Automatic Time Picking for Microseismic Data Based on a Fuzzy C-Means Clustering Algorithm

Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE geoscience and remote sensing letters Ročník 13; číslo 12; s. 1900 - 1904
Hlavní autori: Zhu, Dan, Li, Yue, Zhang, Chao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-598X, 1558-0571
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we propose a new time picking method based on the fuzzy C-means clustering (FCM) algorithm, which can divide microseismic data into two clusters according to the different levels of similarity between the signals and noise. Using the FCM, we can obtain a membership degree matrix that represents the similarity of data. Data points whose values of the membership degree matrix are high show a high level of similarity and we assign these into the signal cluster. We regard the initial time of the signal cluster as the arrival time of data. To verify the reliability of the method, we conduct a large number of tests and give receiver operating characteristic curves with different SNR of signals. Our method is tested on both synthetic and real microseismic signals. Furthermore, we compare the FCM method with the short and long time average algorithm and the Akaike information criterion. The results indicate that our method can pick arrival times precisely even when the SNR of data is as low as -8 dB and the accuracy rate is superior to the other two methods.
AbstractList Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we propose a new time picking method based on the fuzzy C-means clustering (FCM) algorithm, which can divide microseismic data into two clusters according to the different levels of similarity between the signals and noise. Using the FCM, we can obtain a membership degree matrix that represents the similarity of data. Data points whose values of the membership degree matrix are high show a high level of similarity and we assign these into the signal cluster. We regard the initial time of the signal cluster as the arrival time of data. To verify the reliability of the method, we conduct a large number of tests and give receiver operating characteristic curves with different SNR of signals. Our method is tested on both synthetic and real microseismic signals. Furthermore, we compare the FCM method with the short and long time average algorithm and the Akaike information criterion. The results indicate that our method can pick arrival times precisely even when the SNR of data is as low as -8 dB and the accuracy rate is superior to the other two methods.
Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we propose a new time picking method based on the fuzzy C-means clustering (FCM) algorithm, which can divide microseismic data into two clusters according to the different levels of similarity between the signals and noise. Using the FCM, we can obtain a membership degree matrix that represents the similarity of data. Data points whose values of the membership degree matrix are high show a high level of similarity and we assign these into the signal cluster. We regard the initial time of the signal cluster as the arrival time of data. To verify the reliability of the method, we conduct a large number of tests and give receiver operating characteristic curves with different SNR of signals. Our method is tested on both synthetic and real microseismic signals. Furthermore, we compare the FCM method with the short and long time average algorithm and the Akaike information criterion. The results indicate that our method can pick arrival times precisely even when the SNR of data is as low as −8 dB and the accuracy rate is superior to the other two methods.
Author Chao Zhang
Yue Li
Dan Zhu
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-2603-3973
  surname: Zhu
  fullname: Zhu, Dan
– sequence: 2
  givenname: Yue
  surname: Li
  fullname: Li, Yue
– sequence: 3
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
BookMark eNp9kDFPwzAQhS1UJNrCD0AslphT7MSOnbEUWpBagaBIiCVykktxaeJiO0P760nUioGB6U5377vTewPUq00NCF1SMqKUJDfz2cvrKCQ0HoUxjTklJ6hPOZcB4YL2up7xgCfy_QwNnFsTEjIpRR99jBtvKuV1jpe6Avys8y9dr3BpLF7o3BoH2lXt9k55hW-VgwKbGis8bfb7HZ4EC1C1w5NN4zzYjhxvVsZq_1mdo9NSbRxcHOsQvU3vl5OHYP40e5yM50EeJpEPpEjKpMgIiFySLIsICwVXENPWDJSckYyWISsEU4wzgIzHBcsLmSvg7bwsoyG6PtzdWvPdgPPp2jS2bl-mVDIZkZCEvFWJg6rz5CyUaa5969vU3iq9SSlJuyDTLsi0CzI9BtmS9A-5tbpSdvcvc3VgNAD86kUcCcJY9AO2VoBd
CODEN IGRSBY
CitedBy_id crossref_primary_10_1007_s11600_021_00636_z
crossref_primary_10_1109_LGRS_2021_3098809
crossref_primary_10_1109_LGRS_2022_3201895
crossref_primary_10_3390_buildings14051331
crossref_primary_10_1016_j_cageo_2018_01_013
crossref_primary_10_1109_LGRS_2018_2861218
crossref_primary_10_1109_ACCESS_2025_3582855
crossref_primary_10_1088_2631_8695_add83e
crossref_primary_10_3390_s24051682
crossref_primary_10_3390_s18061828
crossref_primary_10_1007_s11600_024_01385_5
crossref_primary_10_1016_j_jappgeo_2018_03_012
crossref_primary_10_1109_TGRS_2025_3538757
crossref_primary_10_1109_LGRS_2021_3098057
crossref_primary_10_1109_ACCESS_2024_3517149
crossref_primary_10_1007_s12145_024_01631_w
crossref_primary_10_1109_TGRS_2021_3089929
crossref_primary_10_1016_j_cageo_2024_105624
crossref_primary_10_1016_j_eswa_2021_115216
crossref_primary_10_3390_math7030221
crossref_primary_10_1016_j_engstruct_2025_119729
crossref_primary_10_3390_sym13050790
crossref_primary_10_1109_TGRS_2024_3422612
crossref_primary_10_1111_1755_6724_14882
crossref_primary_10_3390_s22249924
crossref_primary_10_1093_jge_gxaf025
crossref_primary_10_1109_TGRS_2020_3019520
crossref_primary_10_1093_gji_ggaf301
crossref_primary_10_1109_TGRS_2021_3121032
crossref_primary_10_1109_TIM_2024_3497162
crossref_primary_10_1007_s40328_019_00283_3
crossref_primary_10_1093_jge_gxab026
crossref_primary_10_1109_JSEN_2023_3280347
crossref_primary_10_1002_jum_16505
crossref_primary_10_1190_geo2020_0308_1
Cites_doi 10.1093/clinchem/39.4.561
10.1007/978-1-4757-0450-1
10.1016/S0031-9201(99)00054-0
10.1785/BSSA0680051521
10.1785/BSSA0870061598
10.2118/118537-JPT
10.1080/01969727308546046
10.1190/1.1444030
10.1109/TGRS.2002.800438
10.1007/s11042-012-1019-y
10.1016/j.eswa.2015.04.032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2016.2616510
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1904
ExternalDocumentID 10_1109_LGRS_2016_2616510
7637044
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41574096; 41130421; 41274118
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-879f9db0e7c80bb304275ae61016ef540b1f24d74a454eeb56d4cd8cae5f24ff3
IEDL.DBID RIE
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391298500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 10:29:57 EDT 2025
Tue Nov 18 22:18:55 EST 2025
Sat Nov 29 05:53:50 EST 2025
Tue Aug 26 16:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-879f9db0e7c80bb304275ae61016ef540b1f24d74a454eeb56d4cd8cae5f24ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2603-3973
PQID 1848302025
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_7637044
crossref_citationtrail_10_1109_LGRS_2016_2616510
crossref_primary_10_1109_LGRS_2016_2616510
proquest_journals_1848302025
PublicationCentury 2000
PublicationDate 2016-Dec.
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References allen (ref5) 1978; 68
ref8
zweig (ref12) 1993; 39
ref7
ref9
ref4
ref6
ref11
anant (ref3) 1997; 87
ref2
ahmad (ref10) 2012; 4
ref1
References_xml – volume: 39
  start-page: 561
  year: 1993
  ident: ref12
  article-title: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
  publication-title: Clin Chem
  doi: 10.1093/clinchem/39.4.561
– ident: ref8
  doi: 10.1007/978-1-4757-0450-1
– ident: ref6
  doi: 10.1016/S0031-9201(99)00054-0
– volume: 68
  start-page: 1521
  year: 1978
  ident: ref5
  article-title: Automatic earthquake recognition and timing from single traces
  publication-title: Bull Seismol Soc Amer
  doi: 10.1785/BSSA0680051521
– volume: 87
  start-page: 1598
  year: 1997
  ident: ref3
  article-title: Wavelet transform methods for phase identification in three-component seismograms
  publication-title: Bull Seismol Soc Amer
  doi: 10.1785/BSSA0870061598
– ident: ref1
  doi: 10.2118/118537-JPT
– ident: ref7
  doi: 10.1080/01969727308546046
– ident: ref2
  doi: 10.1190/1.1444030
– volume: 4
  start-page: 3588
  year: 2012
  ident: ref10
  article-title: Detection of epilepsy from EEG signal during seizure using entropy-based fuzzy c-means
  publication-title: Res J Appl Sci Eng Technol
– ident: ref4
  doi: 10.1109/TGRS.2002.800438
– ident: ref11
  doi: 10.1007/s11042-012-1019-y
– ident: ref9
  doi: 10.1016/j.eswa.2015.04.032
SSID ssj0024887
Score 2.3463044
Snippet Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1900
SubjectTerms Akaike information criterion (AIC)
Algorithms
automatic time picks
Clustering
Clustering algorithms
Data analysis
Data points
Data processing
fuzzy C-means clustering (FCM) algorithm
Indexes
Linear programming
Methods
Microseisms
Noise measurement
P-waves
Reliability
S waves
Seismology
short and long time average (STA/LTA) algorithm
Signal processing
Signal to noise ratio
Similarity
Time series
Title Automatic Time Picking for Microseismic Data Based on a Fuzzy C-Means Clustering Algorithm
URI https://ieeexplore.ieee.org/document/7637044
https://www.proquest.com/docview/1848302025
Volume 13
WOSCitedRecordID wos000391298500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED51FQheBrRMK9uQH3hCpMuoE8ePXVnLw1ZV_JAqXiI7vtBKbYPaBKn763fnpgUJhMRb5NhRlC_2fWfffQfwxqpcYpzYQOU9DKTTGGiXuICordNWJmQkvIjrrRqPk-lUTxrw7pALg4g--Ay7fOnP8l2RVbxVdklzQYVSHsGRUvEuV-uXrl7ii-ExIwginUzrE8yrUF_ejj595iCuuEvuQhxxsuxvNsgXVfljJfbmZfjs_17sORzXNFL0d7i_gAauWvCkrmg-27bg8ciX7N224Vu_KgsvzCo430NM5hlvjwtiq-KOw_E2ON8s6e4HUxpxTVbNiWIljBhW9_dbMQjukMyZGCwq1lTgkf3F92I9L2fLl_B1ePNl8DGoKyoEGZn1kpY-nWtnQ1RZElrLWxkqMhizC485kTd7lb-XTkkjI4loo9hJFg8wGFF7nvdOoLkqVngKgppNbIh8RDaXnL5qYqs1JjSfHXm6ugPh_hunWS03zlUvFql3O0KdMiwpw5LWsHTg7WHIj53Wxr86txmHQ8cagg6c74FM69m4ScmLZZkzonev_j7qDJ7ys3dhKufQLNcVXsCj7Gc536xf-x_tAV16zys
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4x2MRegMHQyo_ND3tCCwRwfvixFAoTbYWASdVeIju-jEqlmdpkUvnruXNNh8SEtLfIsZUoF_u-s---D-CrSQqJcWqCpDjGQFqFgbKpDQjaWmVkSk7Ckbh2kl4v7ffV1QJ8m9fCIKJLPsN9vnRn-bbMa94qO6C5kIRSvoElVs7y1Vp_mfVSJ4fHmCCIVNr3Z5iHoTronF_fcBpXvE8BQxxxuewzL-RkVV6sxc7BtFf_79XWYMUDSdGcWf4DLOBoHZa9pvnddB3enTvR3ukG_GzWVemoWQVXfIirQc4b5ILwquhyQt4EB5N7unuqKy1OyK9ZUY6EFu364WEqWkEXyaGJ1rBmVgUe2Rz-KseD6u7-I_xon922LgKvqRDk5NgrWvxUoawJMcnT0BjezEgijTEH8VgQfDOHxZG0idQykogmiq1k-gCNEbUXxfEmLI7KEX4CQc061gQ_IlNILmDVsVEKU5rRlmJd1YDw6RtnuSccZ92LYeYCj1BlbJaMzZJ5szRgbz7k94xt47XOG2yHeUdvggbsPBky8_NxklEcy0RnBPC2_j3qCyxf3HY7Wed773Ib3vNzZkkrO7BYjWvchbf5n2owGX92P90jU8nSdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Time+Picking+for+Microseismic+Data+Based+on+a+Fuzzy+C-Means+Clustering+Algorithm&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhu%2C+Dan&rft.au=Li%2C+Yue&rft.au=Zhang%2C+Chao&rft.date=2016-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=13&rft.issue=12&rft.spage=1900&rft_id=info:doi/10.1109%2FLGRS.2016.2616510&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon