Automatic Time Picking for Microseismic Data Based on a Fuzzy C-Means Clustering Algorithm
Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we...
Uložené v:
| Vydané v: | IEEE geoscience and remote sensing letters Ročník 13; číslo 12; s. 1900 - 1904 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we propose a new time picking method based on the fuzzy C-means clustering (FCM) algorithm, which can divide microseismic data into two clusters according to the different levels of similarity between the signals and noise. Using the FCM, we can obtain a membership degree matrix that represents the similarity of data. Data points whose values of the membership degree matrix are high show a high level of similarity and we assign these into the signal cluster. We regard the initial time of the signal cluster as the arrival time of data. To verify the reliability of the method, we conduct a large number of tests and give receiver operating characteristic curves with different SNR of signals. Our method is tested on both synthetic and real microseismic signals. Furthermore, we compare the FCM method with the short and long time average algorithm and the Akaike information criterion. The results indicate that our method can pick arrival times precisely even when the SNR of data is as low as -8 dB and the accuracy rate is superior to the other two methods. |
|---|---|
| AbstractList | Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we propose a new time picking method based on the fuzzy C-means clustering (FCM) algorithm, which can divide microseismic data into two clusters according to the different levels of similarity between the signals and noise. Using the FCM, we can obtain a membership degree matrix that represents the similarity of data. Data points whose values of the membership degree matrix are high show a high level of similarity and we assign these into the signal cluster. We regard the initial time of the signal cluster as the arrival time of data. To verify the reliability of the method, we conduct a large number of tests and give receiver operating characteristic curves with different SNR of signals. Our method is tested on both synthetic and real microseismic signals. Furthermore, we compare the FCM method with the short and long time average algorithm and the Akaike information criterion. The results indicate that our method can pick arrival times precisely even when the SNR of data is as low as -8 dB and the accuracy rate is superior to the other two methods. Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is difficult to obtain arrival times accurately using traditional methods when the signal-to-noise ratio (SNR) of data is low. In this letter, we propose a new time picking method based on the fuzzy C-means clustering (FCM) algorithm, which can divide microseismic data into two clusters according to the different levels of similarity between the signals and noise. Using the FCM, we can obtain a membership degree matrix that represents the similarity of data. Data points whose values of the membership degree matrix are high show a high level of similarity and we assign these into the signal cluster. We regard the initial time of the signal cluster as the arrival time of data. To verify the reliability of the method, we conduct a large number of tests and give receiver operating characteristic curves with different SNR of signals. Our method is tested on both synthetic and real microseismic signals. Furthermore, we compare the FCM method with the short and long time average algorithm and the Akaike information criterion. The results indicate that our method can pick arrival times precisely even when the SNR of data is as low as −8 dB and the accuracy rate is superior to the other two methods. |
| Author | Chao Zhang Yue Li Dan Zhu |
| Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0002-2603-3973 surname: Zhu fullname: Zhu, Dan – sequence: 2 givenname: Yue surname: Li fullname: Li, Yue – sequence: 3 givenname: Chao surname: Zhang fullname: Zhang, Chao |
| BookMark | eNp9kDFPwzAQhS1UJNrCD0AslphT7MSOnbEUWpBagaBIiCVykktxaeJiO0P760nUioGB6U5377vTewPUq00NCF1SMqKUJDfz2cvrKCQ0HoUxjTklJ6hPOZcB4YL2up7xgCfy_QwNnFsTEjIpRR99jBtvKuV1jpe6Avys8y9dr3BpLF7o3BoH2lXt9k55hW-VgwKbGis8bfb7HZ4EC1C1w5NN4zzYjhxvVsZq_1mdo9NSbRxcHOsQvU3vl5OHYP40e5yM50EeJpEPpEjKpMgIiFySLIsICwVXENPWDJSckYyWISsEU4wzgIzHBcsLmSvg7bwsoyG6PtzdWvPdgPPp2jS2bl-mVDIZkZCEvFWJg6rz5CyUaa5969vU3iq9SSlJuyDTLsi0CzI9BtmS9A-5tbpSdvcvc3VgNAD86kUcCcJY9AO2VoBd |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1007_s11600_021_00636_z crossref_primary_10_1109_LGRS_2021_3098809 crossref_primary_10_1109_LGRS_2022_3201895 crossref_primary_10_3390_buildings14051331 crossref_primary_10_1016_j_cageo_2018_01_013 crossref_primary_10_1109_LGRS_2018_2861218 crossref_primary_10_1109_ACCESS_2025_3582855 crossref_primary_10_1088_2631_8695_add83e crossref_primary_10_3390_s24051682 crossref_primary_10_3390_s18061828 crossref_primary_10_1007_s11600_024_01385_5 crossref_primary_10_1016_j_jappgeo_2018_03_012 crossref_primary_10_1109_TGRS_2025_3538757 crossref_primary_10_1109_LGRS_2021_3098057 crossref_primary_10_1109_ACCESS_2024_3517149 crossref_primary_10_1007_s12145_024_01631_w crossref_primary_10_1109_TGRS_2021_3089929 crossref_primary_10_1016_j_cageo_2024_105624 crossref_primary_10_1016_j_eswa_2021_115216 crossref_primary_10_3390_math7030221 crossref_primary_10_1016_j_engstruct_2025_119729 crossref_primary_10_3390_sym13050790 crossref_primary_10_1109_TGRS_2024_3422612 crossref_primary_10_1111_1755_6724_14882 crossref_primary_10_3390_s22249924 crossref_primary_10_1093_jge_gxaf025 crossref_primary_10_1109_TGRS_2020_3019520 crossref_primary_10_1093_gji_ggaf301 crossref_primary_10_1109_TGRS_2021_3121032 crossref_primary_10_1109_TIM_2024_3497162 crossref_primary_10_1007_s40328_019_00283_3 crossref_primary_10_1093_jge_gxab026 crossref_primary_10_1109_JSEN_2023_3280347 crossref_primary_10_1002_jum_16505 crossref_primary_10_1190_geo2020_0308_1 |
| Cites_doi | 10.1093/clinchem/39.4.561 10.1007/978-1-4757-0450-1 10.1016/S0031-9201(99)00054-0 10.1785/BSSA0680051521 10.1785/BSSA0870061598 10.2118/118537-JPT 10.1080/01969727308546046 10.1190/1.1444030 10.1109/TGRS.2002.800438 10.1007/s11042-012-1019-y 10.1016/j.eswa.2015.04.032 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2016.2616510 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1904 |
| ExternalDocumentID | 10_1109_LGRS_2016_2616510 7637044 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41574096; 41130421; 41274118 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c293t-879f9db0e7c80bb304275ae61016ef540b1f24d74a454eeb56d4cd8cae5f24ff3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391298500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 10:29:57 EDT 2025 Tue Nov 18 22:18:55 EST 2025 Sat Nov 29 05:53:50 EST 2025 Tue Aug 26 16:43:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-879f9db0e7c80bb304275ae61016ef540b1f24d74a454eeb56d4cd8cae5f24ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2603-3973 |
| PQID | 1848302025 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7637044 crossref_citationtrail_10_1109_LGRS_2016_2616510 crossref_primary_10_1109_LGRS_2016_2616510 proquest_journals_1848302025 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Dec. 2016-12-00 20161201 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | allen (ref5) 1978; 68 ref8 zweig (ref12) 1993; 39 ref7 ref9 ref4 ref6 ref11 anant (ref3) 1997; 87 ref2 ahmad (ref10) 2012; 4 ref1 |
| References_xml | – volume: 39 start-page: 561 year: 1993 ident: ref12 article-title: Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine publication-title: Clin Chem doi: 10.1093/clinchem/39.4.561 – ident: ref8 doi: 10.1007/978-1-4757-0450-1 – ident: ref6 doi: 10.1016/S0031-9201(99)00054-0 – volume: 68 start-page: 1521 year: 1978 ident: ref5 article-title: Automatic earthquake recognition and timing from single traces publication-title: Bull Seismol Soc Amer doi: 10.1785/BSSA0680051521 – volume: 87 start-page: 1598 year: 1997 ident: ref3 article-title: Wavelet transform methods for phase identification in three-component seismograms publication-title: Bull Seismol Soc Amer doi: 10.1785/BSSA0870061598 – ident: ref1 doi: 10.2118/118537-JPT – ident: ref7 doi: 10.1080/01969727308546046 – ident: ref2 doi: 10.1190/1.1444030 – volume: 4 start-page: 3588 year: 2012 ident: ref10 article-title: Detection of epilepsy from EEG signal during seizure using entropy-based fuzzy c-means publication-title: Res J Appl Sci Eng Technol – ident: ref4 doi: 10.1109/TGRS.2002.800438 – ident: ref11 doi: 10.1007/s11042-012-1019-y – ident: ref9 doi: 10.1016/j.eswa.2015.04.032 |
| SSID | ssj0024887 |
| Score | 2.3463044 |
| Snippet | Time picking is an essential step in microseismic data processing, as the hypocenter location requires the arrival times of P- and/or S-waves. However, it is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1900 |
| SubjectTerms | Akaike information criterion (AIC) Algorithms automatic time picks Clustering Clustering algorithms Data analysis Data points Data processing fuzzy C-means clustering (FCM) algorithm Indexes Linear programming Methods Microseisms Noise measurement P-waves Reliability S waves Seismology short and long time average (STA/LTA) algorithm Signal processing Signal to noise ratio Similarity Time series |
| Title | Automatic Time Picking for Microseismic Data Based on a Fuzzy C-Means Clustering Algorithm |
| URI | https://ieeexplore.ieee.org/document/7637044 https://www.proquest.com/docview/1848302025 |
| Volume | 13 |
| WOSCitedRecordID | wos000391298500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED51FQheBrRMK9uQH3hCpMuoE8ePXVnLw1ZV_JAqXiI7vtBKbYPaBKn763fnpgUJhMRb5NhRlC_2fWfffQfwxqpcYpzYQOU9DKTTGGiXuICordNWJmQkvIjrrRqPk-lUTxrw7pALg4g--Ay7fOnP8l2RVbxVdklzQYVSHsGRUvEuV-uXrl7ii-ExIwginUzrE8yrUF_ejj595iCuuEvuQhxxsuxvNsgXVfljJfbmZfjs_17sORzXNFL0d7i_gAauWvCkrmg-27bg8ciX7N224Vu_KgsvzCo430NM5hlvjwtiq-KOw_E2ON8s6e4HUxpxTVbNiWIljBhW9_dbMQjukMyZGCwq1lTgkf3F92I9L2fLl_B1ePNl8DGoKyoEGZn1kpY-nWtnQ1RZElrLWxkqMhizC485kTd7lb-XTkkjI4loo9hJFg8wGFF7nvdOoLkqVngKgppNbIh8RDaXnL5qYqs1JjSfHXm6ugPh_hunWS03zlUvFql3O0KdMiwpw5LWsHTg7WHIj53Wxr86txmHQ8cagg6c74FM69m4ScmLZZkzonev_j7qDJ7ys3dhKufQLNcVXsCj7Gc536xf-x_tAV16zys |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4x2MRegMHQyo_ND3tCCwRwfvixFAoTbYWASdVeIju-jEqlmdpkUvnruXNNh8SEtLfIsZUoF_u-s---D-CrSQqJcWqCpDjGQFqFgbKpDQjaWmVkSk7Ckbh2kl4v7ffV1QJ8m9fCIKJLPsN9vnRn-bbMa94qO6C5kIRSvoElVs7y1Vp_mfVSJ4fHmCCIVNr3Z5iHoTronF_fcBpXvE8BQxxxuewzL-RkVV6sxc7BtFf_79XWYMUDSdGcWf4DLOBoHZa9pvnddB3enTvR3ukG_GzWVemoWQVXfIirQc4b5ILwquhyQt4EB5N7unuqKy1OyK9ZUY6EFu364WEqWkEXyaGJ1rBmVgUe2Rz-KseD6u7-I_xon922LgKvqRDk5NgrWvxUoawJMcnT0BjezEgijTEH8VgQfDOHxZG0idQykogmiq1k-gCNEbUXxfEmLI7KEX4CQc061gQ_IlNILmDVsVEKU5rRlmJd1YDw6RtnuSccZ92LYeYCj1BlbJaMzZJ5szRgbz7k94xt47XOG2yHeUdvggbsPBky8_NxklEcy0RnBPC2_j3qCyxf3HY7Wed773Ib3vNzZkkrO7BYjWvchbf5n2owGX92P90jU8nSdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Time+Picking+for+Microseismic+Data+Based+on+a+Fuzzy+C-Means+Clustering+Algorithm&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhu%2C+Dan&rft.au=Li%2C+Yue&rft.au=Zhang%2C+Chao&rft.date=2016-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=13&rft.issue=12&rft.spage=1900&rft_id=info:doi/10.1109%2FLGRS.2016.2616510&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |