Computationally Efficient Sparse Aperture ISAR Autofocusing and Imaging Based on Fast ADMM

In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing and imaging. Mathematically, reconstructing the ISAR image from the sparse aperture radar echo is a linear underdetermined inverse problem, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 58; H. 12; S. 8751 - 8765
Hauptverfasser: Zhang, Shuanghui, Liu, Yongxiang, Li, Xiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing and imaging. Mathematically, reconstructing the ISAR image from the sparse aperture radar echo is a linear underdetermined inverse problem, which, by nature, can be solved by the fast developed compressive sensing (CS) or sparse signal recovery theory. However, the CS-based sparse aperture ISAR imaging algorithms are generally computationally heavy, which becomes the bottleneck of preventing their applications to the real-time ISAR imaging system. In this article, we propose a novel and computationally efficient ISAR autofocusing and imaging algorithm for sparse aperture. We first consider a generalized CS model for ISAR imaging and autofocusing with sparse and entropy-minimization regularizations, and then utilize the alternating direction method of multipliers (ADMM) algorithm to optimize the model. To improve computational efficiency, the matrix inversion is translated to an elementwise division with the usage of a partial Fourier dictionary, and the 2-D ISAR image is updated as a whole instead of range cellwise. To achieve autofocusing for sparse aperture, the phase error is estimated by minimizing the entropy of the ISAR image reconstructed in each iterative loop. Experiments based on both simulated and measured data validate that the proposed algorithm can achieve well-focused ISAR images within a few seconds, which is ten times faster than the reported sparse aperture ISAR imaging algorithms.
AbstractList In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing and imaging. Mathematically, reconstructing the ISAR image from the sparse aperture radar echo is a linear underdetermined inverse problem, which, by nature, can be solved by the fast developed compressive sensing (CS) or sparse signal recovery theory. However, the CS-based sparse aperture ISAR imaging algorithms are generally computationally heavy, which becomes the bottleneck of preventing their applications to the real-time ISAR imaging system. In this article, we propose a novel and computationally efficient ISAR autofocusing and imaging algorithm for sparse aperture. We first consider a generalized CS model for ISAR imaging and autofocusing with sparse and entropy-minimization regularizations, and then utilize the alternating direction method of multipliers (ADMM) algorithm to optimize the model. To improve computational efficiency, the matrix inversion is translated to an elementwise division with the usage of a partial Fourier dictionary, and the 2-D ISAR image is updated as a whole instead of range cellwise. To achieve autofocusing for sparse aperture, the phase error is estimated by minimizing the entropy of the ISAR image reconstructed in each iterative loop. Experiments based on both simulated and measured data validate that the proposed algorithm can achieve well-focused ISAR images within a few seconds, which is ten times faster than the reported sparse aperture ISAR imaging algorithms.
Author Zhang, Shuanghui
Liu, Yongxiang
Li, Xiang
Author_xml – sequence: 1
  givenname: Shuanghui
  orcidid: 0000-0002-7496-5433
  surname: Zhang
  fullname: Zhang, Shuanghui
  email: shzhang3@126.com
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 2
  givenname: Yongxiang
  orcidid: 0000-0002-0682-8365
  surname: Liu
  fullname: Liu, Yongxiang
  email: lyx_bible@sina.com
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0003-4383-6505
  surname: Li
  fullname: Li, Xiang
  email: lixiang01@vip.sina.com
  organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China
BookMark eNp9kE1PwjAchxuDiYB-AOOliedhX8d6nAhIAjEBvHhZSl_ICKyz7Q58e7dAPHjw1B5-zz95ngHoVa4yADxiNMIYiZftfL0ZEUTQiAiBGOM3oI85zxKUMtYDfYRFmpBMkDswCOGAEGYcj_vga-JOdRNlLF0lj8cznFpbqtJUEW5q6YOBeW18bLyBi02-hnkTnXWqCWW1h7LScHGS--7_KoPR0FVwJkOE-dtqdQ9urTwG83B9h-BzNt1O3pPlx3wxyZeJIoLGJEulNpbijEqJkVZSa6G4sXaccooEztIU612m8VgTTihjlmjVGmou1Q7vEB2C58vd2rvvxoRYHFzjW5tQEJZyRjmm3Wp8WSnvQvDGFqq8aEcvy2OBUdGFLLqQRReyuIZsSfyHrH15kv78L_N0YUpjzO9etDooy-gPnTKAGw
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_dsp_2022_103892
crossref_primary_10_1109_TAES_2023_3273203
crossref_primary_10_1109_TCSVT_2025_3556396
crossref_primary_10_1109_JSEN_2021_3138891
crossref_primary_10_1016_j_sigpro_2022_108684
crossref_primary_10_3390_rs14051291
crossref_primary_10_1109_JSEN_2020_3025053
crossref_primary_10_1109_TGRS_2021_3111901
crossref_primary_10_1109_TGRS_2024_3439370
crossref_primary_10_1117_1_JRS_17_016512
crossref_primary_10_1109_JSEN_2021_3090948
crossref_primary_10_1109_MGRS_2022_3218801
crossref_primary_10_1109_TGRS_2021_3113007
crossref_primary_10_1109_TAES_2025_3544618
crossref_primary_10_1109_TIP_2021_3070442
crossref_primary_10_1109_TGRS_2021_3073123
crossref_primary_10_1109_TGRS_2025_3560140
crossref_primary_10_1109_ACCESS_2022_3165020
crossref_primary_10_1109_JSTARS_2024_3386583
crossref_primary_10_1109_TAP_2024_3361664
crossref_primary_10_3390_rs14205270
crossref_primary_10_1109_TIM_2025_3591861
crossref_primary_10_1049_rsn2_12226
crossref_primary_10_1109_ACCESS_2021_3086980
crossref_primary_10_1109_TGRS_2024_3372398
crossref_primary_10_1109_TGRS_2022_3198426
crossref_primary_10_1109_TGRS_2024_3460372
crossref_primary_10_1109_LGRS_2023_3321718
crossref_primary_10_1109_TGRS_2021_3062486
crossref_primary_10_1109_TGRS_2023_3278769
crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_3390_rs17071279
crossref_primary_10_1109_TAES_2024_3425395
crossref_primary_10_1109_TGRS_2023_3249351
crossref_primary_10_1109_JSTARS_2023_3294135
crossref_primary_10_1109_JSTARS_2024_3521018
crossref_primary_10_1109_TGRS_2025_3545675
crossref_primary_10_1109_TAP_2023_3344877
crossref_primary_10_1109_TGRS_2023_3264995
crossref_primary_10_1080_01431161_2024_2339204
crossref_primary_10_1109_JSEN_2025_3569224
crossref_primary_10_1109_LGRS_2024_3442835
Cites_doi 10.1109/APSAR.2015.7306304
10.1109/TGRS.2019.2893505
10.1109/JSTARS.2015.2439266
10.1109/TAES.1980.308873
10.1109/TIP.2018.2803300
10.1109/ACCESS.2017.2765831
10.1049/iet-rsn.2015.0290
10.1109/TAES.2003.1188916
10.1109/RADAR.2017.7944458
10.1109/TAES.2012.6178106
10.1109/JSTARS.2014.2359250
10.1109/TGRS.2013.2286402
10.1109/36.789644
10.1109/JPROC.2009.2037526
10.1109/TGRS.2012.2207121
10.1109/LGRS.2013.2290541
10.1109/JSTARS.2014.2315630
10.1109/LGRS.2008.2010562
10.1109/MSP.2007.914731
10.1109/JSTARS.2012.2215915
10.1109/TGRS.2013.2296497
10.1109/LGRS.2017.2694825
10.1109/TCI.2018.2881530
10.23919/IRS.2019.8768138
10.1109/TSP.2015.2422686
10.1109/ICSP.2018.8652489
10.1109/JSTARS.2016.2598880
10.1109/36.718857
10.1049/iet-rsn.2010.0175
10.1109/TAES.2013.130115
10.1109/RAST.2019.8767866
10.1364/JOSAA.10.002539
10.1109/TSP.2017.2764855
10.1109/TIP.2016.2526905
10.1109/TCI.2016.2580498
10.1109/TIP.2019.2927458
10.1109/TGRS.2014.2376940
10.1561/2200000016
10.1109/LSP.2015.2452412
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.2990445
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 8765
ExternalDocumentID 10_1109_TGRS_2020_2990445
9091088
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2019TQ0072
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61801484; 61921001
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-86adef3183aa10dcadd9c5eff76530918661db8d17d252344f2dc044d5acb1b03
IEDL.DBID RIE
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594389800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:39:19 EDT 2025
Tue Nov 18 21:14:34 EST 2025
Sat Nov 29 02:50:05 EST 2025
Wed Aug 27 02:27:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-86adef3183aa10dcadd9c5eff76530918661db8d17d252344f2dc044d5acb1b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0682-8365
0000-0002-7496-5433
0000-0003-4383-6505
PQID 2465435130
PQPubID 85465
PageCount 15
ParticipantIDs crossref_primary_10_1109_TGRS_2020_2990445
proquest_journals_2465435130
crossref_citationtrail_10_1109_TGRS_2020_2990445
ieee_primary_9091088
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
ref30
victor chen (ref2) 2014
ref33
ref11
ref32
ref10
liu (ref19) 2014; 52
ref1
ref39
ref17
ref38
ref16
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
tipping (ref31) 2003
zhu (ref12) 2009; 6
References_xml – ident: ref40
  doi: 10.1109/APSAR.2015.7306304
– ident: ref10
  doi: 10.1109/TGRS.2019.2893505
– ident: ref20
  doi: 10.1109/JSTARS.2015.2439266
– ident: ref1
  doi: 10.1109/TAES.1980.308873
– ident: ref30
  doi: 10.1109/TIP.2018.2803300
– ident: ref18
  doi: 10.1109/ACCESS.2017.2765831
– ident: ref5
  doi: 10.1049/iet-rsn.2015.0290
– ident: ref14
  doi: 10.1109/TAES.2003.1188916
– ident: ref37
  doi: 10.1109/RADAR.2017.7944458
– ident: ref26
  doi: 10.1109/TAES.2012.6178106
– ident: ref21
  doi: 10.1109/JSTARS.2014.2359250
– volume: 52
  start-page: 5005
  year: 2014
  ident: ref19
  article-title: Superresolution ISAR imaging based on sparse Bayesian learning
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2013.2286402
– start-page: 1
  year: 2003
  ident: ref31
  article-title: Fast marginal likelihood maximisation for sparse Bayesian models
  publication-title: Proc 9th Int Workshop Artif Intell Statist
– ident: ref17
  doi: 10.1109/36.789644
– ident: ref9
  doi: 10.1109/JPROC.2009.2037526
– ident: ref22
  doi: 10.1109/TGRS.2012.2207121
– ident: ref6
  doi: 10.1109/LGRS.2013.2290541
– ident: ref23
  doi: 10.1109/JSTARS.2014.2315630
– volume: 6
  start-page: 204
  year: 2009
  ident: ref12
  article-title: Robust ISAR range alignment via minimizing the entropy of the average range profile
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2008.2010562
– year: 2014
  ident: ref2
  publication-title: Inverse Synthetic Aperture Radar Imaging
– ident: ref8
  doi: 10.1109/MSP.2007.914731
– ident: ref25
  doi: 10.1109/JSTARS.2012.2215915
– ident: ref29
  doi: 10.1109/TGRS.2013.2296497
– ident: ref41
  doi: 10.1109/LGRS.2017.2694825
– ident: ref39
  doi: 10.1109/TCI.2018.2881530
– ident: ref35
  doi: 10.23919/IRS.2019.8768138
– ident: ref3
  doi: 10.1109/TSP.2015.2422686
– ident: ref27
  doi: 10.1109/ICSP.2018.8652489
– ident: ref7
  doi: 10.1109/JSTARS.2016.2598880
– ident: ref15
  doi: 10.1109/36.718857
– ident: ref13
  doi: 10.1049/iet-rsn.2010.0175
– ident: ref4
  doi: 10.1109/TAES.2013.130115
– ident: ref36
  doi: 10.1109/RAST.2019.8767866
– ident: ref16
  doi: 10.1364/JOSAA.10.002539
– ident: ref32
  doi: 10.1109/TSP.2017.2764855
– ident: ref11
  doi: 10.1109/TIP.2016.2526905
– ident: ref38
  doi: 10.1109/TCI.2016.2580498
– ident: ref34
  doi: 10.1109/TIP.2019.2927458
– ident: ref24
  doi: 10.1109/TGRS.2014.2376940
– ident: ref33
  doi: 10.1561/2200000016
– ident: ref28
  doi: 10.1109/LSP.2015.2452412
SSID ssj0014517
Score 2.5424383
Snippet In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8751
SubjectTerms Algorithms
Alternating direction method of multipliers (ADMM)
Apertures
autofocusing
Computational efficiency
Computer applications
Convex functions
Echoes
Entropy
Image reconstruction
Imaging
Imaging techniques
Inverse problems
Inverse synthetic aperture radar
inverse synthetic aperture radar (ISAR)
Iterative methods
Mathematical analysis
Matrix methods
minimum entropy
Optimization
Phase error
Radar
Radar echoes
Radar imaging
SAR (radar)
Signal reconstruction
sparse aperture
Synthetic aperture radar
Title Computationally Efficient Sparse Aperture ISAR Autofocusing and Imaging Based on Fast ADMM
URI https://ieeexplore.ieee.org/document/9091088
https://www.proquest.com/docview/2465435130
Volume 58
WOSCitedRecordID wos000594389800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5MUdAHL1NxOiUPPonV3pKmj_UyHbghm4L4UtJcQNBubJ3gvzdJ4xgogm-FJmmTr8nXLyfnHIATJUxcMaplaqIiLyaEeswPqCeSghVBrHBc2Kwl90m_T5-f04cGnM19YaSU9vCZPDeX1pYvRnxmtsouUkNulC7BUpKQ2ldrbjGIceBco4mnRUToLJiBn1483g6GWgmG_rlZe2PjubTAQTapyo-V2NJLZ_N_L7YFG-43EmU17tvQkGUT1heCCzZh1R7u5NMdeKlTN7htv7dPdGPjRugm0XCsha1E2VhOjCkBdYfZAGWzaqT0Q802AmKlQN13m8sIXWrKE2hUog6bVii77vV24alz83h157mcCh7XxF55lDAhlZnIjAW-4Hp5SzmWSiUER7oXVPO1KKgIEhFqjRrHKhRcj5nAjBdB4Ud7sFyOSrkPSIRUabGFGVb6PpE0YInAESYFYZFUaQv871HOuQs4bvJevOVWePhpboDJDTC5A6YFp_Mq4zraxl-FdwwS84IOhBa0v6HM3Xyc5qEJGxdhTdgHv9c6hDXTdn1QpQ3L1WQmj2CFf1Sv08mx_dS-AOg4z5M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MG-qDtylOp-bBJ7Fbb2nTx3qZDrchboL4UtJcQNBubJ3gvzfJ4hAUwbdCk6bJafL1y8k5H8Cp5DqvGFE0NZaBE0YRcajrEYfHOc29UOIwN6olnbjXI09PyX0FzuexMEIIc_hMNPSl8eXzIZvqrbJmosGNkAVY0spZNlpr7jMIsWeDoyNH0Qjf-jA9N2kObh76igv6bkOvvqGOXfqGQkZW5cdabACmtfm_V9uCDfsjidKZ5behIoodWP-WXnAHVszxTjapwvNMvMFu_L1-oGuTOUI9EvVHitoKlI7EWDsTULufPqB0Wg6lalRvJCBacNR-M2pG6EKBHkfDArXopETpVbe7C4-t68HlrWNVFRymoL10SES5kHoqU-q5nKkFLmFYSBlHOFC9IAqxeU64F3NfsdQwlD5nasw4piz3cjfYg8ViWIh9QNwnUtEtTLFU9yNBPBpzHOAoj2ggZFID92uUM2ZTjmvli9fMUA83ybRhMm2YzBqmBmfzKqNZvo2_Cle1JeYFrRFqUP8yZWZn5CTzdeK4ACvIPvi91gms3g66nazT7t0dwppuZ3ZspQ6L5XgqjmCZvZcvk_Gx-ew-AeNP0tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+Efficient+Sparse+Aperture+ISAR+Autofocusing+and+Imaging+Based+on+Fast+ADMM&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Shuanghui&rft.au=Liu%2C+Yongxiang&rft.au=Li%2C+Xiang&rft.date=2020-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=12&rft.spage=8751&rft_id=info:doi/10.1109%2FTGRS.2020.2990445&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon