic anomaly detection in the cloud via statistical learning
– reference: Smirnov M ContextOSE [Online code repository]. https://github.com/smirmik/CAD
– reference: Twitter: Twitter/AnomalyDetection [Online code repository]. https://github.com/twitter/AnomalyDetection
– reference: Pilinszki-NagyCGyires-TóthBPerformance analysis of sparse matrix representation in hierarchical temporal memory for sequence modelingInfocommunications J2020122414910.36244/ICJ.2020.2.6
– reference: Putina A, Rossi D, Bifet A, Barth S, Pletcher D, Precup C, Nivaggioli P (2018) Telemetry-based stream-learning of BGP anomalies. In: Proceedings of the 2018 workshop on big data analytics and machine learning for data communication networks. Big-DAMA’18, pp 15–20. Association for Computing Machinery, New York. https://doi.org/10.1145/3229607.3229611
– reference: KramerMANonlinear principal component analysis using autoassociative neural networksAIChE J199137223324310.1002/aic.690370209
– reference: Cao F, Estert M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM international conference on data mining, pp 328–339. https://doi.org/10.1137/1.9781611972764.29
– reference: Vlachos M, Yu P, Castelli V (2005) On periodicity detection and structural periodic similarity, pp 449–460. https://doi.org/10.1137/1.9781611972757.40
– reference: Numenta Inc.: Numenta website. https://numenta.com/
– reference: Numenta Inc.: Hierarchial temporal memory [Online code repository]. https://github.com/numenta/htm.java
– reference: MunirMSiddiquiSADengelAAhmedSDeepant: a deep learning approach for unsupervised anomaly detection in time seriesIEEE Access201971991200510.1109/ACCESS.2018.2886457
– reference: Etsy I Skyline [Online code repository]. https://github.com/etsy/skyline
– reference: Lee M-C, Lin J-C, Gran EG (2020) ReRe: a lightweight real-time ready-to-go anomaly detection approach for time series. In: 2020 IEEE 44th annual computers, software, and applications conference (COMPSAC), pp 322–327. https://doi.org/10.1109/COMPSAC48688.2020.0-226
– reference: Ren H, Xu B, Wang Y, Yi C, Huang C, Kou X, Xing T, Yang M, Tong J, Zhang Q (2019) Time-series anomaly detection service at microsoft. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. KDD’19. Association for Computing Machinery, New York, pp 3009–3017. https://doi.org/10.1145/3292500.3330680
– reference: Numenta Inc.: Numenta Labeling Instructions. https://drive.google.com/file/d/0B1_XUjaAXeV3YlgwRXdsb3Voa1k/view?resourcekey=0-xwJ4s3pBPeOh1rRLJdjV7A
– reference: Kaiafas G, Hammerschmidt C, State R, Nguyen CD, Ries T, Ourdane M (2019) An experimental analysis of fraud detection methods in enterprise telecommunication data using unsupervised outlier ensembles. In: Proceedings of the 2019 IFIP/IEEE symposium on integrated network and service management (IM), pp 37–42. IEEE
– reference: SchusterAOn the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomenaTerr Magn189831134110.1029/TM003i001p00013
– reference: Baeza-YatesRRibeiro-NetoBModern information retrieval: the concepts and technology behind search20112USAAddison-Wesley Publishing Company
– ident: 8000_CR31
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 8000_CR2
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 8000_CR10
– volume-title: Modern information retrieval: the concepts and technology behind search
  year: 2011
  ident: 8000_CR26
– ident: 8000_CR5
  doi: 10.1145/3229607.3229611
– volume-title: Proper use of ROC curves in intrusion/anomaly detection
  year: 2004
  ident: 8000_CR29
– ident: 8000_CR25
  doi: 10.1137/1.9781611972757.40
– ident: 8000_CR8
– ident: 8000_CR23
– volume: XIII
  start-page: 36
  issue: 1
  year: 2021
  ident: 8000_CR3
  publication-title: Infocommunications J
  doi: 10.36244/ICJ.2021.1.5
– volume: 34
  start-page: 13007
  issue: 15
  year: 2022
  ident: 8000_CR13
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07156-x
– ident: 8000_CR11
– ident: 8000_CR15
– ident: 8000_CR22
  doi: 10.1007/978-3-030-44041-1_110
– year: 2022
  ident: 8000_CR18
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07506-9
– ident: 8000_CR4
  doi: 10.1109/ICMLA.2015.141
– volume: 12
  start-page: 41
  issue: 2
  year: 2020
  ident: 8000_CR16
  publication-title: Infocommunications J
  doi: 10.36244/ICJ.2020.2.6
– volume: 7
  start-page: 1991
  year: 2019
  ident: 8000_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886457
– ident: 8000_CR32
– volume: 3
  start-page: 13
  issue: 1
  year: 1898
  ident: 8000_CR24
  publication-title: Terr Magn
  doi: 10.1029/TM003i001p00013
– ident: 8000_CR30
– volume: 34
  start-page: 8465
  issue: 11
  year: 2022
  ident: 8000_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07101-y
– ident: 8000_CR7
– ident: 8000_CR27
  doi: 10.1007/978-3-030-75100-5_13
– ident: 8000_CR1
  doi: 10.1109/COMPSAC48688.2020.0-226
– ident: 8000_CR9
– ident: 8000_CR6
  doi: 10.1137/1.9781611972764.29
– ident: 8000_CR21
– ident: 8000_CR14
– ident: 8000_CR28
  doi: 10.1145/3292500.3330680
– ident: 8000_CR12
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  ident: 8000_CR20
  publication-title: AIChE J
  doi: 10.1002/aic.690370209
– ident: 8000_CR33
SSID ssj0004685
Score 2.326797
Snippet Abnormal behaviour detection is an essential task of real-time monitoring to secure the reliable operation of ICT infrastructures. This paper presents AREP, an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6079
SubjectTerms Adaptive algorithms
Algorithms
Anomalies
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Identification methods
Image Processing and Computer Vision
Machine learning
Original Article
Performance evaluation
Probability and Statistics in Computer Science
Real time
Telemetry
Time series
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWK1yh682YW8s_FWpMWDlFK19BYmyaYWkrSkUei_d3aTtCoqKIS97IMw-_hmdmfmI-Q6Nh0uIi9mlg4hsyLcijL8kWlyRQcI2Z5KYDp-cAcDPpl4wyoobFl7u9dPkuqkXge7yRtMNH3ReJJajsZW22QH4Y5LwobR4_hDNKQi4kS7Rfr0WGYVKvP9GJ_haKNjfnkWVWjTb_7vPw_IfqVd0m65HA7JlsiOSLNmbqDVRj4maXfUG95SyChEsJAnXoemyq1S0IpHYsokwEUUkuk8nxUvKUX1lqKKmTDJR4995ykkKxqJQnlzZRS_rHQqp4WQXulFjtVQwAl57vee7u5ZRbzAQkT_gnEhrSgOsR2gwWKAywMOaNfYYYilo5kBAnugC9fzDCx1mQEmsh1wbEB9ItTMU9LI5pk4I9R0I3lTxYPIFZYGghsgII41DyfOcmJoEb2Wvx9WWcklOUbir_MpK3n6KE9fydNftcjNus-izMnxa-t2Pa1-tT-XviGpHFzEZq9FOvU0bqp_Hu38b80vyJ7kpy-d1tqkUeSv4pLshm_FbJlfqXX7DipO5fM
  priority: 102
  providerName: Springer Nature
Title AREP: an adaptive, machine learning-based algorithm for real-time anomaly detection on network telemetry data
URI https://link.springer.com/article/10.1007/s00521-022-08000-y
https://www.proquest.com/docview/2780571289
Volume 35
WOSCitedRecordID wos000882759300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HbgwnmIwUA7cIKJb17XlggYa4oCmaTyEuFRukwLS1o2tIO3fY2fpBkhwQapyaJq2kpP4s2P7AzhK3UagVZjKehUTWVe0FDn9UTo8o2NS2aEpYPpw47fbweNj2LEOt7ENqyz2RLNRq0HCPvLTGhff92k3Dc-Hb5JZo_h01VJoLMIyV0lg6oaO9_QlL9JQcpIFw9E9ddcmzZjUOfaH0l0yxRgzOXLyXTHN0eaPA1Kjd65K__3jdViziFM0p1NkAxZ0tgmlgs1B2MW9Bf1mt9U5E5gJVDjkXfBE9E2opRaWW-JZstJTAnvP9KH8pS8I8gqCnT3JHPU0dtDH3kQonZsIr0zQlU0DzUWuOVI9H1E35rgN91etu8trackYZEKIIJeBZssqwNSLyYipoR_EAZKt4yUJtQ3HjUnZx1Xth2GN2ipXhVFeAxseEsZIHHcHlrJBpndBuL5i71UQK1_XHdRBDTWmqRM6IaGhFMtQLSQRJbZSORNm9KJZjWUjvYikFxnpRZMyHM_GDKd1Ov58ulKILLJrdhzN5VWGk0Lo8-7f37b399v2YZU56qeBaxVYykfv-gBWko_8dTw6hOWLVrvTPTQzl9ru7cMnKxXyRA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH9iMGm7rIxtWlnHfIDTsJbmo0mQpgkNEIhSVROb0C7hJXYYUpOW1hvqP7W_ce85CWVI48ZhUuRDHFty_PN7P9vvA2Az93qRVnEu_S5m0le0FNn9UTqM6JRUdmwDmH7rh4NBdHYWD5fgd-MLw2aVjUy0glqNMz4j_-By8P2QpGn8aXIlOWsU3642KTQqWBzr-TVt2WYfj_Zofrdc92D_9POhrLMKyIxUm5GR5i1ChHmQEht3MYzSCIm0B1lGZc_xUtJaaVeHcexS2eXwJiroYS9AUpaZ41G_j2DF912HV9Ew-H7LD9OmAKUdE1sT-V7tpGNd9fj8ld7S1o85miPnfyvCBbu9cyFr9dxB63_7Q6vwrGbUYrdaAs9hSZdr0GqyVYhaeL2AYvfL_nBHYClQ4YSl_LYorCmpFnXujAvJSl0JHF3QwMyPQhClF0SrR9JcFprajgsczYXSxlqwlYKesjKkF0azJb6ZUjUafAlfH2TQr2C5HJf6NQgvVHw6F6Uq1L6DOnJRY547sRMT28uxDd1m5pOsjsTOCUFGyU0MaYuWhNCSWLQk8za8v2kzqeKQ3Pt1p4FIUsukWbLARxu2G5Atqv_d2_r9vb2DJ4enJ_2kfzQ4fgNPXWKBlZFeB5bN9Kd-C4-zX-ZyNt2wq0XA-UOD7w86IEhH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB68EF-8xXrug2-6mDZpk_gmalGUUrzwLUyymyq0aamr0H_vzCapByqIEPYlu0vYI_PN7jfzAeylbiPQKkylV8VEeoq2Ioc_SodXdEwmO7QJTO-v_FYreHgI2x-i-C3bvbySzGMaOEtTZg4HKj0cB77xaSa5weRIMeJx5GgSpj0m0rO_fnP_ITLSinKSD8P8Hs8twma-7-OzaXrHm1-uSK3laS78_5sXYb5AneI4XyZLMKGzZVgoFR1EscFXoHd8fdY-EpgJVDjgP-GB6Fm6pRaFvkRHsuFTArud_vDJPPYEwV5B0LMrWaee2vZ72B0JpY1leWWCniwnmwujma1uhvQaDa7CXfPs9uRcFoIMMiFUYGSg2bsKMK3H5MjU0A_iAMnfqScJlQ3Hjcngx1Xth2GNyipnhlH1BjbqSDgjcdw1mMr6mV4H4fqKT7CCWPnac1AHNdSYpk7ohISIUqxAtZyLKCmylbNoRjca51m24xnReEZ2PKNRBfbHbQZ5ro5fa2-VUxwV-_Y5qrHEg082O6zAQTml769_7m3jb9V3YbZ92oyuLlqXmzDHEvY5r20LpszwRW_DTPJqnp6HO3Y5vwFcxvG7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AREP%3A+an+adaptive%2C+machine+learning-based+algorithm+for+real-time+anomaly+detection+on+network+telemetry+data&rft.jtitle=Neural+computing+%26+applications&rft.au=Farkas%2C+Karoly&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=8&rft.spage=6079&rft.epage=6094&rft_id=info:doi/10.1007%2Fs00521-022-08000-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon