Rough-Wavelet Feature Space, Deep Autoencoder, and Hyperspectral Image Classification

Prime objective of this letter is to select the most relevant features from the original set and perform two steps of feature extraction operations on those selected set, for the classification of hyperspectral remote sensing (HSRS) images. Neighborhood rough sets (NRSs)-based method is used for fea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters Vol. 17; no. 3; pp. 489 - 493
Main Author: Meher, Saroj K.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-598X, 1558-0571
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Prime objective of this letter is to select the most relevant features from the original set and perform two steps of feature extraction operations on those selected set, for the classification of hyperspectral remote sensing (HSRS) images. Neighborhood rough sets (NRSs)-based method is used for feature selection because of its excellent neighboring information capturing ability. On these selected features, two steps of extraction operations are performed using the stationary wavelet transform (WT) and stacked deep autoencoder (SDAE). Stationary WT extracts the features by exploiting the spectral-spatial information and stacked DAE extracts through representative learning of input information. The wavelet features and the original input spectral features are cascaded to feed as input to the stacks DAE for feature extraction and classification tasks. The proposed classification model with these operational steps possesses the ability to capture more informative features with improved spectral-spatial information that are highly beneficial for the classification of complex data sets, like HSRS images. Simulation results with two HSRS images justified the efficacy of the proposed model compared to other similar methods in terms of different performance measurement indexes.
AbstractList Prime objective of this letter is to select the most relevant features from the original set and perform two steps of feature extraction operations on those selected set, for the classification of hyperspectral remote sensing (HSRS) images. Neighborhood rough sets (NRSs)-based method is used for feature selection because of its excellent neighboring information capturing ability. On these selected features, two steps of extraction operations are performed using the stationary wavelet transform (WT) and stacked deep autoencoder (SDAE). Stationary WT extracts the features by exploiting the spectral–spatial information and stacked DAE extracts through representative learning of input information. The wavelet features and the original input spectral features are cascaded to feed as input to the stacks DAE for feature extraction and classification tasks. The proposed classification model with these operational steps possesses the ability to capture more informative features with improved spectral–spatial information that are highly beneficial for the classification of complex data sets, like HSRS images. Simulation results with two HSRS images justified the efficacy of the proposed model compared to other similar methods in terms of different performance measurement indexes.
Author Meher, Saroj K.
Author_xml – sequence: 1
  givenname: Saroj K.
  orcidid: 0000-0002-1163-4768
  surname: Meher
  fullname: Meher, Saroj K.
  email: saroj.meher@isibang.ac.in
  organization: Systems Science and Informatics Unit (SSIU), Indian Statistical Institute, Bangalore Centre, Bengaluru, India
BookMark eNp9kE1LwzAYx4NMcJt-APFS8LrOvDbpcUy3CQNhc-gthPTJ7OjamrTCvr2dGx48CIEnh__vefkNUK-sSkDoluAxITh9WM5X6zHFJB3TlDLB8QXqEyFUjIUkveOfi1ik6v0KDULYYUy5UrKPNquq3X7Eb-YLCmiiGZim9RCta2NhFD0C1NGkbSoobZWBH0WmzKLFoQYfarCNN0X0vDdbiKaFCSF3uTVNXpXX6NKZIsDNuQ7RZvb0Ol3Ey5f583SyjC1NWRMrQ6lQgmfEWWclz5R1wnHSvRTAMgcYEmwxMAkJJDQBlWGluGA8cVhKNkT3p761rz5bCI3eVa0vu5GaskQRRlXCu5Q8payvQvDgtM2bnz27A_JCE6yPDvXRoT461GeHHUn-kLXP98Yf_mXuTkwOAL95JYVSKmXfJVx-vQ
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TGRS_2022_3215802
crossref_primary_10_1109_JSTARS_2023_3276409
crossref_primary_10_1016_j_engappai_2020_103647
Cites_doi 10.1109/MSP.2013.2279179
10.1109/TGRS.2003.810712
10.1109/LGRS.2011.2128854
10.1109/JSTARS.2014.2329330
10.1016/j.neunet.2014.09.003
10.1109/JSTARS.2016.2517204
10.1109/IGARSS.2003.1294808
10.1016/j.ins.2008.05.024
10.1007/BF01001956
10.1109/TGRS.2014.2345739
10.1109/JSTARS.2017.2767185
10.1109/TGRS.2011.2153861
10.1080/01431161.2010.512425
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2019.2923540
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 493
ExternalDocumentID 10_1109_LGRS_2019_2923540
8758889
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-8a225854d1fcfc74d8cf5f41f419eec3fe0e60c0e37e6e626e8d08845346f0773
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521960200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:41:02 EDT 2025
Tue Nov 18 22:23:56 EST 2025
Sat Nov 29 05:53:59 EST 2025
Wed Aug 27 02:35:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8a225854d1fcfc74d8cf5f41f419eec3fe0e60c0e37e6e626e8d08845346f0773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1163-4768
PQID 2368132864
PQPubID 75725
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LGRS_2019_2923540
proquest_journals_2368132864
crossref_primary_10_1109_LGRS_2019_2923540
ieee_primary_8758889
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
daugman (ref10) 1993
References_xml – ident: ref1
  doi: 10.1109/MSP.2013.2279179
– ident: ref7
  doi: 10.1109/TGRS.2003.810712
– ident: ref4
  doi: 10.1109/LGRS.2011.2128854
– ident: ref3
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref11
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref14
  doi: 10.1109/JSTARS.2016.2517204
– ident: ref8
  doi: 10.1109/IGARSS.2003.1294808
– ident: ref9
  doi: 10.1016/j.ins.2008.05.024
– ident: ref5
  doi: 10.1007/BF01001956
– start-page: 403
  year: 1993
  ident: ref10
  article-title: An information-theoretic view of analog representation in striate cortex
  publication-title: Computational Neuroscience
– ident: ref13
  doi: 10.1109/TGRS.2014.2345739
– ident: ref6
  doi: 10.1109/JSTARS.2017.2767185
– ident: ref2
  doi: 10.1109/TGRS.2011.2153861
– ident: ref12
  doi: 10.1080/01431161.2010.512425
SSID ssj0024887
Score 2.266684
Snippet Prime objective of this letter is to select the most relevant features from the original set and perform two steps of feature extraction operations on those...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 489
SubjectTerms Classification
Computer simulation
Deep autoencoder (DAE)
Feature extraction
Hyperspectral imaging
Image classification
land use/covers classification
Performance indices
Performance measurement
Principal component analysis
Remote sensing
remote sensing (RS) image
Rough sets
Spatial data
Spectra
Task analysis
wavelet transform (WT)
Wavelet transforms
Title Rough-Wavelet Feature Space, Deep Autoencoder, and Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/8758889
https://www.proquest.com/docview/2368132864
Volume 17
WOSCitedRecordID wos000521960200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90KPritzidkgefZNVsTZvkcfgNQ8QP3Ftp0wsKuo2uE_bfe8nqFBRB2oc-JLTk1-R-l7vcD-Awi02WughjTrY7EBHnQZYTkdNI9KQVR1anvohrV97cqF5P385Bc3YWBhF98hkeu0cfy88HZuy2yk6IW5PDpudhXsp4elbrq66e8mJ4jhEEkVa9KoLZ4vqke3l375K49HGb6Izf5_hmg7yoyo-V2JuXi9X_fdgarFQ0knWmuK_DHPY3YKlSNH-ebMDipZfsnWzC450T4gmeUicxUTLH-cYFsntylrHJzhCHrDMuB66gZY5Fk6X9nF2Rdzo9hFnQW67faNFhXj7TJRZ5LLfg8eL84fQqqMQUAkMWvQxUSjNXRSJvWWONFLkyNrKiRbdGNKFFjjE3HEOJMZKbgyqnFUhEoYgtlzLchlp_0McdYGjIxkfaZsTVhLUiE1lIF3cxXSUzWQf-ObyJqSqNO8GL18R7HFwnDpHEIZJUiNThaNZlOC2z8VfjTQfBrGE1-nVofGKYVBNxlLTDWJHDrWKx-3uvPVhuOxfap5U1oFYWY9yHBfNevoyKA_-PfQAXh81a
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5R2goulEcR2_LwgVO1Ae_GSewjooVFLCvEQ91blDhjFQl2Ucgi8e-Z8ZqlElUllBxysJXIX-z5xjOeD2C3TG1ZcISxItsdqUTKqKyIyBkketJJE2cKX8S1nw0Gejg053PQnp2FQUSffIZ7_Ohj-dXYTnirbJ-4NTls5gN8ZOWscFrrtbKe9nJ4zAmixOhhiGF2pNnvH19cchqX2esSofE7HX9ZIS-r8mYt9gbm6Mv7Pm0ZlgKRFAdT5FdgDkersBA0zf88rcLnYy_a-7QG1xcsxRP9LlhkohHM-iY1iktyl7EtfiLei4NJM-aSlhXWbVGMKtEj_3R6DLOmt5zc0bIjvIAmpxZ5NL_C9dGvq8NeFOQUIks2vYl0QXNXJ6rqOOtspiptXeJUh26DaGOHElNpJcYZpkiODuqK1iCVxCp1MsvidZgfjUe4AQItWfnEuJLYmnJOlaqM6ZIc1dVZmbVAvgxvbkOtcZa8uM29zyFNzojkjEgeEGnBj1mX-2mhjf81XmMIZg3D6Ldg8wXDPEzFh7wbp5pcbp2qb__utQMLvauzft4_GZx-h8UuO9Q-yWwT5pt6glvwyT42Nw_1tv_fngH1bNCj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rough-Wavelet+Feature+Space%2C+Deep+Autoencoder%2C+and+Hyperspectral+Image+Classification&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Meher%2C+Saroj+K.&rft.date=2020-03-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=17&rft.issue=3&rft.spage=489&rft.epage=493&rft_id=info:doi/10.1109%2FLGRS.2019.2923540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2019_2923540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon