CNGAT: A Graph Neural Network Model for Radar Quantitative Precipitation Estimation
Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity (<inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>) measured by...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 60; S. 1 - 14 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity (<inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>) measured by the Doppler weather radar is strongly related to precipitation rate (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>). However, conventional RQPE methods have limited capability of modeling the complex relationship between the radar echoes and the precipitation field. In this article, we propose a graph neural network (GNN)-based RQPE model named categorical node graph attention network (CNGAT) to model complex spatial-temporal features of precipitation field reflected by the radar echo field. CNGAT is derived from graph attention networks (GAT) utilizing attention mechanism to learn the importance of neighboring points to the central point, which is beneficial for learning varying local spatial patterns. Furthermore, CNGAT can handle multiple types of graph nodes by using different transform functions for different types of nodes, which makes it better at capturing diverse features of precipitation field indicated by strong and weak radar echo areas. The proposed model was trained and tested on radar network and rain gauge data distributed in East China during 2017 and 2018. The results of several experiments show that CNGAT greatly improves the estimation precision and detection rate than <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> relation models and conventional data-driven RQPE methods, and alleviates under-estimation of higher precipitation rates, which validates that CNGAT can effectively represent complex spatial-temporal features of precipitation field. |
|---|---|
| AbstractList | Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity (<inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>) measured by the Doppler weather radar is strongly related to precipitation rate (<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula>). However, conventional RQPE methods have limited capability of modeling the complex relationship between the radar echoes and the precipitation field. In this article, we propose a graph neural network (GNN)-based RQPE model named categorical node graph attention network (CNGAT) to model complex spatial-temporal features of precipitation field reflected by the radar echo field. CNGAT is derived from graph attention networks (GAT) utilizing attention mechanism to learn the importance of neighboring points to the central point, which is beneficial for learning varying local spatial patterns. Furthermore, CNGAT can handle multiple types of graph nodes by using different transform functions for different types of nodes, which makes it better at capturing diverse features of precipitation field indicated by strong and weak radar echo areas. The proposed model was trained and tested on radar network and rain gauge data distributed in East China during 2017 and 2018. The results of several experiments show that CNGAT greatly improves the estimation precision and detection rate than <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> relation models and conventional data-driven RQPE methods, and alleviates under-estimation of higher precipitation rates, which validates that CNGAT can effectively represent complex spatial-temporal features of precipitation field. Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The radar reflectivity ([Formula Omitted]) measured by the Doppler weather radar is strongly related to precipitation rate ([Formula Omitted]). However, conventional RQPE methods have limited capability of modeling the complex relationship between the radar echoes and the precipitation field. In this article, we propose a graph neural network (GNN)-based RQPE model named categorical node graph attention network (CNGAT) to model complex spatial–temporal features of precipitation field reflected by the radar echo field. CNGAT is derived from graph attention networks (GAT) utilizing attention mechanism to learn the importance of neighboring points to the central point, which is beneficial for learning varying local spatial patterns. Furthermore, CNGAT can handle multiple types of graph nodes by using different transform functions for different types of nodes, which makes it better at capturing diverse features of precipitation field indicated by strong and weak radar echo areas. The proposed model was trained and tested on radar network and rain gauge data distributed in East China during 2017 and 2018. The results of several experiments show that CNGAT greatly improves the estimation precision and detection rate than [Formula Omitted]–[Formula Omitted] relation models and conventional data-driven RQPE methods, and alleviates under-estimation of higher precipitation rates, which validates that CNGAT can effectively represent complex spatial–temporal features of precipitation field. |
| Author | Li, Qian Peng, Xuan Jing, Jinrui |
| Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0002-1211-1846 surname: Peng fullname: Peng, Xuan email: pengxuan@nudt.edu.cn organization: College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China – sequence: 2 givenname: Qian orcidid: 0000-0002-9530-4925 surname: Li fullname: Li, Qian email: public_liqian@163.com organization: College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China – sequence: 3 givenname: Jinrui surname: Jing fullname: Jing, Jinrui email: jingjinrui18@nudt.edu.cn organization: College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCByA2llineOwkttlVVQlI5dWWteUkjkgJcXEcEH9P0lYsWLC6M9I987gjNKhtbRA6BzIBIPJqnSxXE0ooTBj0Io7QEKJIBCQOwwEaEpBxQIWkJ2jUNBtCIIyAD9Fq9pBM19d4ihOnt6_4wbROV534L-ve8L3NTYUL6_BS59rh51bXvvTal58GPzmTldtdZ2s8b3z5vitP0XGhq8acHXSMXm7m69ltsHhM7mbTRZBRyXwgOCVpJEUugBXd0ZASxtI4Z0aIUOscjCYsYhFnuZGEp4IWIhTUEA5hkbOYjdHlfu7W2Y_WNF5tbOvqbqWiMY0lp5JD5-J7V-Zs0zhTqOxwsne6rBQQ1Seo-gRVH506JNiR8Ifcuu5F9_0vc7FnSmPMr19GnFBJ2Q_kAXwk |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1088_2632_2153_ad8981 crossref_primary_10_1109_LGRS_2023_3287884 crossref_primary_10_1007_s11269_025_04343_y crossref_primary_10_1109_TGRS_2025_3552794 crossref_primary_10_1109_TGRS_2024_3424250 crossref_primary_10_1109_TIM_2023_3241976 crossref_primary_10_1109_TGRS_2022_3197833 crossref_primary_10_1109_LGRS_2022_3212644 crossref_primary_10_1109_TGRS_2022_3198851 crossref_primary_10_2478_amns_2023_2_00436 crossref_primary_10_1109_TGRS_2024_3407157 |
| Cites_doi | 10.5194/nhess-10-149-2010 10.1109/TNN.2008.2005605 10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2 10.1175/2009JAMC2165.1 10.1109/TGRS.2012.2210429 10.1111/0033-0124.00221 10.1016/j.jhydrol.2003.11.011 10.1109/TPAMI.2016.2572683 10.1109/TNNLS.2020.2978386 10.1155/2018/8202031 10.1175/JTECH1832.1 10.1016/j.neunet.2020.06.006 10.1609/aaai.v32i1.11604 10.1256/qj.05.190 10.1109/CVPR.2016.91 10.1175/bams-d-14-00174.1 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2 10.1038/Nature14539 10.1016/B978-0-12-221422-6.50008-5 10.1017/s1350482704001409 10.1109/TGRS.2019.2942280 10.1109/TPAMI.2013.50 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2 10.2151/jmsj.2018-015 10.1007/978-3-319-15702-3_56 10.1007/978-1-878220-36-3_10 10.5555/2999134.2999257 10.1109/TNN.2008.2010350 10.3390/rs11212463 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2021.3120218 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TGRS_2021_3120218 9570292 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFC1507604 funderid: 10.13039/501100012166 – fundername: China Postdoctoral Science Foundation grantid: 2017M621700 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 42105146; 42075139; 41305138 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-8720b598d813f1201b033b6d3e884aad1ea0353573de907b82f8482e0714fd363 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753505900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:22:20 EDT 2025 Tue Nov 18 22:14:28 EST 2025 Sat Nov 29 02:50:16 EST 2025 Wed Aug 27 02:49:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-8720b598d813f1201b033b6d3e884aad1ea0353573de907b82f8482e0714fd363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9530-4925 0000-0002-1211-1846 |
| PQID | 2626972971 |
| PQPubID | 85465 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9570292 crossref_citationtrail_10_1109_TGRS_2021_3120218 crossref_primary_10_1109_TGRS_2021_3120218 proquest_journals_2626972971 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref33 Glorot (ref41) ref10 Defferrard (ref29) Zhang (ref35) Chorowski (ref26) 2015 ref1 ref17 ref39 ref16 ref19 van den Berg (ref37) 2017 Kipf (ref30) Hamilton (ref32) Li (ref36) ref24 ref23 Xingjian (ref6) ref25 ref20 ref22 ref44 ref21 Velickovi (ref34) ref43 Wang (ref11) 2011; 27 Velickovic (ref38) ref28 ref27 Yu (ref45) 2013; 32 ref8 Collier (ref18) 1989 ref7 ref9 ref4 ref3 ref5 Kingma (ref42) 2014 ref40 Gilmer (ref31) Doviak (ref2) 1993 |
| References_xml | – ident: ref16 doi: 10.5194/nhess-10-149-2010 – ident: ref27 doi: 10.1109/TNN.2008.2005605 – start-page: 1 volume-title: Proc. UAI ident: ref35 article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs – ident: ref7 doi: 10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2 – start-page: 1 volume-title: Proc. ICLR ident: ref36 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting – ident: ref15 doi: 10.1175/2009JAMC2165.1 – ident: ref21 doi: 10.1109/TGRS.2012.2210429 – volume: 27 start-page: 601 issue: 4 year: 2011 ident: ref11 article-title: An approach for radar quantitative precipitation estimate based on categorical Z-I relations publication-title: J. Tropical Meteorol. – ident: ref13 doi: 10.1111/0033-0124.00221 – ident: ref5 doi: 10.1016/j.jhydrol.2003.11.011 – ident: ref43 doi: 10.1109/TPAMI.2016.2572683 – ident: ref33 doi: 10.1109/TNNLS.2020.2978386 – volume: 32 start-page: 202 issue: 3 year: 2013 ident: ref45 article-title: Nowcasting thinking and method of flash heavy rain publication-title: Torrential Rain Disasters – ident: ref17 doi: 10.1155/2018/8202031 – ident: ref10 doi: 10.1175/JTECH1832.1 – ident: ref39 doi: 10.1016/j.neunet.2020.06.006 – ident: ref40 doi: 10.1609/aaai.v32i1.11604 – ident: ref14 doi: 10.1256/qj.05.190 – ident: ref25 doi: 10.1109/CVPR.2016.91 – ident: ref19 doi: 10.1175/bams-d-14-00174.1 – start-page: 802 volume-title: Proc. NIPS ident: ref6 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting – start-page: 1 volume-title: Proc. ICLR ident: ref30 article-title: Semi-supervised classification with graph convolutional networks – start-page: 1263 volume-title: Proc. ICML ident: ref31 article-title: Neural message passing for quantum chemistry – ident: ref44 doi: 10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2 – ident: ref22 doi: 10.1038/Nature14539 – start-page: 1 volume-title: Proc. ICLR ident: ref34 article-title: Deep graph infomax – start-page: 30 volume-title: Doppler Radar and Weather Observations year: 1993 ident: ref2 doi: 10.1016/B978-0-12-221422-6.50008-5 – ident: ref12 doi: 10.1017/s1350482704001409 – start-page: 1024 volume-title: Proc. NIPS ident: ref32 article-title: Inductive representation learning on large graphs – volume-title: arXiv:1412.6980 year: 2014 ident: ref42 article-title: Adam: A method for stochastic optimization – ident: ref1 doi: 10.1109/TGRS.2019.2942280 – ident: ref23 doi: 10.1109/TPAMI.2013.50 – volume-title: arXiv:1506.07503 year: 2015 ident: ref26 article-title: Attention-based models for speech recognition – start-page: 1 volume-title: Proc. ICLR ident: ref38 article-title: Graph attention networks – volume-title: arXiv:1706.02263 year: 2017 ident: ref37 article-title: Graph convolutional matrix completion – ident: ref8 doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2 – ident: ref3 doi: 10.2151/jmsj.2018-015 – ident: ref20 doi: 10.1007/978-3-319-15702-3_56 – start-page: 41 volume-title: Applications of Weather Radar System: A Guide to Uses of Radar in Meteorology and Hydrology year: 1989 ident: ref18 – ident: ref9 doi: 10.1007/978-1-878220-36-3_10 – start-page: 315 volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist. ident: ref41 article-title: Deep sparse rectifier neural networks – ident: ref24 doi: 10.5555/2999134.2999257 – ident: ref28 doi: 10.1109/TNN.2008.2010350 – ident: ref4 doi: 10.3390/rs11212463 – start-page: 3844 volume-title: Proc. NIPS ident: ref29 article-title: Convolutional neural networks on graphs with fast localized spectral filtering |
| SSID | ssj0014517 |
| Score | 2.5210795 |
| Snippet | Radar quantitative precipitation estimation (RQPE) is the most common measurement for area rainfall estimation with high spatial and temporal resolution. The... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Z–R relationship Atmospheric precipitations Convolution Data models Doppler radar Doppler sonar Echoes Estimation Forecasting Graph convolution graph neural network (GNN) Graph neural networks Meteorological radar Methods Neural networks Nodes Precipitation Precipitation rate Radar Radar clutter Radar echoes Radar networks radar quantitative precipitation estimation (RQPE) Rain Rain gauges Rainfall Reflectance Reflectivity Spatial discrimination learning Temporal resolution Temporal variations |
| Title | CNGAT: A Graph Neural Network Model for Radar Quantitative Precipitation Estimation |
| URI | https://ieeexplore.ieee.org/document/9570292 https://www.proquest.com/docview/2626972971 |
| Volume | 60 |
| WOSCitedRecordID | wos000753505900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MoaAHf0zF6ZQcPInVNmmb1NuQbR5kzG3KbiVtUhDGNvbDv9-XNBuKIthLC02g5KXvvS_J9z2AaxVqxRXVHi9C38N4G3sSZ5ZX8ERSoXRObUmWt2fe7YrRKOlV4HbDhdFa28Nn-s482r18Nc1XZqnsPom4TxN0uFucxyVXa7NjEEaBo0bHHoII6nYwAz-5H3b6A0SCNECAam7iWwyyRVV-eGIbXtoH__uwQ9h3aSRplnY_goqe1GDvi7hgDXbs4c58cQyDx26nOXwgTdIx8tTECHJg5255ApyYcmhjgskr6Usl5-RlJSeWeoaOkPSM-sXMCXmTFjqEkut4Aq_t1vDxyXPFFLwcI_oSvR71sygRSgSswGEIMp-xLFZMCxFKqQItfRaxiDOlETBnghYiFFQbglOhWMxOoTqZTvQZEFFEmATiFWEyha8zaiReZB5RHUoeyjr46-FNc_eBpuDFOLWIw09SY5HUmCJ1FqnDzabLrJTZ-KvxsTHBpqEb_To01jZM3Y-4SCkCtgQBBA_Of-91AbvUMBrsqkoDqsv5Sl_Cdv6xfF_Mr-wc-wS378sY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD4ML6gP3sV5zYNPYl2btGvq2xC3ibPoNsW3kjYpCKMbu_j7PcmyoiiCfWmhCZSc9JzzJfm-A3AhfSVDSZUT5r7rYLytOwJnlpOHkaBcqoyakiyvnTCO-dtb9FSBq5ILo5Qyh8_UtX40e_lymM30UlktCkKXRuhwl3XlLMvWKvcM_MCz5Oi6gzCC2j1Mz41q_Va3h1iQeghR9Y1_i0KmrMoPX2wCTHPrf5-2DZs2kSSNueV3oKKKXdj4Ii-4C6vmeGc22YPebdxq9G9Ig7S0QDXRkhzYOZ6fASe6INqAYPpKukKKMXmeicKQz9AVkietfzGyUt7kDl3CnO24Dy_Nu_5t27HlFJwMY_oU_R510yDiknssx2HwUpextC6Z4twXQnpKuCxgQcikQsiccppzn1OlKU65ZHV2AEvFsFCHQHgeYBqIV4DpFL5OqRZ5EVlAlS9CX1TBXQxvktkP1CUvBonBHG6UaIsk2hSJtUgVLssuo7nQxl-N97QJyoZ29KtwsrBhYn_FSUIRskUIIULv6Pde57DW7j92ks59_HAM61TzG8waywksTcczdQor2cf0fTI-M_PtE3t_zmE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNGAT%3A+A+Graph+Neural+Network+Model+for+Radar+Quantitative+Precipitation+Estimation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Peng%2C+Xuan&rft.au=Li%2C+Qian&rft.au=Jing%2C+Jinrui&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3120218&rft.externalDocID=9570292 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |