CNGAT: A Graph Neural Network Model for Radar Quantitative Precipitation Estimation

Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity (<inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>) measured by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 60; S. 1 - 14
Hauptverfasser: Peng, Xuan, Li, Qian, Jing, Jinrui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity (<inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>) measured by the Doppler weather radar is strongly related to precipitation rate (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>). However, conventional RQPE methods have limited capability of modeling the complex relationship between the radar echoes and the precipitation field. In this article, we propose a graph neural network (GNN)-based RQPE model named categorical node graph attention network (CNGAT) to model complex spatial-temporal features of precipitation field reflected by the radar echo field. CNGAT is derived from graph attention networks (GAT) utilizing attention mechanism to learn the importance of neighboring points to the central point, which is beneficial for learning varying local spatial patterns. Furthermore, CNGAT can handle multiple types of graph nodes by using different transform functions for different types of nodes, which makes it better at capturing diverse features of precipitation field indicated by strong and weak radar echo areas. The proposed model was trained and tested on radar network and rain gauge data distributed in East China during 2017 and 2018. The results of several experiments show that CNGAT greatly improves the estimation precision and detection rate than <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> relation models and conventional data-driven RQPE methods, and alleviates under-estimation of higher precipitation rates, which validates that CNGAT can effectively represent complex spatial-temporal features of precipitation field.
AbstractList Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity (<inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>) measured by the Doppler weather radar is strongly related to precipitation rate (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>). However, conventional RQPE methods have limited capability of modeling the complex relationship between the radar echoes and the precipitation field. In this article, we propose a graph neural network (GNN)-based RQPE model named categorical node graph attention network (CNGAT) to model complex spatial-temporal features of precipitation field reflected by the radar echo field. CNGAT is derived from graph attention networks (GAT) utilizing attention mechanism to learn the importance of neighboring points to the central point, which is beneficial for learning varying local spatial patterns. Furthermore, CNGAT can handle multiple types of graph nodes by using different transform functions for different types of nodes, which makes it better at capturing diverse features of precipitation field indicated by strong and weak radar echo areas. The proposed model was trained and tested on radar network and rain gauge data distributed in East China during 2017 and 2018. The results of several experiments show that CNGAT greatly improves the estimation precision and detection rate than <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> relation models and conventional data-driven RQPE methods, and alleviates under-estimation of higher precipitation rates, which validates that CNGAT can effectively represent complex spatial-temporal features of precipitation field.
Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity ([Formula Omitted]) measured by the Doppler weather radar is strongly related to precipitation rate ([Formula Omitted]). However, conventional RQPE methods have limited capability of modeling the complex relationship between the radar echoes and the precipitation field. In this article, we propose a graph neural network (GNN)-based RQPE model named categorical node graph attention network (CNGAT) to model complex spatial–temporal features of precipitation field reflected by the radar echo field. CNGAT is derived from graph attention networks (GAT) utilizing attention mechanism to learn the importance of neighboring points to the central point, which is beneficial for learning varying local spatial patterns. Furthermore, CNGAT can handle multiple types of graph nodes by using different transform functions for different types of nodes, which makes it better at capturing diverse features of precipitation field indicated by strong and weak radar echo areas. The proposed model was trained and tested on radar network and rain gauge data distributed in East China during 2017 and 2018. The results of several experiments show that CNGAT greatly improves the estimation precision and detection rate than [Formula Omitted]–[Formula Omitted] relation models and conventional data-driven RQPE methods, and alleviates under-estimation of higher precipitation rates, which validates that CNGAT can effectively represent complex spatial–temporal features of precipitation field.
Author Li, Qian
Peng, Xuan
Jing, Jinrui
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0002-1211-1846
  surname: Peng
  fullname: Peng, Xuan
  email: pengxuan@nudt.edu.cn
  organization: College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
– sequence: 2
  givenname: Qian
  orcidid: 0000-0002-9530-4925
  surname: Li
  fullname: Li, Qian
  email: public_liqian@163.com
  organization: College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
– sequence: 3
  givenname: Jinrui
  surname: Jing
  fullname: Jing, Jinrui
  email: jingjinrui18@nudt.edu.cn
  organization: College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
BookMark eNp9kMtOwzAQRS1UJNrCByA2llineOwkttlVVQlI5dWWteUkjkgJcXEcEH9P0lYsWLC6M9I987gjNKhtbRA6BzIBIPJqnSxXE0ooTBj0Io7QEKJIBCQOwwEaEpBxQIWkJ2jUNBtCIIyAD9Fq9pBM19d4ihOnt6_4wbROV534L-ve8L3NTYUL6_BS59rh51bXvvTal58GPzmTldtdZ2s8b3z5vitP0XGhq8acHXSMXm7m69ltsHhM7mbTRZBRyXwgOCVpJEUugBXd0ZASxtI4Z0aIUOscjCYsYhFnuZGEp4IWIhTUEA5hkbOYjdHlfu7W2Y_WNF5tbOvqbqWiMY0lp5JD5-J7V-Zs0zhTqOxwsne6rBQQ1Seo-gRVH506JNiR8Ifcuu5F9_0vc7FnSmPMr19GnFBJ2Q_kAXwk
CODEN IGRSD2
CitedBy_id crossref_primary_10_1088_2632_2153_ad8981
crossref_primary_10_1109_LGRS_2023_3287884
crossref_primary_10_1007_s11269_025_04343_y
crossref_primary_10_1109_TGRS_2025_3552794
crossref_primary_10_1109_TGRS_2024_3424250
crossref_primary_10_1109_TIM_2023_3241976
crossref_primary_10_1109_TGRS_2022_3197833
crossref_primary_10_1109_LGRS_2022_3212644
crossref_primary_10_1109_TGRS_2022_3198851
crossref_primary_10_2478_amns_2023_2_00436
crossref_primary_10_1109_TGRS_2024_3407157
Cites_doi 10.5194/nhess-10-149-2010
10.1109/TNN.2008.2005605
10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2
10.1175/2009JAMC2165.1
10.1109/TGRS.2012.2210429
10.1111/0033-0124.00221
10.1016/j.jhydrol.2003.11.011
10.1109/TPAMI.2016.2572683
10.1109/TNNLS.2020.2978386
10.1155/2018/8202031
10.1175/JTECH1832.1
10.1016/j.neunet.2020.06.006
10.1609/aaai.v32i1.11604
10.1256/qj.05.190
10.1109/CVPR.2016.91
10.1175/bams-d-14-00174.1
10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
10.1038/Nature14539
10.1016/B978-0-12-221422-6.50008-5
10.1017/s1350482704001409
10.1109/TGRS.2019.2942280
10.1109/TPAMI.2013.50
10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
10.2151/jmsj.2018-015
10.1007/978-3-319-15702-3_56
10.1007/978-1-878220-36-3_10
10.5555/2999134.2999257
10.1109/TNN.2008.2010350
10.3390/rs11212463
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3120218
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2021_3120218
9570292
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFC1507604
  funderid: 10.13039/501100012166
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M621700
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 42105146; 42075139; 41305138
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-8720b598d813f1201b033b6d3e884aad1ea0353573de907b82f8482e0714fd363
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753505900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:22:20 EDT 2025
Tue Nov 18 22:14:28 EST 2025
Sat Nov 29 02:50:16 EST 2025
Wed Aug 27 02:49:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8720b598d813f1201b033b6d3e884aad1ea0353573de907b82f8482e0714fd363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9530-4925
0000-0002-1211-1846
PQID 2626972971
PQPubID 85465
PageCount 14
ParticipantIDs ieee_primary_9570292
crossref_citationtrail_10_1109_TGRS_2021_3120218
crossref_primary_10_1109_TGRS_2021_3120218
proquest_journals_2626972971
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref33
Glorot (ref41)
ref10
Defferrard (ref29)
Zhang (ref35)
Chorowski (ref26) 2015
ref1
ref17
ref39
ref16
ref19
van den Berg (ref37) 2017
Kipf (ref30)
Hamilton (ref32)
Li (ref36)
ref24
ref23
Xingjian (ref6)
ref25
ref20
ref22
ref44
ref21
Velickovi (ref34)
ref43
Wang (ref11) 2011; 27
Velickovic (ref38)
ref28
ref27
Yu (ref45) 2013; 32
ref8
Collier (ref18) 1989
ref7
ref9
ref4
ref3
ref5
Kingma (ref42) 2014
ref40
Gilmer (ref31)
Doviak (ref2) 1993
References_xml – ident: ref16
  doi: 10.5194/nhess-10-149-2010
– ident: ref27
  doi: 10.1109/TNN.2008.2005605
– start-page: 1
  volume-title: Proc. UAI
  ident: ref35
  article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs
– ident: ref7
  doi: 10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref36
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– ident: ref15
  doi: 10.1175/2009JAMC2165.1
– ident: ref21
  doi: 10.1109/TGRS.2012.2210429
– volume: 27
  start-page: 601
  issue: 4
  year: 2011
  ident: ref11
  article-title: An approach for radar quantitative precipitation estimate based on categorical Z-I relations
  publication-title: J. Tropical Meteorol.
– ident: ref13
  doi: 10.1111/0033-0124.00221
– ident: ref5
  doi: 10.1016/j.jhydrol.2003.11.011
– ident: ref43
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref33
  doi: 10.1109/TNNLS.2020.2978386
– volume: 32
  start-page: 202
  issue: 3
  year: 2013
  ident: ref45
  article-title: Nowcasting thinking and method of flash heavy rain
  publication-title: Torrential Rain Disasters
– ident: ref17
  doi: 10.1155/2018/8202031
– ident: ref10
  doi: 10.1175/JTECH1832.1
– ident: ref39
  doi: 10.1016/j.neunet.2020.06.006
– ident: ref40
  doi: 10.1609/aaai.v32i1.11604
– ident: ref14
  doi: 10.1256/qj.05.190
– ident: ref25
  doi: 10.1109/CVPR.2016.91
– ident: ref19
  doi: 10.1175/bams-d-14-00174.1
– start-page: 802
  volume-title: Proc. NIPS
  ident: ref6
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref30
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 1263
  volume-title: Proc. ICML
  ident: ref31
  article-title: Neural message passing for quantum chemistry
– ident: ref44
  doi: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
– ident: ref22
  doi: 10.1038/Nature14539
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref34
  article-title: Deep graph infomax
– start-page: 30
  volume-title: Doppler Radar and Weather Observations
  year: 1993
  ident: ref2
  doi: 10.1016/B978-0-12-221422-6.50008-5
– ident: ref12
  doi: 10.1017/s1350482704001409
– start-page: 1024
  volume-title: Proc. NIPS
  ident: ref32
  article-title: Inductive representation learning on large graphs
– volume-title: arXiv:1412.6980
  year: 2014
  ident: ref42
  article-title: Adam: A method for stochastic optimization
– ident: ref1
  doi: 10.1109/TGRS.2019.2942280
– ident: ref23
  doi: 10.1109/TPAMI.2013.50
– volume-title: arXiv:1506.07503
  year: 2015
  ident: ref26
  article-title: Attention-based models for speech recognition
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref38
  article-title: Graph attention networks
– volume-title: arXiv:1706.02263
  year: 2017
  ident: ref37
  article-title: Graph convolutional matrix completion
– ident: ref8
  doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
– ident: ref3
  doi: 10.2151/jmsj.2018-015
– ident: ref20
  doi: 10.1007/978-3-319-15702-3_56
– start-page: 41
  volume-title: Applications of Weather Radar System: A Guide to Uses of Radar in Meteorology and Hydrology
  year: 1989
  ident: ref18
– ident: ref9
  doi: 10.1007/978-1-878220-36-3_10
– start-page: 315
  volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist.
  ident: ref41
  article-title: Deep sparse rectifier neural networks
– ident: ref24
  doi: 10.5555/2999134.2999257
– ident: ref28
  doi: 10.1109/TNN.2008.2010350
– ident: ref4
  doi: 10.3390/rs11212463
– start-page: 3844
  volume-title: Proc. NIPS
  ident: ref29
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
SSID ssj0014517
Score 2.5210795
Snippet Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Z–R relationship
Atmospheric precipitations
Convolution
Data models
Doppler radar
Doppler sonar
Echoes
Estimation
Forecasting
Graph convolution
graph neural network (GNN)
Graph neural networks
Meteorological radar
Methods
Neural networks
Nodes
Precipitation
Precipitation rate
Radar
Radar clutter
Radar echoes
Radar networks
radar quantitative precipitation estimation (RQPE)
Rain
Rain gauges
Rainfall
Reflectance
Reflectivity
Spatial discrimination learning
Temporal resolution
Temporal variations
Title CNGAT: A Graph Neural Network Model for Radar Quantitative Precipitation Estimation
URI https://ieeexplore.ieee.org/document/9570292
https://www.proquest.com/docview/2626972971
Volume 60
WOSCitedRecordID wos000753505900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MoaAHf0zF6ZQcPInVNmmb1NuQbR5kzG3KbiVtUhDGNvbDv9-XNBuKIthLC02g5KXvvS_J9z2AaxVqxRXVHi9C38N4G3sSZ5ZX8ERSoXRObUmWt2fe7YrRKOlV4HbDhdFa28Nn-s482r18Nc1XZqnsPom4TxN0uFucxyVXa7NjEEaBo0bHHoII6nYwAz-5H3b6A0SCNECAam7iWwyyRVV-eGIbXtoH__uwQ9h3aSRplnY_goqe1GDvi7hgDXbs4c58cQyDx26nOXwgTdIx8tTECHJg5255ApyYcmhjgskr6Usl5-RlJSeWeoaOkPSM-sXMCXmTFjqEkut4Aq_t1vDxyXPFFLwcI_oSvR71sygRSgSswGEIMp-xLFZMCxFKqQItfRaxiDOlETBnghYiFFQbglOhWMxOoTqZTvQZEFFEmATiFWEyha8zaiReZB5RHUoeyjr46-FNc_eBpuDFOLWIw09SY5HUmCJ1FqnDzabLrJTZ-KvxsTHBpqEb_To01jZM3Y-4SCkCtgQBBA_Of-91AbvUMBrsqkoDqsv5Sl_Cdv6xfF_Mr-wc-wS378sY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD4ML6gP3sV5zYNPYl2btGvq2xC3ibPoNsW3kjYpCKMbu_j7PcmyoiiCfWmhCZSc9JzzJfm-A3AhfSVDSZUT5r7rYLytOwJnlpOHkaBcqoyakiyvnTCO-dtb9FSBq5ILo5Qyh8_UtX40e_lymM30UlktCkKXRuhwl3XlLMvWKvcM_MCz5Oi6gzCC2j1Mz41q_Va3h1iQeghR9Y1_i0KmrMoPX2wCTHPrf5-2DZs2kSSNueV3oKKKXdj4Ii-4C6vmeGc22YPebdxq9G9Ig7S0QDXRkhzYOZ6fASe6INqAYPpKukKKMXmeicKQz9AVkietfzGyUt7kDl3CnO24Dy_Nu_5t27HlFJwMY_oU_R510yDiknssx2HwUpextC6Z4twXQnpKuCxgQcikQsiccppzn1OlKU65ZHV2AEvFsFCHQHgeYBqIV4DpFL5OqRZ5EVlAlS9CX1TBXQxvktkP1CUvBonBHG6UaIsk2hSJtUgVLssuo7nQxl-N97QJyoZ29KtwsrBhYn_FSUIRskUIIULv6Pde57DW7j92ks59_HAM61TzG8waywksTcczdQor2cf0fTI-M_PtE3t_zmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNGAT%3A+A+Graph+Neural+Network+Model+for+Radar+Quantitative+Precipitation+Estimation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Peng%2C+Xuan&rft.au=Li%2C+Qian&rft.au=Jing%2C+Jinrui&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3120218&rft.externalDocID=9570292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon