Constrained Autoencoder-Based Pulse Compressed Thermal Wave Imaging for Sub-Surface Defect Detection
Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse compressed favourable thermal wave imaging is one of the widely used non-destructive testing techniques due to its excellent noise rejection capa...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 22; číslo 18; s. 17335 - 17342 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
15.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse compressed favourable thermal wave imaging is one of the widely used non-destructive testing techniques due to its excellent noise rejection capabilities. However, the high dimensional thermal imaging data needs to be encoded into lossless compressed form to highlight the hidden defects inside the materials. This paper proposes a novel constrained and regularized autoencoder based thermography approach for sub-surface defect detection in a mild steel specimen. Certain properties such as non-correlation of encoded data, weight orthogonality, and weights with unit norm length have been highlighted which are non-existent in linear autoencoders but are responsible for better defect detection inside the materials inspected by frequency modulated thermal wave imaging. Novel constraints are formulated for autoencoder cost function to incorporate these significant properties. The proposed approach is able to provide better defect detection, in terms of signal to noise ratio of defects, than linear autoencoder as well as traditional principal component thermography approach. Also, non-correlation of encoded data is found to be the most significant factor in achieving better defect detection followed by properties ensuring weight orthogonality and weights with unit norm length. |
|---|---|
| AbstractList | Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse compressed favourable thermal wave imaging is one of the widely used non-destructive testing techniques due to its excellent noise rejection capabilities. However, the high dimensional thermal imaging data needs to be encoded into lossless compressed form to highlight the hidden defects inside the materials. This paper proposes a novel constrained and regularized autoencoder based thermography approach for sub-surface defect detection in a mild steel specimen. Certain properties such as non-correlation of encoded data, weight orthogonality, and weights with unit norm length have been highlighted which are non-existent in linear autoencoders but are responsible for better defect detection inside the materials inspected by frequency modulated thermal wave imaging. Novel constraints are formulated for autoencoder cost function to incorporate these significant properties. The proposed approach is able to provide better defect detection, in terms of signal to noise ratio of defects, than linear autoencoder as well as traditional principal component thermography approach. Also, non-correlation of encoded data is found to be the most significant factor in achieving better defect detection followed by properties ensuring weight orthogonality and weights with unit norm length. |
| Author | Mulaveesala, Ravibabu Mishra, Priyanka Kaur, Kirandeep |
| Author_xml | – sequence: 1 givenname: Kirandeep surname: Kaur fullname: Kaur, Kirandeep organization: Department of Electrical Engineering, Infrared Imaging Laboratory, Indian Institute of Technology Ropar, Rupnagar, India – sequence: 2 givenname: Ravibabu orcidid: 0000-0001-7351-0982 surname: Mulaveesala fullname: Mulaveesala, Ravibabu email: ravi@iitrpr.ac.in organization: Department of Electrical Engineering, Infrared Imaging Laboratory, Indian Institute of Technology Ropar, Rupnagar, India – sequence: 3 givenname: Priyanka surname: Mishra fullname: Mishra, Priyanka organization: Department of Electrical Engineering, Infrared Imaging Laboratory, Indian Institute of Technology Ropar, Rupnagar, India |
| BookMark | eNp9kMFLwzAUxoMouE3_APFS8NyZNOnSHGedOhkqbKK3kiYvs2NtZtIK_vembHjw4OV9j8f3vff4DdFxYxtA6ILgMSFYXD8uZ0_jBCdkTHE6oYIdoQFJ0ywmnGXHfU9xzCh_P0VD7zcYE8FTPkA6t41vnawa0NG0ay00ympw8Y30YfLSbT1Eua13Dnw_WH2Aq-U2epNfEM1rua6adWSsi5ZdGS87Z6SC6BYMqDZIG6SyzRk6MTIsOj_oCL3ezVb5Q7x4vp_n00WsEkHbOCsZn4SiqaCGM4Mxg1JmmkmpsWGgtdAiZZxIVQqhTJYBUZRqpigWUgMdoav93p2znx34ttjYzjXhZJFwwjJBCEuCi-9dylnvHZhCVa3s_-w5bAuCix5p0SMteqTFAWlIkj_Jnatq6b7_zVzuMxUA_PoFZWwSfvkB2ZSFBA |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1007_s11220_025_00641_2 crossref_primary_10_1134_S1061830921060097 crossref_primary_10_1016_j_infrared_2024_105612 crossref_primary_10_1016_j_sna_2024_115293 crossref_primary_10_1109_JSEN_2023_3240092 crossref_primary_10_1016_j_optlaseng_2025_108879 crossref_primary_10_1080_10589759_2023_2191954 crossref_primary_10_1016_j_optlastec_2025_112522 crossref_primary_10_1080_10589759_2025_2477684 crossref_primary_10_1063_5_0294144 crossref_primary_10_1134_S1061830925603459 |
| Cites_doi | 10.1117/1.1566969 10.1016/j.infrared.2019.103032 10.1063/1.2382738 10.1016/j.infrared.2019.103083 10.1098/rsta.2015.0202 10.1007/978-3-030-48002-8 10.1016/j.enbuild.2020.110228 10.1063/1.362662 10.1016/j.neucom.2015.08.104 10.1109/ACCESS.2020.3018116 10.1049/el.2018.8047 10.1016/j.ndteint.2010.07.002 10.1080/17686733.2020.1768497 10.1016/S0263-8223(02)00161-7 10.1007/BF00332918 10.1016/j.neucom.2017.02.075 10.1038/nature14539 10.1080/17686733.2013.774623 10.1016/j.patcog.2018.12.015 10.1063/1.94335 10.3390/s18092809 10.1016/j.infrared.2018.04.016 10.1109/TII.2019.2963795 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2021.3056394 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 17342 |
| ExternalDocumentID | 10_1109_JSEN_2021_3056394 9344642 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Global Innovation & Technology Alliance (GITA) from the project titled “The Development of a Portable THERMOgraphy-based Health DeTECTion System (THERMOTECT) in breast cancer screening,” IN-U.K. RFP 2016 grantid: 2016UK0202022 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c293t-8b4768b4d393f74f004eba8d4aad0f4edd9d95471acb99cf88e1c33d4c309ade3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000880106500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:12:00 EDT 2025 Sat Nov 29 05:43:08 EST 2025 Tue Nov 18 21:36:34 EST 2025 Wed Aug 27 02:18:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-8b4768b4d393f74f004eba8d4aad0f4edd9d95471acb99cf88e1c33d4c309ade3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7351-0982 |
| PQID | 2714891142 |
| PQPubID | 75733 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2021_3056394 crossref_primary_10_1109_JSEN_2021_3056394 proquest_journals_2714891142 ieee_primary_9344642 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-15 |
| PublicationDateYYYYMMDD | 2022-09-15 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref24 ref12 ref23 ref15 Maldague (ref1) 2001 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref5 doi: 10.1117/1.1566969 – ident: ref12 doi: 10.1016/j.infrared.2019.103032 – ident: ref4 doi: 10.1063/1.2382738 – ident: ref11 doi: 10.1016/j.infrared.2019.103083 – ident: ref22 doi: 10.1098/rsta.2015.0202 – ident: ref2 doi: 10.1007/978-3-030-48002-8 – ident: ref23 doi: 10.1016/j.enbuild.2020.110228 – ident: ref8 doi: 10.1063/1.362662 – ident: ref14 doi: 10.1016/j.neucom.2015.08.104 – ident: ref13 doi: 10.1109/ACCESS.2020.3018116 – ident: ref10 doi: 10.1049/el.2018.8047 – ident: ref6 doi: 10.1016/j.ndteint.2010.07.002 – ident: ref17 doi: 10.1080/17686733.2020.1768497 – ident: ref9 doi: 10.1016/S0263-8223(02)00161-7 – ident: ref19 doi: 10.1007/BF00332918 – ident: ref20 doi: 10.1016/j.neucom.2017.02.075 – ident: ref24 doi: 10.1038/nature14539 – ident: ref7 doi: 10.1080/17686733.2013.774623 – ident: ref21 doi: 10.1016/j.patcog.2018.12.015 – ident: ref3 doi: 10.1063/1.94335 – ident: ref16 doi: 10.3390/s18092809 – ident: ref15 doi: 10.1016/j.infrared.2018.04.016 – start-page: 410 volume-title: Theory and Practice of Infrared Technology for Nondestructive Testing year: 2001 ident: ref1 – ident: ref18 doi: 10.1109/TII.2019.2963795 |
| SSID | ssj0019757 |
| Score | 2.4228945 |
| Snippet | Non-destructive testing & evaluation techniques play an essential role in ensuring safety of materials in operation at various industry sectors. Pulse... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17335 |
| SubjectTerms | Autoencoder Constraints Cost function Deep learning frequency modulated thermal wave imaging (FMTWI) Frequency modulation Imaging Low carbon steels non-destructive testing & evaluation (NDT&E) Nondestructive testing Orthogonality Photothermal effects Principal component analysis Sensors Signal to noise ratio Surface defects Thermal imaging Thermal wave imaging Thermography Training |
| Title | Constrained Autoencoder-Based Pulse Compressed Thermal Wave Imaging for Sub-Surface Defect Detection |
| URI | https://ieeexplore.ieee.org/document/9344642 https://www.proquest.com/docview/2714891142 |
| Volume | 22 |
| WOSCitedRecordID | wos000880106500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4gMVEfEEHiAZI--EQs7F17251HUIj6cCFB471tup1pNIE7c-yS-O-Z9pYLBmPi0-5Du9ndr51vpu3MB_CubGRQ-LLUw4qNtpFG2lcBNTohe1dy4UOTxSbcZFJNp3ixBu9XuTDMnA-f8VG6zXv5NA9dWio7RiPBixWD-8S5cpmrtdoxkIe7ZW3UQlvjpv0O5rDA4y-XZxOJBEfDo-QvG7R_cFAWVXlkiTO9nL_8vxfbhI3ejVQnS9xfwRrPtuDFg-KCW_Cs1zf_8XsbKOlyZjUIJnXStfNUvpJ4oU-FxEhddEKQKpmGXEqclAweMdhX6ru_ZfX5OisZKXFvldgZfdktog-sPnI6CiKXNh_nmr2Gb-dnXz980r2-gg5C8q2uGivBRmPJoInORpkv3PiKrPdURMtESDgW9hK8EEOsKh4GY8gGU6AnNjuwPpvP-A0odFEixbE1nqKtyDcebRPHnlncxQZ5AMX9H69DX3w8ffVVnYOQAusEUp1AqnuQBnC46vJrWXnjX423Eyqrhj0gA9i_h7Xu5-ZNPXISAmLKId79e689eD5KSQ5JKGK8D-vtouO38DTctj9vFgd52N0B6DzWFQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4QMEEfUEHiAWoffDIW9rbd251HVAgoXkjAeG-bbmcaTfDOHLsk_HumveWi0Zj4tPvQbnb3a-ebaTvzAbweNTIo3GikhxUbbQPl2lUeNZZC9uWIM-ebJDZRjsfVZILnK_B2mQvDzOnwGe_H27SXTzPfxaWyAzQSvFgxuGuFtXm2yNZa7hnI48tFddRMW1NO-j3MYYYHHy-OxhIL5sP96DEbtL-xUJJV-cMWJ4I5fvx_r_YENnpHUh0ukH8KKzzdhEe_lBfchPVe4fzb7RZQVOZMehBM6rBrZ7GAJfFcvxMaI3XeCUWqaBxSMXFSMnzEZF-pr-6G1emPpGWkxMFVYmn0RTcPzrP6wPEwiFzadKBr-gy-HB9dvj_RvcKC9kLzra4aK-FGY8mgCaUNMmO4cRVZ5ygLlomQsBD-EsQQfagqHnpjyHqToSM227A6nU35OSgsg8SKhTWOgq3INQ5tEwrHLA5jgzyA7P6P174vPx6_-qpOYUiGdQSpjiDVPUgDeLPs8nNRe-NfjbciKsuGPSAD2LuHte5n53WdlxIEYswi3vl7r1ewfnL5-aw-Ox1_2oWHeUx5iLIRxR6stvOOX8ADf9N-v56_TEPwDjC92Vw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Autoencoder-Based+Pulse+Compressed+Thermal+Wave+Imaging+for+Sub-Surface+Defect+Detection&rft.jtitle=IEEE+sensors+journal&rft.au=Kaur%2C+Kirandeep&rft.au=Mulaveesala%2C+Ravibabu&rft.au=Mishra%2C+Priyanka&rft.date=2022-09-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=18&rft.spage=17335&rft.epage=17342&rft_id=info:doi/10.1109%2FJSEN.2021.3056394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3056394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |