Computationally Efficient Sparse Aperture ISAR Autofocusing and Imaging Based on Fast ADMM
In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing and imaging. Mathematically, reconstructing the ISAR image from the sparse aperture radar echo is a linear underdetermined inverse problem, w...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 58; H. 12; S. 8751 - 8765 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing and imaging. Mathematically, reconstructing the ISAR image from the sparse aperture radar echo is a linear underdetermined inverse problem, which, by nature, can be solved by the fast developed compressive sensing (CS) or sparse signal recovery theory. However, the CS-based sparse aperture ISAR imaging algorithms are generally computationally heavy, which becomes the bottleneck of preventing their applications to the real-time ISAR imaging system. In this article, we propose a novel and computationally efficient ISAR autofocusing and imaging algorithm for sparse aperture. We first consider a generalized CS model for ISAR imaging and autofocusing with sparse and entropy-minimization regularizations, and then utilize the alternating direction method of multipliers (ADMM) algorithm to optimize the model. To improve computational efficiency, the matrix inversion is translated to an elementwise division with the usage of a partial Fourier dictionary, and the 2-D ISAR image is updated as a whole instead of range cellwise. To achieve autofocusing for sparse aperture, the phase error is estimated by minimizing the entropy of the ISAR image reconstructed in each iterative loop. Experiments based on both simulated and measured data validate that the proposed algorithm can achieve well-focused ISAR images within a few seconds, which is ten times faster than the reported sparse aperture ISAR imaging algorithms. |
|---|---|
| AbstractList | In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing and imaging. Mathematically, reconstructing the ISAR image from the sparse aperture radar echo is a linear underdetermined inverse problem, which, by nature, can be solved by the fast developed compressive sensing (CS) or sparse signal recovery theory. However, the CS-based sparse aperture ISAR imaging algorithms are generally computationally heavy, which becomes the bottleneck of preventing their applications to the real-time ISAR imaging system. In this article, we propose a novel and computationally efficient ISAR autofocusing and imaging algorithm for sparse aperture. We first consider a generalized CS model for ISAR imaging and autofocusing with sparse and entropy-minimization regularizations, and then utilize the alternating direction method of multipliers (ADMM) algorithm to optimize the model. To improve computational efficiency, the matrix inversion is translated to an elementwise division with the usage of a partial Fourier dictionary, and the 2-D ISAR image is updated as a whole instead of range cellwise. To achieve autofocusing for sparse aperture, the phase error is estimated by minimizing the entropy of the ISAR image reconstructed in each iterative loop. Experiments based on both simulated and measured data validate that the proposed algorithm can achieve well-focused ISAR images within a few seconds, which is ten times faster than the reported sparse aperture ISAR imaging algorithms. |
| Author | Zhang, Shuanghui Liu, Yongxiang Li, Xiang |
| Author_xml | – sequence: 1 givenname: Shuanghui orcidid: 0000-0002-7496-5433 surname: Zhang fullname: Zhang, Shuanghui email: shzhang3@126.com organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 2 givenname: Yongxiang orcidid: 0000-0002-0682-8365 surname: Liu fullname: Liu, Yongxiang email: lyx_bible@sina.com organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China – sequence: 3 givenname: Xiang orcidid: 0000-0003-4383-6505 surname: Li fullname: Li, Xiang email: lixiang01@vip.sina.com organization: College of Electronic Science and Technology, National University of Defense Technology, Changsha, China |
| BookMark | eNp9kE1PwjAchxuDiYB-AOOliedhX8d6nAhIAjEBvHhZSl_ICKyz7Q58e7dAPHjw1B5-zz95ngHoVa4yADxiNMIYiZftfL0ZEUTQiAiBGOM3oI85zxKUMtYDfYRFmpBMkDswCOGAEGYcj_vga-JOdRNlLF0lj8cznFpbqtJUEW5q6YOBeW18bLyBi02-hnkTnXWqCWW1h7LScHGS--7_KoPR0FVwJkOE-dtqdQ9urTwG83B9h-BzNt1O3pPlx3wxyZeJIoLGJEulNpbijEqJkVZSa6G4sXaccooEztIU612m8VgTTihjlmjVGmou1Q7vEB2C58vd2rvvxoRYHFzjW5tQEJZyRjmm3Wp8WSnvQvDGFqq8aEcvy2OBUdGFLLqQRReyuIZsSfyHrH15kv78L_N0YUpjzO9etDooy-gPnTKAGw |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2022_103892 crossref_primary_10_1109_TAES_2023_3273203 crossref_primary_10_1109_TCSVT_2025_3556396 crossref_primary_10_1109_JSEN_2021_3138891 crossref_primary_10_1016_j_sigpro_2022_108684 crossref_primary_10_3390_rs14051291 crossref_primary_10_1109_JSEN_2020_3025053 crossref_primary_10_1109_TGRS_2021_3111901 crossref_primary_10_1109_TGRS_2024_3439370 crossref_primary_10_1117_1_JRS_17_016512 crossref_primary_10_1109_JSEN_2021_3090948 crossref_primary_10_1109_MGRS_2022_3218801 crossref_primary_10_1109_TGRS_2021_3113007 crossref_primary_10_1109_TAES_2025_3544618 crossref_primary_10_1109_TIP_2021_3070442 crossref_primary_10_1109_TGRS_2021_3073123 crossref_primary_10_1109_TGRS_2025_3560140 crossref_primary_10_1109_ACCESS_2022_3165020 crossref_primary_10_1109_JSTARS_2024_3386583 crossref_primary_10_1109_TAP_2024_3361664 crossref_primary_10_3390_rs14205270 crossref_primary_10_1109_TIM_2025_3591861 crossref_primary_10_1049_rsn2_12226 crossref_primary_10_1109_ACCESS_2021_3086980 crossref_primary_10_1109_TGRS_2024_3372398 crossref_primary_10_1109_TGRS_2022_3198426 crossref_primary_10_1109_TGRS_2024_3460372 crossref_primary_10_1109_LGRS_2023_3321718 crossref_primary_10_1109_TGRS_2021_3062486 crossref_primary_10_1109_TGRS_2023_3278769 crossref_primary_10_1109_MGRS_2024_3494754 crossref_primary_10_3390_rs17071279 crossref_primary_10_1109_TAES_2024_3425395 crossref_primary_10_1109_TGRS_2023_3249351 crossref_primary_10_1109_JSTARS_2023_3294135 crossref_primary_10_1109_JSTARS_2024_3521018 crossref_primary_10_1109_TGRS_2025_3545675 crossref_primary_10_1109_TAP_2023_3344877 crossref_primary_10_1109_TGRS_2023_3264995 crossref_primary_10_1080_01431161_2024_2339204 crossref_primary_10_1109_JSEN_2025_3569224 crossref_primary_10_1109_LGRS_2024_3442835 |
| Cites_doi | 10.1109/APSAR.2015.7306304 10.1109/TGRS.2019.2893505 10.1109/JSTARS.2015.2439266 10.1109/TAES.1980.308873 10.1109/TIP.2018.2803300 10.1109/ACCESS.2017.2765831 10.1049/iet-rsn.2015.0290 10.1109/TAES.2003.1188916 10.1109/RADAR.2017.7944458 10.1109/TAES.2012.6178106 10.1109/JSTARS.2014.2359250 10.1109/TGRS.2013.2286402 10.1109/36.789644 10.1109/JPROC.2009.2037526 10.1109/TGRS.2012.2207121 10.1109/LGRS.2013.2290541 10.1109/JSTARS.2014.2315630 10.1109/LGRS.2008.2010562 10.1109/MSP.2007.914731 10.1109/JSTARS.2012.2215915 10.1109/TGRS.2013.2296497 10.1109/LGRS.2017.2694825 10.1109/TCI.2018.2881530 10.23919/IRS.2019.8768138 10.1109/TSP.2015.2422686 10.1109/ICSP.2018.8652489 10.1109/JSTARS.2016.2598880 10.1109/36.718857 10.1049/iet-rsn.2010.0175 10.1109/TAES.2013.130115 10.1109/RAST.2019.8767866 10.1364/JOSAA.10.002539 10.1109/TSP.2017.2764855 10.1109/TIP.2016.2526905 10.1109/TCI.2016.2580498 10.1109/TIP.2019.2927458 10.1109/TGRS.2014.2376940 10.1561/2200000016 10.1109/LSP.2015.2452412 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2020.2990445 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 8765 |
| ExternalDocumentID | 10_1109_TGRS_2020_2990445 9091088 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2019TQ0072 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 61801484; 61921001 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-86adef3183aa10dcadd9c5eff76530918661db8d17d252344f2dc044d5acb1b03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594389800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:39:19 EDT 2025 Tue Nov 18 21:14:34 EST 2025 Sat Nov 29 02:50:05 EST 2025 Wed Aug 27 02:27:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-86adef3183aa10dcadd9c5eff76530918661db8d17d252344f2dc044d5acb1b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0682-8365 0000-0002-7496-5433 0000-0003-4383-6505 |
| PQID | 2465435130 |
| PQPubID | 85465 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2020_2990445 proquest_journals_2465435130 crossref_citationtrail_10_1109_TGRS_2020_2990445 ieee_primary_9091088 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref37 ref15 ref36 ref14 ref30 victor chen (ref2) 2014 ref33 ref11 ref32 ref10 liu (ref19) 2014; 52 ref1 ref39 ref17 ref38 ref16 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 tipping (ref31) 2003 zhu (ref12) 2009; 6 |
| References_xml | – ident: ref40 doi: 10.1109/APSAR.2015.7306304 – ident: ref10 doi: 10.1109/TGRS.2019.2893505 – ident: ref20 doi: 10.1109/JSTARS.2015.2439266 – ident: ref1 doi: 10.1109/TAES.1980.308873 – ident: ref30 doi: 10.1109/TIP.2018.2803300 – ident: ref18 doi: 10.1109/ACCESS.2017.2765831 – ident: ref5 doi: 10.1049/iet-rsn.2015.0290 – ident: ref14 doi: 10.1109/TAES.2003.1188916 – ident: ref37 doi: 10.1109/RADAR.2017.7944458 – ident: ref26 doi: 10.1109/TAES.2012.6178106 – ident: ref21 doi: 10.1109/JSTARS.2014.2359250 – volume: 52 start-page: 5005 year: 2014 ident: ref19 article-title: Superresolution ISAR imaging based on sparse Bayesian learning publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2013.2286402 – start-page: 1 year: 2003 ident: ref31 article-title: Fast marginal likelihood maximisation for sparse Bayesian models publication-title: Proc 9th Int Workshop Artif Intell Statist – ident: ref17 doi: 10.1109/36.789644 – ident: ref9 doi: 10.1109/JPROC.2009.2037526 – ident: ref22 doi: 10.1109/TGRS.2012.2207121 – ident: ref6 doi: 10.1109/LGRS.2013.2290541 – ident: ref23 doi: 10.1109/JSTARS.2014.2315630 – volume: 6 start-page: 204 year: 2009 ident: ref12 article-title: Robust ISAR range alignment via minimizing the entropy of the average range profile publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2008.2010562 – year: 2014 ident: ref2 publication-title: Inverse Synthetic Aperture Radar Imaging – ident: ref8 doi: 10.1109/MSP.2007.914731 – ident: ref25 doi: 10.1109/JSTARS.2012.2215915 – ident: ref29 doi: 10.1109/TGRS.2013.2296497 – ident: ref41 doi: 10.1109/LGRS.2017.2694825 – ident: ref39 doi: 10.1109/TCI.2018.2881530 – ident: ref35 doi: 10.23919/IRS.2019.8768138 – ident: ref3 doi: 10.1109/TSP.2015.2422686 – ident: ref27 doi: 10.1109/ICSP.2018.8652489 – ident: ref7 doi: 10.1109/JSTARS.2016.2598880 – ident: ref15 doi: 10.1109/36.718857 – ident: ref13 doi: 10.1049/iet-rsn.2010.0175 – ident: ref4 doi: 10.1109/TAES.2013.130115 – ident: ref36 doi: 10.1109/RAST.2019.8767866 – ident: ref16 doi: 10.1364/JOSAA.10.002539 – ident: ref32 doi: 10.1109/TSP.2017.2764855 – ident: ref11 doi: 10.1109/TIP.2016.2526905 – ident: ref38 doi: 10.1109/TCI.2016.2580498 – ident: ref34 doi: 10.1109/TIP.2019.2927458 – ident: ref24 doi: 10.1109/TGRS.2014.2376940 – ident: ref33 doi: 10.1561/2200000016 – ident: ref28 doi: 10.1109/LSP.2015.2452412 |
| SSID | ssj0014517 |
| Score | 2.5424383 |
| Snippet | In the case of sparse aperture, the coherence between pulses of radar echo is destroyed, which challenges inverse synthetic aperture radar (ISAR) autofocusing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8751 |
| SubjectTerms | Algorithms Alternating direction method of multipliers (ADMM) Apertures autofocusing Computational efficiency Computer applications Convex functions Echoes Entropy Image reconstruction Imaging Imaging techniques Inverse problems Inverse synthetic aperture radar inverse synthetic aperture radar (ISAR) Iterative methods Mathematical analysis Matrix methods minimum entropy Optimization Phase error Radar Radar echoes Radar imaging SAR (radar) Signal reconstruction sparse aperture Synthetic aperture radar |
| Title | Computationally Efficient Sparse Aperture ISAR Autofocusing and Imaging Based on Fast ADMM |
| URI | https://ieeexplore.ieee.org/document/9091088 https://www.proquest.com/docview/2465435130 |
| Volume | 58 |
| WOSCitedRecordID | wos000594389800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5MUdAHL1NxOiUPPonV3pKmj_UyHbghm4L4UtJcQNBubJ3gvzdJ4xgogm-FJmmTr8nXLyfnHIATJUxcMaplaqIiLyaEeswPqCeSghVBrHBc2Kwl90m_T5-f04cGnM19YaSU9vCZPDeX1pYvRnxmtsouUkNulC7BUpKQ2ldrbjGIceBco4mnRUToLJiBn1483g6GWgmG_rlZe2PjubTAQTapyo-V2NJLZ_N_L7YFG-43EmU17tvQkGUT1heCCzZh1R7u5NMdeKlTN7htv7dPdGPjRugm0XCsha1E2VhOjCkBdYfZAGWzaqT0Q802AmKlQN13m8sIXWrKE2hUog6bVii77vV24alz83h157mcCh7XxF55lDAhlZnIjAW-4Hp5SzmWSiUER7oXVPO1KKgIEhFqjRrHKhRcj5nAjBdB4Ud7sFyOSrkPSIRUabGFGVb6PpE0YInAESYFYZFUaQv871HOuQs4bvJevOVWePhpboDJDTC5A6YFp_Mq4zraxl-FdwwS84IOhBa0v6HM3Xyc5qEJGxdhTdgHv9c6hDXTdn1QpQ3L1WQmj2CFf1Sv08mx_dS-AOg4z5M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MG-qDtylOp-bBJ7Fbb2nTx3qZDrchboL4UtJcQNBubJ3gvzfJ4hAUwbdCk6bJafL1y8k5H8Cp5DqvGFE0NZaBE0YRcajrEYfHOc29UOIwN6olnbjXI09PyX0FzuexMEIIc_hMNPSl8eXzIZvqrbJmosGNkAVY0spZNlpr7jMIsWeDoyNH0Qjf-jA9N2kObh76igv6bkOvvqGOXfqGQkZW5cdabACmtfm_V9uCDfsjidKZ5behIoodWP-WXnAHVszxTjapwvNMvMFu_L1-oGuTOUI9EvVHitoKlI7EWDsTULufPqB0Wg6lalRvJCBacNR-M2pG6EKBHkfDArXopETpVbe7C4-t68HlrWNVFRymoL10SES5kHoqU-q5nKkFLmFYSBlHOFC9IAqxeU64F3NfsdQwlD5nasw4piz3cjfYg8ViWIh9QNwnUtEtTLFU9yNBPBpzHOAoj2ggZFID92uUM2ZTjmvli9fMUA83ybRhMm2YzBqmBmfzKqNZvo2_Cle1JeYFrRFqUP8yZWZn5CTzdeK4ACvIPvi91gms3g66nazT7t0dwppuZ3ZspQ6L5XgqjmCZvZcvk_Gx-ew-AeNP0tw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+Efficient+Sparse+Aperture+ISAR+Autofocusing+and+Imaging+Based+on+Fast+ADMM&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Shuanghui&rft.au=Liu%2C+Yongxiang&rft.au=Li%2C+Xiang&rft.date=2020-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=12&rft.spage=8751&rft_id=info:doi/10.1109%2FTGRS.2020.2990445&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |