Two-Stream Deep Architecture for Hyperspectral Image Classification

Most traditional approaches classify hyperspectral image (HSI) pixels relying only on the spectral values of the input channels. However, the spatial context around a pixel is also very important and can enhance the classification performance. In order to effectively exploit and fuse both the spatia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 56; H. 4; S. 2349 - 2361
Hauptverfasser: Hao, Siyuan, Wang, Wei, Ye, Yuanxin, Nie, Tingyuan, Bruzzone, Lorenzo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most traditional approaches classify hyperspectral image (HSI) pixels relying only on the spectral values of the input channels. However, the spatial context around a pixel is also very important and can enhance the classification performance. In order to effectively exploit and fuse both the spatial context and spectral structure, we propose a novel two-stream deep architecture for HSI classification. The proposed method consists of a two-stream architecture and a novel fusion scheme. In the two-stream architecture, one stream employs the stacked denoising autoencoder to encode the spectral values of each input pixel, and the other stream takes as input the corresponding image patch and deep convolutional neural networks are employed to process the image patch. In the fusion scheme, the prediction probabilities from two streams are fused by adaptive class-specific weights, which can be obtained by a fully connected layer. Finally, a weight regularizer is added to the loss function to alleviate the overfitting of the class-specific fusion weights. Experimental results on real HSIs demonstrate that the proposed two-stream deep architecture can achieve competitive performance compared with the state-of-the-art methods.
AbstractList Most traditional approaches classify hyperspectral image (HSI) pixels relying only on the spectral values of the input channels. However, the spatial context around a pixel is also very important and can enhance the classification performance. In order to effectively exploit and fuse both the spatial context and spectral structure, we propose a novel two-stream deep architecture for HSI classification. The proposed method consists of a two-stream architecture and a novel fusion scheme. In the two-stream architecture, one stream employs the stacked denoising autoencoder to encode the spectral values of each input pixel, and the other stream takes as input the corresponding image patch and deep convolutional neural networks are employed to process the image patch. In the fusion scheme, the prediction probabilities from two streams are fused by adaptive class-specific weights, which can be obtained by a fully connected layer. Finally, a weight regularizer is added to the loss function to alleviate the overfitting of the class-specific fusion weights. Experimental results on real HSIs demonstrate that the proposed two-stream deep architecture can achieve competitive performance compared with the state-of-the-art methods.
Author Hao, Siyuan
Bruzzone, Lorenzo
Wang, Wei
Ye, Yuanxin
Nie, Tingyuan
Author_xml – sequence: 1
  givenname: Siyuan
  orcidid: 0000-0001-8247-4207
  surname: Hao
  fullname: Hao, Siyuan
  email: lemonbananan@163.com
  organization: College of Communication and Electronic Engineering, Qingdao University of Technology, Qingdao, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-5477-1017
  surname: Wang
  fullname: Wang, Wei
  email: wei.wang@unitn.it
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
– sequence: 3
  givenname: Yuanxin
  surname: Ye
  fullname: Ye, Yuanxin
  email: yeyuanxin@home.swjtu.edu.cn
  organization: Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
– sequence: 4
  givenname: Tingyuan
  surname: Nie
  fullname: Nie, Tingyuan
  email: tynie@qut.edu.cn
  organization: College of Communication and Electronic Engineering, Qingdao University of Technology, Qingdao, China
– sequence: 5
  givenname: Lorenzo
  orcidid: 0000-0002-6036-459X
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  email: lorenzo.bruzzone@ing.unitn.it
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
BookMark eNp9kMtKw0AUhgepYFt9AHETcJ06l2Quy1K1LRQEW9fDZHJGp6RJnEmRvr2pLS5cuDpw-L9z-UZoUDc1IHRL8IQQrB4289f1hGIiJlQIyTJ2gYYkz2WKeZYN0BATxVMqFb1Coxi3GJMsJ2KIZpuvJl13AcwueQRok2mwH74D2-0DJK4JyeLQQoht3wmmSpY78w7JrDIxeuet6XxTX6NLZ6oIN-c6Rm_PT5vZIl29zJez6Sq1VLEulbKgvJCuxDQjwKjJJbOixC7jNMutIQXnpcPCMpoLLkonCqVkUdKcUiicY2N0f5rbhuZzD7HT22Yf6n6lpkT0_xChWJ8Sp5QNTYwBnLa--7mzf8BXmmB9NKaPxvTRmD4b60nyh2yD35lw-Je5OzEeAH7zkmZYccm-ATDyeHo
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_rs15153701
crossref_primary_10_1109_TGRS_2023_3297858
crossref_primary_10_1049_ipr2_12330
crossref_primary_10_1109_TGRS_2024_3402364
crossref_primary_10_1109_TCYB_2020_3000725
crossref_primary_10_1109_MGRS_2018_2853555
crossref_primary_10_1109_ACCESS_2021_3128357
crossref_primary_10_3390_s21196467
crossref_primary_10_3390_rs10050779
crossref_primary_10_3390_rs13163055
crossref_primary_10_1007_s11227_025_07445_x
crossref_primary_10_1109_TGRS_2019_2907932
crossref_primary_10_1109_TGRS_2021_3120198
crossref_primary_10_1016_j_neucom_2021_03_035
crossref_primary_10_1109_JSTARS_2023_3319587
crossref_primary_10_1109_JSEN_2025_3574423
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_1088_1742_6596_1950_1_012087
crossref_primary_10_1080_01431161_2020_1736732
crossref_primary_10_1016_j_measurement_2019_06_029
crossref_primary_10_1016_j_engappai_2023_107070
crossref_primary_10_3233_IDA_230927
crossref_primary_10_1080_2150704X_2021_1992034
crossref_primary_10_3390_rs15133270
crossref_primary_10_1109_TGRS_2019_2899129
crossref_primary_10_1109_TGRS_2020_3046840
crossref_primary_10_1109_TGRS_2022_3207294
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_3390_rs12020280
crossref_primary_10_3390_rs12223762
crossref_primary_10_1109_LGRS_2023_3245210
crossref_primary_10_1109_LGRS_2022_3219341
crossref_primary_10_1109_TGRS_2022_3196311
crossref_primary_10_3390_rs14194982
crossref_primary_10_1109_TGRS_2022_3147198
crossref_primary_10_1109_TGRS_2021_3102143
crossref_primary_10_1109_TGRS_2023_3265879
crossref_primary_10_1109_TGRS_2023_3263851
crossref_primary_10_3390_rs16020259
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1016_j_knosys_2023_110482
crossref_primary_10_1016_j_neucom_2022_05_093
crossref_primary_10_1109_TGRS_2021_3094867
crossref_primary_10_3390_rs13214472
crossref_primary_10_1109_JSTARS_2019_2910539
crossref_primary_10_1080_01431161_2021_1949069
crossref_primary_10_1016_j_asr_2024_10_001
crossref_primary_10_1109_TGRS_2019_2934218
crossref_primary_10_1109_TGRS_2020_2987199
crossref_primary_10_1109_JSTARS_2024_3432743
crossref_primary_10_1109_TGRS_2020_3044487
crossref_primary_10_1109_TGRS_2022_3176216
crossref_primary_10_1109_TGRS_2023_3327418
crossref_primary_10_1109_JSTARS_2021_3133021
crossref_primary_10_3390_rs17081373
crossref_primary_10_3390_rs14143341
crossref_primary_10_1109_TGRS_2018_2889195
crossref_primary_10_1109_TGRS_2019_2916169
crossref_primary_10_1109_TGRS_2021_3133582
crossref_primary_10_1080_0952813X_2019_1647566
crossref_primary_10_1007_s11263_019_01252_7
crossref_primary_10_1016_j_neucom_2023_01_054
crossref_primary_10_3390_rs12193137
crossref_primary_10_1109_TGRS_2021_3095899
crossref_primary_10_3390_rs17193273
crossref_primary_10_1109_TGRS_2023_3301310
crossref_primary_10_1109_TGRS_2022_3167644
crossref_primary_10_1109_MGRS_2020_2979764
crossref_primary_10_1109_TGRS_2024_3374954
crossref_primary_10_1109_JSTARS_2022_3189105
crossref_primary_10_1016_j_infrared_2021_103935
crossref_primary_10_1109_TGRS_2019_2951160
crossref_primary_10_1080_09540091_2019_1650330
crossref_primary_10_3390_rs16142526
crossref_primary_10_1109_TGRS_2023_3264610
crossref_primary_10_3390_electronics12244977
crossref_primary_10_3390_rs13030335
crossref_primary_10_1109_ACCESS_2019_2940697
crossref_primary_10_1109_TGRS_2019_2952758
crossref_primary_10_1109_TIM_2025_3540121
crossref_primary_10_1016_j_cosrev_2023_100584
crossref_primary_10_1109_JSTARS_2024_3353551
crossref_primary_10_3390_rs13224621
crossref_primary_10_1109_JSTARS_2022_3166972
crossref_primary_10_1109_TGRS_2019_2949180
crossref_primary_10_1109_TGRS_2022_3177478
crossref_primary_10_1109_TGRS_2024_3508737
crossref_primary_10_3390_rs14112653
crossref_primary_10_3390_s22093229
crossref_primary_10_1109_JSTARS_2022_3173893
crossref_primary_10_3390_rs15174255
crossref_primary_10_1016_j_isprsjprs_2019_04_015
crossref_primary_10_1016_j_jag_2023_103614
crossref_primary_10_1109_TGRS_2020_3034133
crossref_primary_10_1109_TGRS_2023_3307598
crossref_primary_10_1109_TGRS_2023_3335864
crossref_primary_10_1109_JSTARS_2022_3203234
crossref_primary_10_1016_j_neucom_2021_01_101
crossref_primary_10_1109_TCSVT_2022_3218284
crossref_primary_10_1109_TGRS_2018_2841823
crossref_primary_10_1109_TGRS_2020_3037361
crossref_primary_10_1080_15481603_2023_2225273
crossref_primary_10_1109_TIP_2021_3055613
crossref_primary_10_1109_JSTARS_2020_2981164
crossref_primary_10_32604_cmes_2022_020601
crossref_primary_10_1109_ACCESS_2020_3025165
crossref_primary_10_1109_TGRS_2022_3153673
Cites_doi 10.1145/1390156.1390294
10.1109/IGARSS.2016.7730324
10.1080/01431161.2016.1171928
10.1145/2806416.2806527
10.1109/TSMCB.2009.2037132
10.1109/LGRS.2017.2668299
10.1109/ICIP.2015.7351271
10.1016/j.neucom.2016.09.010
10.1145/3007669.3007742
10.1109/TGRS.2016.2584107
10.1109/JSTARS.2016.2517204
10.1109/TGRS.2011.2128330
10.1109/IGARSS.2010.5651433
10.1109/CVPR.2013.109
10.1109/TPAMI.2015.2389824
10.1109/MSP.2013.2279179
10.1109/TGRS.2015.2480866
10.1109/LGRS.2017.2704625
10.1109/TIP.2015.2423560
10.1080/01431161.2010.512425
10.1109/GCCE.2014.7031302
10.1007/s00530-010-0182-0
10.1016/j.rse.2007.07.028
10.1109/IGARSS.2015.7326945
10.1109/TPAMI.2013.50
10.1109/TGRS.2015.2478379
10.1109/ICASSP.2015.7177943
10.1109/TGRS.2004.842478
10.1109/TGRS.2003.811076
10.1109/SMC.2014.6974107
10.1016/j.isprsjprs.2014.08.016
10.1109/JSTARS.2014.2329330
10.3390/rs9010067
10.1109/TGRS.2014.2381602
10.1186/s13634-015-0278-y
10.1155/2016/3632943
10.1109/LGRS.2005.857031
10.1109/LGRS.2016.2619354
10.1162/neco.2006.18.7.1527
10.1109/JSTARS.2015.2470129
10.1109/WHISPERS.2015.8075378
10.3390/rs8020099
10.1109/JPROC.2012.2211551
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2017.2778343
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Architecture
EISSN 1558-0644
EndPage 2361
ExternalDocumentID 10_1109_TGRS_2017_2778343
8240968
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61572269; 61701272
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2017PF004
  funderid: 10.13039/501100007129
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2682016CX083
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c293t-88b26b8fd0241e32a583c7d0f46245ca1b66df07c325767df7b998bd2522ebff3
IEDL.DBID RIE
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428673800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 10:19:55 EDT 2025
Sat Nov 29 02:49:54 EST 2025
Tue Nov 18 22:22:13 EST 2025
Wed Aug 27 02:51:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-88b26b8fd0241e32a583c7d0f46245ca1b66df07c325767df7b998bd2522ebff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6036-459X
0000-0002-5477-1017
0000-0001-8247-4207
PQID 2174511793
PQPubID 85465
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2017_2778343
ieee_primary_8240968
crossref_primary_10_1109_TGRS_2017_2778343
proquest_journals_2174511793
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref52
ref11
ref54
ref10
glorot (ref43) 2011
ref17
ref16
ref19
szegedy (ref47) 2014; abs 1409 4842
lin (ref35) 2013
xugang (ref32) 2014
ref51
liguo (ref55) 2014; 97
chen (ref42) 2012; abs 1206 4683
ref41
ref44
ciresan (ref50) 2011
ref49
ref7
simonyan (ref20) 2014; abs 1406 2199
ref9
ref4
ref3
ref6
ref5
ref40
krizhevsky (ref45) 2012
ref34
ref37
ref36
ref31
ref30
palmason (ref8) 2005; 1
ref33
athanasopoulos (ref58) 2011
ref2
ref1
ref39
simonyan (ref46) 2014
liang (ref53) 2016; 8
he (ref48) 2015; abs 1512 3385
vincent (ref38) 2010; 11
ref24
ref23
ref26
ref25
ref22
ref21
yoshua bengio (ref14) 2007
ref28
han (ref18) 2016; 3
ref27
ref29
References_xml – volume: 11
  start-page: 3371
  year: 2010
  ident: ref38
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: abs 1409 4842
  start-page: 1
  year: 2014
  ident: ref47
  article-title: Going deeper with convolutions
  publication-title: CoRR
– ident: ref30
  doi: 10.1145/1390156.1390294
– ident: ref21
  doi: 10.1109/IGARSS.2016.7730324
– volume: abs 1206 4683
  start-page: 767
  year: 2012
  ident: ref42
  article-title: Marginalized denoising autoencoders for domain adaptation
  publication-title: Comput Res Repository
– ident: ref22
  doi: 10.1080/01431161.2016.1171928
– ident: ref40
  doi: 10.1145/2806416.2806527
– ident: ref6
  doi: 10.1109/TSMCB.2009.2037132
– ident: ref28
  doi: 10.1109/LGRS.2017.2668299
– start-page: 1237
  year: 2011
  ident: ref50
  article-title: Flexible, high performance convolutional neural networks for image classification
  publication-title: Proc Int Joint Conf Artif Intell (IJCAI)
– ident: ref41
  doi: 10.1109/ICIP.2015.7351271
– ident: ref51
  doi: 10.1016/j.neucom.2016.09.010
– ident: ref44
  doi: 10.1145/3007669.3007742
– ident: ref52
  doi: 10.1109/TGRS.2016.2584107
– ident: ref17
  doi: 10.1109/JSTARS.2016.2517204
– ident: ref57
  doi: 10.1109/TGRS.2011.2128330
– ident: ref54
  doi: 10.1109/IGARSS.2010.5651433
– ident: ref24
  doi: 10.1109/CVPR.2013.109
– start-page: 1
  year: 2011
  ident: ref58
  article-title: GPU acceleration for support vector machines
  publication-title: Proc 12th Int Workshop Image Anal Multimedia Interact Serv (WIAMIS)
– ident: ref49
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref4
  doi: 10.1109/MSP.2013.2279179
– ident: ref12
  doi: 10.1109/TGRS.2015.2480866
– start-page: 885
  year: 2014
  ident: ref32
  article-title: Ensemble modeling of denoising autoencoder for speech spectrum restoration
  publication-title: Proc INTERSPEECH
– ident: ref26
  doi: 10.1109/LGRS.2017.2704625
– ident: ref23
  doi: 10.1109/TIP.2015.2423560
– ident: ref10
  doi: 10.1080/01431161.2010.512425
– ident: ref34
  doi: 10.1109/GCCE.2014.7031302
– ident: ref25
  doi: 10.1007/s00530-010-0182-0
– ident: ref5
  doi: 10.1016/j.rse.2007.07.028
– ident: ref3
  doi: 10.1109/IGARSS.2015.7326945
– ident: ref15
  doi: 10.1109/TPAMI.2013.50
– ident: ref19
  doi: 10.1109/TGRS.2015.2478379
– volume: 3
  start-page: 25
  year: 2016
  ident: ref18
  article-title: Spatial-spectral classification based on the unsupervised convolutional sparse auto-encoder for hyperspectral remote sensing imagery
  publication-title: Photo Remote Sens Spatial Inf Sci
– year: 2011
  ident: ref43
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
  publication-title: Proc ICML
– ident: ref33
  doi: 10.1109/ICASSP.2015.7177943
– ident: ref9
  doi: 10.1109/TGRS.2004.842478
– ident: ref11
  doi: 10.1109/TGRS.2003.811076
– volume: abs 1512 3385
  start-page: 770
  year: 2015
  ident: ref48
  article-title: Deep residual learning for image recognition
  publication-title: CoRR
– ident: ref39
  doi: 10.1109/SMC.2014.6974107
– volume: 97
  start-page: 123
  year: 2014
  ident: ref55
  article-title: Semi-supervised classification for hyperspectral imagery based on spatial-spectral Label Propagation
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2014.08.016
– ident: ref2
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref27
  doi: 10.3390/rs9010067
– ident: ref29
  doi: 10.1109/TGRS.2014.2381602
– ident: ref31
  doi: 10.1186/s13634-015-0278-y
– ident: ref36
  doi: 10.1155/2016/3632943
– year: 2014
  ident: ref46
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– volume: 1
  start-page: 4
  year: 2005
  ident: ref8
  article-title: Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis
  publication-title: Proc IEEE Int Geosci Remote Sens Symp (IGARSS)
– start-page: 1
  year: 2013
  ident: ref35
  article-title: Spectral-spatial classification of hyperspectral image using autoencoders
  publication-title: Proc 9th Int Conf Inf Commun Signal Process (ICICS)
– ident: ref1
  doi: 10.1109/LGRS.2005.857031
– start-page: 153
  year: 2007
  ident: ref14
  publication-title: Greedy layer-wise training of deep networks
– volume: abs 1406 2199
  start-page: 568
  year: 2014
  ident: ref20
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: CoRR
– ident: ref16
  doi: 10.1109/LGRS.2016.2619354
– ident: ref13
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref56
  doi: 10.1109/JSTARS.2015.2470129
– ident: ref37
  doi: 10.1109/WHISPERS.2015.8075378
– volume: 8
  start-page: 99
  year: 2016
  ident: ref53
  article-title: Hyperspectral imagery classification using sparse representations of convolutional neural network features
  publication-title: Remote Sens
  doi: 10.3390/rs8020099
– ident: ref7
  doi: 10.1109/JPROC.2012.2211551
– start-page: 1097
  year: 2012
  ident: ref45
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014517
Score 2.5890293
Snippet Most traditional approaches classify hyperspectral image (HSI) pixels relying only on the spectral values of the input channels. However, the spatial context...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2349
SubjectTerms Architecture
Artificial neural networks
Class-specific fusion
Classification
convolutional neural networks (CNNs)
deep learning
Feature extraction
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Machine learning
Neural networks
Noise reduction
Pixels
remote sensing
Rivers
Spectra
stacked denoising autoencoder (SdAE)
State of the art
Training
two-stream architecture
Weight
Title Two-Stream Deep Architecture for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/8240968
https://www.proquest.com/docview/2174511793
Volume 56
WOSCitedRecordID wos000428673800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5sQ0EfvGyK0yl98Ens1jZpkj6O6ZwgQ3TK3spyKQjuwi76903SrEwUwbc-JKGcrznnfD03gEuqOMYSJ75UnPmYC3OlhPRRLEmiaCyY7dP9-kD7fTYcJo8luC5qYZRSNvlMNc2jjeXLqViZX2Utps1PQlgZypTSvFariBjgOHSl0cTXJCJyEcwwSFqDu6dnk8RFmxE1cyXQNxtkh6r80MTWvHT3__diB7Dn3EivneN-CCU1qcLuRnPBKmzb5E6xqEFn8Dn1Tfh5NPZulJp57Y3ogae9Vq-n2WhedDnXp96PtZLx7LhMk0hksTuCl-7toNPz3fAEX2gLvvQZ4xHhLJPaCIcKRaOYIUFlkGES4ViMQk6IzAIqkKEcVGaUa-bFZaQdMsWzDB1DZTKdqBPwjNOBpdK6TZhugjEjCEukZMgpEmQU1iFYizMVrrO4GXDxnlqGESSpQSA1CKQOgTpcFVtmeVuNvxbXjMiLhU7adWisMUvdxVukhmHFps0dOv191xns6LNZnnzTgMpyvlLnsCU-lm-L-YX9pr4ATR_IDw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gatSDD9CIovbgyVhou9vd7ZGgCBGJUTTcGvbRxEQe4aF_391tIRiNibcedttmvu48OjPfAFxSxTGWOHKl4szFXJgjJaSLQkkiRUPBLE_3a5t2OqzXix5zcL3shVFK2eIzVTGXNpcvR2JufpVVmTY_EWFrsB5iHPhpt9YyZ4BDP2uOJq4OI4Ish-l7UbV79_RsyrhoJaBmsgT6ZoXsWJUfutgamMbe_15tH3YzR9KppcgfQE4NC7CzQi9YgE1b3immRah3P0euSUD3B86NUmOntpI_cLTf6jR1PJq2XU70XVsDrWYcOzDTlBJZ9A7hpXHbrTfdbHyCK7QNn7mM8YBwlkhthn2Fgn7IkKDSSzAJcCj6PidEJh4VyAQdVCaU69iLy0C7ZIonCTqC_HA0VMfgGLcDS6W1mzB8giEjCEukpM8pEqTvl8BbiDMWGbe4GXHxHtsYw4tig0BsEIgzBEpwtdwyTok1_lpcNCJfLsykXYLyArM4O3rT2MRYoSG6Qye_77qArWb3oR23W537U9jWz2FpKU4Z8rPJXJ3BhviYvU0n5_b7-gLhqctW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stream+Deep+Architecture+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Hao%2C+Siyuan&rft.au=Wang%2C+Wei&rft.au=Ye%2C+Yuanxin&rft.au=Nie%2C+Tingyuan&rft.date=2018-04-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=56&rft.issue=4&rft.spage=2349&rft.epage=2361&rft_id=info:doi/10.1109%2FTGRS.2017.2778343&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2017_2778343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon