Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder

Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of the existing studies consider the social network to be static and neglect its inherent dynamics. In fact, the dynamics of social networks con...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 35; no. 6; pp. 5597 - 5611
Main Authors: Sun, Li, Zhang, Zhongbao, Wang, Feiyang, Ji, Pengxin, Wen, Jian, Su, Sen, Yu, Philip S.
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of the existing studies consider the social network to be static and neglect its inherent dynamics. In fact, the dynamics of social networks contain the discriminative pattern of an individual, which can be leveraged to facilitate social network alignment. Hence, we for the first time propose to study the problem of aligning dynamic social networks. Towards this end, we propose a novel Dynamic Graph autoencoder based dynamic social network Alignment approach, referred to as DGA , unfolding the fruitful dynamics of social networks for user alignment. However, it faces challenges in both modeling and optimization: (1) To model the intra-network dynamics, we design a novel dynamic graph autoencoder to learn user embeddings with complex network dynamics. (2) To model the inter-network alignment, we design a unified optimization framework over proposed dynamic graph autoencoders, constructing a common subspace for user alignment across different networks. (3) To address this optimization problem, we design an effective alternating algorithm with solid theoretical guarantees. We conduct extensive experiments on real-world datasets and show that the proposed approach substantially outperforms the state-of-the-art methods.
AbstractList Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of the existing studies consider the social network to be static and neglect its inherent dynamics. In fact, the dynamics of social networks contain the discriminative pattern of an individual, which can be leveraged to facilitate social network alignment. Hence, we for the first time propose to study the problem of aligning dynamic social networks. Towards this end, we propose a novel Dynamic Graph autoencoder based dynamic social network Alignment approach, referred to as DGA , unfolding the fruitful dynamics of social networks for user alignment. However, it faces challenges in both modeling and optimization: (1) To model the intra-network dynamics, we design a novel dynamic graph autoencoder to learn user embeddings with complex network dynamics. (2) To model the inter-network alignment, we design a unified optimization framework over proposed dynamic graph autoencoders, constructing a common subspace for user alignment across different networks. (3) To address this optimization problem, we design an effective alternating algorithm with solid theoretical guarantees. We conduct extensive experiments on real-world datasets and show that the proposed approach substantially outperforms the state-of-the-art methods.
Author Wen, Jian
Ji, Pengxin
Sun, Li
Zhang, Zhongbao
Yu, Philip S.
Wang, Feiyang
Su, Sen
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0003-4562-2279
  surname: Sun
  fullname: Sun, Li
  email: ccesunli@ncepu.edu.cn
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China
– sequence: 2
  givenname: Zhongbao
  orcidid: 0000-0002-3242-150X
  surname: Zhang
  fullname: Zhang, Zhongbao
  email: zhongbaozb@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Feiyang
  surname: Wang
  fullname: Wang, Feiyang
  email: fywang@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Pengxin
  surname: Ji
  fullname: Ji, Pengxin
  email: jipx@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Jian
  surname: Wen
  fullname: Wen, Jian
  email: j.wen@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Sen
  orcidid: 0000-0003-4266-7527
  surname: Su
  fullname: Su, Sen
  email: susen@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 7
  givenname: Philip S.
  orcidid: 0000-0002-3491-5968
  surname: Yu
  fullname: Yu, Philip S.
  email: psyu@uic.edu
  organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
BookMark eNp9kE9PwjAYxhuDiYB-AONliefNtlvX1tsCiEYiJuK5KaXD4mhnVzT46R1COHjw9P7J83ufvE8PdKyzGoBLBBOEIL-ZPQ5HCYYYJykimEB8ArqIEBZjxFGn7WGG4izN6BnoNc0KQsgoQ13wXFRmaY1dRsOtlWujohenjKyiJx2-nH9vbqPCRtM6mLX5lsG4dvjU_qgee1m_RcUmOG2VW2h_Dk5LWTX64lD74PVuNBvcx5Pp-GFQTGKFeRpilueKS004XchFmhOteCZTijKiYcYkLMscqVKyOYEMq6xtcclpzmm7KudEpX1wvb9be_ex0U0QK7fxtrUUmEHGMKOYtSq0VynvmsbrUtTerKXfCgTFLjixC07sghOH4FqG_mGUCb-vBy9N9S95tSeN1vroxCnKGYLpDxJYfPQ
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_TKDE_2024_3447123
crossref_primary_10_1109_TFUZZ_2025_3562944
crossref_primary_10_1016_j_comnet_2025_111607
crossref_primary_10_1109_TBDATA_2024_3407543
crossref_primary_10_1007_s13042_024_02384_0
crossref_primary_10_1145_3580509
crossref_primary_10_1016_j_hcc_2024_100293
crossref_primary_10_1109_TKDE_2023_3312358
crossref_primary_10_1109_TKDE_2025_3566064
Cites_doi 10.1145/3219819.3220068
10.1145/3308558.3313562
10.1109/BigData47090.2019.9006430
10.1109/INFOCOM.2019.8737542
10.1145/2505515.2505531
10.1007/978-3-319-46128-1_29
10.1109/ICDM.2018.00182
10.1109/TKDE.2018.2849727
10.1145/3289600.3290989
10.1109/TPAMI.2008.277
10.1109/INFOCOM.2018.8486231
10.1145/2487575.2487648
10.1609/aaai.v28i1.8720
10.1145/3068777.3068781
10.1145/2588555.2588559
10.24963/ijcai.2018/537
10.1109/ICDM.2015.114
10.1145/1401890.1402008
10.1145/2939672.2939849
10.1145/3018661.3018667
10.1609/aaai.v33i01.3301996
10.1145/3219819.3220054
10.1093/bioinformatics/btz119
10.1609/icwsm.v3i1.13993
10.1145/3308558.3313484
10.1145/3219819.3220024
10.1089/cyber.2010.0651
10.1145/2939672.2939754
10.1609/aaai.v32i1.11257
10.1145/3219819.3220034
10.1109/ICDE.2019.00174
10.1145/2783258.2783268
10.1145/2939672.2939766
10.24963/ijcai.2018/288
10.1609/aaai.v32i1.12014
10.1007/s11280-017-0490-9
10.1145/3269206.3271675
10.1145/3269206.3271705
10.1109/TBDATA.2018.2850013
10.1145/2736277.2741093
10.1089/cmb.2009.0099
10.24963/ijcai.2018/362
10.1145/2623330.2623732
10.1145/3308558.3313430
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3152502
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5611
ExternalDocumentID 10_1109_TKDE_2022_3152502
9716810
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1003804
– fundername: NSFC
  grantid: U1936103; 61921003
– fundername: National Science Foundation
  grantid: III-1763325; III-1909323; III-2106758; SaTC-1930941
  funderid: 10.13039/501100008982
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-866c9ae597dad365ec94a37145e048a0ff61cfa8b5082c4cfa2f97697a8bfb5c3
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981944600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Jun 29 15:26:13 EDT 2025
Tue Nov 18 22:11:36 EST 2025
Sat Nov 29 02:36:05 EST 2025
Wed Aug 27 02:18:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-866c9ae597dad365ec94a37145e048a0ff61cfa8b5082c4cfa2f97697a8bfb5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4562-2279
0000-0003-4266-7527
0000-0002-3491-5968
0000-0002-3242-150X
PQID 2808828728
PQPubID 85438
PageCount 15
ParticipantIDs crossref_primary_10_1109_TKDE_2022_3152502
ieee_primary_9716810
proquest_journals_2808828728
crossref_citationtrail_10_1109_TKDE_2022_3152502
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
liu (ref4) 2016
graves (ref23) 2014
ref17
ref16
ref19
ref18
lee (ref25) 2001
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
kipf (ref20) 2017
ref8
velickovic (ref21) 2018
ref7
ref9
ref3
ref6
ref40
ref35
ref34
ref37
ref36
man (ref5) 2016
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref26
ref22
ref28
ref27
ref29
yang (ref44) 2015
References_xml – ident: ref41
  doi: 10.1145/3219819.3220068
– ident: ref22
  doi: 10.1145/3308558.3313562
– ident: ref29
  doi: 10.1109/BigData47090.2019.9006430
– ident: ref16
  doi: 10.1109/INFOCOM.2019.8737542
– start-page: 556
  year: 2001
  ident: ref25
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc 13th Int Conf Neural Inf Process Syst
– ident: ref1
  doi: 10.1145/2505515.2505531
– ident: ref10
  doi: 10.1007/978-3-319-46128-1_29
– ident: ref15
  doi: 10.1109/ICDM.2018.00182
– ident: ref50
  doi: 10.1109/TKDE.2018.2849727
– ident: ref24
  doi: 10.1145/3289600.3290989
– ident: ref26
  doi: 10.1109/TPAMI.2008.277
– ident: ref6
  doi: 10.1109/INFOCOM.2018.8486231
– ident: ref2
  doi: 10.1145/2487575.2487648
– ident: ref3
  doi: 10.1609/aaai.v28i1.8720
– ident: ref35
  doi: 10.1145/3068777.3068781
– ident: ref31
  doi: 10.1145/2588555.2588559
– ident: ref11
  doi: 10.24963/ijcai.2018/537
– ident: ref9
  doi: 10.1109/ICDM.2015.114
– start-page: 1774
  year: 2016
  ident: ref4
  article-title: Aligning users across social networks using network embedding
  publication-title: Proc 25th Int Joint Conf Artif Intell
– ident: ref27
  doi: 10.1145/1401890.1402008
– ident: ref19
  doi: 10.1145/2939672.2939849
– ident: ref45
  doi: 10.1145/3018661.3018667
– ident: ref33
  doi: 10.1609/aaai.v33i01.3301996
– ident: ref48
  doi: 10.1145/3219819.3220054
– ident: ref37
  doi: 10.1093/bioinformatics/btz119
– ident: ref30
  doi: 10.1609/icwsm.v3i1.13993
– ident: ref28
  doi: 10.1145/3308558.3313484
– ident: ref49
  doi: 10.1145/3219819.3220024
– ident: ref18
  doi: 10.1089/cyber.2010.0651
– start-page: 2111
  year: 2015
  ident: ref44
  article-title: Network representation learning with rich text information
  publication-title: Proc 24th Int Conf Artif Intell
– ident: ref39
  doi: 10.1145/2939672.2939754
– ident: ref47
  doi: 10.1609/aaai.v32i1.11257
– ident: ref43
  doi: 10.1145/3219819.3220034
– ident: ref32
  doi: 10.1109/ICDE.2019.00174
– start-page: 1
  year: 2018
  ident: ref21
  article-title: Graph attention networks
  publication-title: Proc 6th Int Conf Learn Representations
– ident: ref8
  doi: 10.1145/2783258.2783268
– ident: ref34
  doi: 10.1145/2939672.2939766
– start-page: 1764
  year: 2014
  ident: ref23
  article-title: Towards end-to-end speech recognition with recurrent neural networks
  publication-title: Proc 31st Int Conf Int Conf Mach Learn
– ident: ref46
  doi: 10.24963/ijcai.2018/288
– ident: ref12
  doi: 10.1609/aaai.v32i1.12014
– ident: ref14
  doi: 10.1007/s11280-017-0490-9
– ident: ref7
  doi: 10.1145/3269206.3271675
– ident: ref13
  doi: 10.1145/3269206.3271705
– ident: ref51
  doi: 10.1109/TBDATA.2018.2850013
– start-page: 1823
  year: 2016
  ident: ref5
  article-title: Predict anchor links across social networks via an embedding approach
  publication-title: Proc 25th Int Joint Conf Artif Intell
– ident: ref40
  doi: 10.1145/2736277.2741093
– ident: ref36
  doi: 10.1089/cmb.2009.0099
– ident: ref42
  doi: 10.24963/ijcai.2018/362
– ident: ref38
  doi: 10.1145/2623330.2623732
– start-page: 1
  year: 2017
  ident: ref20
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc 5th Int Conf Learn Representations
– ident: ref17
  doi: 10.1145/3308558.3313430
SSID ssj0008781
Score 2.5111117
Snippet Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5597
SubjectTerms Algorithms
Alignment
Convergence
Decoding
Design optimization
Dynamics
graph neural networks
Heuristic algorithms
network alignment
network embedding
Optimization
Social networking (online)
Social networks
Solids
Tensors
Title Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder
URI https://ieeexplore.ieee.org/document/9716810
https://www.proquest.com/docview/2808828728
Volume 35
WOSCitedRecordID wos000981944600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6oeNCD001x_iIHT2J1S9cm8TbcVFC2HabsVtI0lcHcZOv8-32vzYqiCN5KSaD0S17el-R9H8C5xixCxcZ6idah10KG4iktrcdlyi2Pm1bmoj4vT6LXk6ORGqzBZVkLY63NL5_ZK3rMz_KTmVnSVtk1yR1JqqdaF0IUtVpl1JUiNyRFdoGcyG8Jd4LZbKjr4WOni0yQcySodIrHv61BuanKj0icLy93lf992C7suDSStQvc92DNTqtQWVk0MDdjq7D9RW-wBoP2ZPxKGyGsUxjRs6I6l_WKy-CLG9aesj5GkTdXnsn6ONTL1vekbs3ay2xG8peJne_D8113ePvgOUsFz-C6nnkyDI3SFllEohM_DKxRLU2ifYHFqawbaRo2TapljHkbNy185CkmLErgqzQOjH8AG9PZ1B4Ci3mgEysSESPj0n5AgVL6BsHnioTE6tBY_eTIOL1xsr2YRDnvaKiIcIkIl8jhUoeLsst7IbbxV-MaAVE2dBjU4WSFZOSm4yLikpiEFFwe_d7rGLbIR764A3YCG9l8aU9h03xk48X8LB9pnx7b0F8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFdSDj6pYrZqDJ3Ftm30l3opvrLWHKr0t2WxWCrWVPvz9zuymi6II3pYlgWW_ZDJfkvk-gBOFWYSMtXESpQLHQ4biSCWMw0XKDY-bRmSiPi_tsNMR_b7sluCsqIUxxmSXz8w5PWZn-clYz2mrrE5yR4LqqZZ8z-PNvFqriLsizCxJkV8gK3K90J5hNhuy3nu4ukYuyDlSVDrH499WocxW5UcszhaYm43_fdomrNtEkrVy5LegZEYV2FiYNDA7Zyuw9kVxcBu6reHglbZC2FVuRc_y-lzWya-DTy9Ya8SeMI682QJN9oSDvWh9S_rWrDWfjUkAMzGTHXi-ue5d3jnWVMHRuLLPHBEEWiqDPCJRiRv4RktPkWyfb3Ayq0aaBk2dKhFj5sa1h488xZRFhvgqjX3t7kJ5NB6ZPWAx91ViwiSMkXMp16dQKVyN8HNJUmJVaCx-cqSt4jgZXwyjjHk0ZES4RIRLZHGpwmnR5T2X2_ir8TYBUTS0GFShtkAyshNyGnFBXEKEXOz_3usYVu56j-2ofd95OIBVcpXPb4TVoDybzM0hLOuP2WA6OcpG3ScfAtOm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aligning+Dynamic+Social+Networks%3A+An+Optimization+Over+Dynamic+Graph+Autoencoder&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Sun%2C+Li&rft.au=Zhang%2C+Zhongbao&rft.au=Wang%2C+Feiyang&rft.au=Ji%2C+Pengxin&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=6&rft.spage=5597&rft.epage=5611&rft_id=info:doi/10.1109%2FTKDE.2022.3152502&rft.externalDocID=9716810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon