Constrained Autoencoder-Based Pulse Compressed Thermal Wave Imaging for Sub-Surface Defect Detection

Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse compressed favourable thermal wave imaging is one of the widely used non-destructive testing techniques due to its excellent noise rejection capa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE sensors journal Ročník 22; číslo 18; s. 17335 - 17342
Hlavní autori: Kaur, Kirandeep, Mulaveesala, Ravibabu, Mishra, Priyanka
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 15.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1530-437X, 1558-1748
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse compressed favourable thermal wave imaging is one of the widely used non-destructive testing techniques due to its excellent noise rejection capabilities. However, the high dimensional thermal imaging data needs to be encoded into lossless compressed form to highlight the hidden defects inside the materials. This paper proposes a novel constrained and regularized autoencoder based thermography approach for sub-surface defect detection in a mild steel specimen. Certain properties such as non-correlation of encoded data, weight orthogonality, and weights with unit norm length have been highlighted which are non-existent in linear autoencoders but are responsible for better defect detection inside the materials inspected by frequency modulated thermal wave imaging. Novel constraints are formulated for autoencoder cost function to incorporate these significant properties. The proposed approach is able to provide better defect detection, in terms of signal to noise ratio of defects, than linear autoencoder as well as traditional principal component thermography approach. Also, non-correlation of encoded data is found to be the most significant factor in achieving better defect detection followed by properties ensuring weight orthogonality and weights with unit norm length.
AbstractList Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse compressed favourable thermal wave imaging is one of the widely used non-destructive testing techniques due to its excellent noise rejection capabilities. However, the high dimensional thermal imaging data needs to be encoded into lossless compressed form to highlight the hidden defects inside the materials. This paper proposes a novel constrained and regularized autoencoder based thermography approach for sub-surface defect detection in a mild steel specimen. Certain properties such as non-correlation of encoded data, weight orthogonality, and weights with unit norm length have been highlighted which are non-existent in linear autoencoders but are responsible for better defect detection inside the materials inspected by frequency modulated thermal wave imaging. Novel constraints are formulated for autoencoder cost function to incorporate these significant properties. The proposed approach is able to provide better defect detection, in terms of signal to noise ratio of defects, than linear autoencoder as well as traditional principal component thermography approach. Also, non-correlation of encoded data is found to be the most significant factor in achieving better defect detection followed by properties ensuring weight orthogonality and weights with unit norm length.
Author Mulaveesala, Ravibabu
Mishra, Priyanka
Kaur, Kirandeep
Author_xml – sequence: 1
  givenname: Kirandeep
  surname: Kaur
  fullname: Kaur, Kirandeep
  organization: Department of Electrical Engineering, Infrared Imaging Laboratory, Indian Institute of Technology Ropar, Rupnagar, India
– sequence: 2
  givenname: Ravibabu
  orcidid: 0000-0001-7351-0982
  surname: Mulaveesala
  fullname: Mulaveesala, Ravibabu
  email: ravi@iitrpr.ac.in
  organization: Department of Electrical Engineering, Infrared Imaging Laboratory, Indian Institute of Technology Ropar, Rupnagar, India
– sequence: 3
  givenname: Priyanka
  surname: Mishra
  fullname: Mishra, Priyanka
  organization: Department of Electrical Engineering, Infrared Imaging Laboratory, Indian Institute of Technology Ropar, Rupnagar, India
BookMark eNp9kMFLwzAUxoMouE3_APFS8NyZNOnSHGedOhkqbKK3kiYvs2NtZtIK_vembHjw4OV9j8f3vff4DdFxYxtA6ILgMSFYXD8uZ0_jBCdkTHE6oYIdoQFJ0ywmnGXHfU9xzCh_P0VD7zcYE8FTPkA6t41vnawa0NG0ay00ympw8Y30YfLSbT1Eua13Dnw_WH2Aq-U2epNfEM1rua6adWSsi5ZdGS87Z6SC6BYMqDZIG6SyzRk6MTIsOj_oCL3ezVb5Q7x4vp_n00WsEkHbOCsZn4SiqaCGM4Mxg1JmmkmpsWGgtdAiZZxIVQqhTJYBUZRqpigWUgMdoav93p2znx34ttjYzjXhZJFwwjJBCEuCi-9dylnvHZhCVa3s_-w5bAuCix5p0SMteqTFAWlIkj_Jnatq6b7_zVzuMxUA_PoFZWwSfvkB2ZSFBA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s11220_025_00641_2
crossref_primary_10_1134_S1061830921060097
crossref_primary_10_1016_j_infrared_2024_105612
crossref_primary_10_1016_j_sna_2024_115293
crossref_primary_10_1109_JSEN_2023_3240092
crossref_primary_10_1016_j_optlaseng_2025_108879
crossref_primary_10_1080_10589759_2023_2191954
crossref_primary_10_1016_j_optlastec_2025_112522
crossref_primary_10_1080_10589759_2025_2477684
crossref_primary_10_1063_5_0294144
crossref_primary_10_1134_S1061830925603459
Cites_doi 10.1117/1.1566969
10.1016/j.infrared.2019.103032
10.1063/1.2382738
10.1016/j.infrared.2019.103083
10.1098/rsta.2015.0202
10.1007/978-3-030-48002-8
10.1016/j.enbuild.2020.110228
10.1063/1.362662
10.1016/j.neucom.2015.08.104
10.1109/ACCESS.2020.3018116
10.1049/el.2018.8047
10.1016/j.ndteint.2010.07.002
10.1080/17686733.2020.1768497
10.1016/S0263-8223(02)00161-7
10.1007/BF00332918
10.1016/j.neucom.2017.02.075
10.1038/nature14539
10.1080/17686733.2013.774623
10.1016/j.patcog.2018.12.015
10.1063/1.94335
10.3390/s18092809
10.1016/j.infrared.2018.04.016
10.1109/TII.2019.2963795
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3056394
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 17342
ExternalDocumentID 10_1109_JSEN_2021_3056394
9344642
Genre orig-research
GrantInformation_xml – fundername: Global Innovation & Technology Alliance (GITA) from the project titled “The Development of a Portable THERMOgraphy-based Health DeTECTion System (THERMOTECT) in breast cancer screening,” IN-U.K. RFP 2016
  grantid: 2016UK0202022
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-8b4768b4d393f74f004eba8d4aad0f4edd9d95471acb99cf88e1c33d4c309ade3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880106500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:12:00 EDT 2025
Sat Nov 29 05:43:08 EST 2025
Tue Nov 18 21:36:34 EST 2025
Wed Aug 27 02:18:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8b4768b4d393f74f004eba8d4aad0f4edd9d95471acb99cf88e1c33d4c309ade3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7351-0982
PQID 2714891142
PQPubID 75733
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2021_3056394
crossref_primary_10_1109_JSEN_2021_3056394
proquest_journals_2714891142
ieee_primary_9344642
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref12
ref23
ref15
Maldague (ref1) 2001
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1117/1.1566969
– ident: ref12
  doi: 10.1016/j.infrared.2019.103032
– ident: ref4
  doi: 10.1063/1.2382738
– ident: ref11
  doi: 10.1016/j.infrared.2019.103083
– ident: ref22
  doi: 10.1098/rsta.2015.0202
– ident: ref2
  doi: 10.1007/978-3-030-48002-8
– ident: ref23
  doi: 10.1016/j.enbuild.2020.110228
– ident: ref8
  doi: 10.1063/1.362662
– ident: ref14
  doi: 10.1016/j.neucom.2015.08.104
– ident: ref13
  doi: 10.1109/ACCESS.2020.3018116
– ident: ref10
  doi: 10.1049/el.2018.8047
– ident: ref6
  doi: 10.1016/j.ndteint.2010.07.002
– ident: ref17
  doi: 10.1080/17686733.2020.1768497
– ident: ref9
  doi: 10.1016/S0263-8223(02)00161-7
– ident: ref19
  doi: 10.1007/BF00332918
– ident: ref20
  doi: 10.1016/j.neucom.2017.02.075
– ident: ref24
  doi: 10.1038/nature14539
– ident: ref7
  doi: 10.1080/17686733.2013.774623
– ident: ref21
  doi: 10.1016/j.patcog.2018.12.015
– ident: ref3
  doi: 10.1063/1.94335
– ident: ref16
  doi: 10.3390/s18092809
– ident: ref15
  doi: 10.1016/j.infrared.2018.04.016
– start-page: 410
  volume-title: Theory and Practice of Infrared Technology for Nondestructive Testing
  year: 2001
  ident: ref1
– ident: ref18
  doi: 10.1109/TII.2019.2963795
SSID ssj0019757
Score 2.4228945
Snippet Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17335
SubjectTerms Autoencoder
Constraints
Cost function
Deep learning
frequency modulated thermal wave imaging (FMTWI)
Frequency modulation
Imaging
Low carbon steels
non-destructive testing & evaluation (NDT&E)
Nondestructive testing
Orthogonality
Photothermal effects
Principal component analysis
Sensors
Signal to noise ratio
Surface defects
Thermal imaging
Thermal wave imaging
Thermography
Training
Title Constrained Autoencoder-Based Pulse Compressed Thermal Wave Imaging for Sub-Surface Defect Detection
URI https://ieeexplore.ieee.org/document/9344642
https://www.proquest.com/docview/2714891142
Volume 22
WOSCitedRecordID wos000880106500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4gMVEfEEHiAZI--EQs7F17251HUIj6cCFB471tup1pNIE7c-yS-O-Z9pYLBmPi0-5Du9ndr51vpu3MB_CubGRQ-LLUw4qNtpFG2lcBNTohe1dy4UOTxSbcZFJNp3ixBu9XuTDMnA-f8VG6zXv5NA9dWio7RiPBixWD-8S5cpmrtdoxkIe7ZW3UQlvjpv0O5rDA4y-XZxOJBEfDo-QvG7R_cFAWVXlkiTO9nL_8vxfbhI3ejVQnS9xfwRrPtuDFg-KCW_Cs1zf_8XsbKOlyZjUIJnXStfNUvpJ4oU-FxEhddEKQKpmGXEqclAweMdhX6ru_ZfX5OisZKXFvldgZfdktog-sPnI6CiKXNh_nmr2Gb-dnXz980r2-gg5C8q2uGivBRmPJoInORpkv3PiKrPdURMtESDgW9hK8EEOsKh4GY8gGU6AnNjuwPpvP-A0odFEixbE1nqKtyDcebRPHnlncxQZ5AMX9H69DX3w8ffVVnYOQAusEUp1AqnuQBnC46vJrWXnjX423Eyqrhj0gA9i_h7Xu5-ZNPXISAmLKId79e689eD5KSQ5JKGK8D-vtouO38DTctj9vFgd52N0B6DzWFQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4QMEEfUEHiAWoffDIW9rbd251HVAgoXkjAeG-bbmcaTfDOHLsk_HumveWi0Zj4tPvQbnb3a-ebaTvzAbweNTIo3GikhxUbbQPl2lUeNZZC9uWIM-ebJDZRjsfVZILnK_B2mQvDzOnwGe_H27SXTzPfxaWyAzQSvFgxuGuFtXm2yNZa7hnI48tFddRMW1NO-j3MYYYHHy-OxhIL5sP96DEbtL-xUJJV-cMWJ4I5fvx_r_YENnpHUh0ukH8KKzzdhEe_lBfchPVe4fzb7RZQVOZMehBM6rBrZ7GAJfFcvxMaI3XeCUWqaBxSMXFSMnzEZF-pr-6G1emPpGWkxMFVYmn0RTcPzrP6wPEwiFzadKBr-gy-HB9dvj_RvcKC9kLzra4aK-FGY8mgCaUNMmO4cRVZ5ygLlomQsBD-EsQQfagqHnpjyHqToSM227A6nU35OSgsg8SKhTWOgq3INQ5tEwrHLA5jgzyA7P6P174vPx6_-qpOYUiGdQSpjiDVPUgDeLPs8nNRe-NfjbciKsuGPSAD2LuHte5n53WdlxIEYswi3vl7r1ewfnL5-aw-Ox1_2oWHeUx5iLIRxR6stvOOX8ADf9N-v56_TEPwDjC92Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Autoencoder-Based+Pulse+Compressed+Thermal+Wave+Imaging+for+Sub-Surface+Defect+Detection&rft.jtitle=IEEE+sensors+journal&rft.au=Kaur%2C+Kirandeep&rft.au=Mulaveesala%2C+Ravibabu&rft.au=Mishra%2C+Priyanka&rft.date=2022-09-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=18&rft.spage=17335&rft.epage=17342&rft_id=info:doi/10.1109%2FJSEN.2021.3056394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3056394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon