Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder
Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of the existing studies consider the social network to be static and neglect its inherent dynamics. In fact, the dynamics of social networks con...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 35; no. 6; pp. 5597 - 5611 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of the existing studies consider the social network to be static and neglect its inherent dynamics. In fact, the dynamics of social networks contain the discriminative pattern of an individual, which can be leveraged to facilitate social network alignment. Hence, we for the first time propose to study the problem of aligning dynamic social networks. Towards this end, we propose a novel Dynamic Graph autoencoder based dynamic social network Alignment approach, referred to as DGA , unfolding the fruitful dynamics of social networks for user alignment. However, it faces challenges in both modeling and optimization: (1) To model the intra-network dynamics, we design a novel dynamic graph autoencoder to learn user embeddings with complex network dynamics. (2) To model the inter-network alignment, we design a unified optimization framework over proposed dynamic graph autoencoders, constructing a common subspace for user alignment across different networks. (3) To address this optimization problem, we design an effective alternating algorithm with solid theoretical guarantees. We conduct extensive experiments on real-world datasets and show that the proposed approach substantially outperforms the state-of-the-art methods. |
|---|---|
| AbstractList | Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of the existing studies consider the social network to be static and neglect its inherent dynamics. In fact, the dynamics of social networks contain the discriminative pattern of an individual, which can be leveraged to facilitate social network alignment. Hence, we for the first time propose to study the problem of aligning dynamic social networks. Towards this end, we propose a novel Dynamic Graph autoencoder based dynamic social network Alignment approach, referred to as DGA , unfolding the fruitful dynamics of social networks for user alignment. However, it faces challenges in both modeling and optimization: (1) To model the intra-network dynamics, we design a novel dynamic graph autoencoder to learn user embeddings with complex network dynamics. (2) To model the inter-network alignment, we design a unified optimization framework over proposed dynamic graph autoencoders, constructing a common subspace for user alignment across different networks. (3) To address this optimization problem, we design an effective alternating algorithm with solid theoretical guarantees. We conduct extensive experiments on real-world datasets and show that the proposed approach substantially outperforms the state-of-the-art methods. |
| Author | Wen, Jian Ji, Pengxin Sun, Li Zhang, Zhongbao Yu, Philip S. Wang, Feiyang Su, Sen |
| Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0003-4562-2279 surname: Sun fullname: Sun, Li email: ccesunli@ncepu.edu.cn organization: School of Control and Computer Engineering, North China Electric Power University, Beijing, China – sequence: 2 givenname: Zhongbao orcidid: 0000-0002-3242-150X surname: Zhang fullname: Zhang, Zhongbao email: zhongbaozb@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Feiyang surname: Wang fullname: Wang, Feiyang email: fywang@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Pengxin surname: Ji fullname: Ji, Pengxin email: jipx@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 5 givenname: Jian surname: Wen fullname: Wen, Jian email: j.wen@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 6 givenname: Sen orcidid: 0000-0003-4266-7527 surname: Su fullname: Su, Sen email: susen@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 7 givenname: Philip S. orcidid: 0000-0002-3491-5968 surname: Yu fullname: Yu, Philip S. email: psyu@uic.edu organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA |
| BookMark | eNp9kE9PwjAYxhuDiYB-AONliefNtlvX1tsCiEYiJuK5KaXD4mhnVzT46R1COHjw9P7J83ufvE8PdKyzGoBLBBOEIL-ZPQ5HCYYYJykimEB8ArqIEBZjxFGn7WGG4izN6BnoNc0KQsgoQ13wXFRmaY1dRsOtlWujohenjKyiJx2-nH9vbqPCRtM6mLX5lsG4dvjU_qgee1m_RcUmOG2VW2h_Dk5LWTX64lD74PVuNBvcx5Pp-GFQTGKFeRpilueKS004XchFmhOteCZTijKiYcYkLMscqVKyOYEMq6xtcclpzmm7KudEpX1wvb9be_ex0U0QK7fxtrUUmEHGMKOYtSq0VynvmsbrUtTerKXfCgTFLjixC07sghOH4FqG_mGUCb-vBy9N9S95tSeN1vroxCnKGYLpDxJYfPQ |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1109_TKDE_2024_3447123 crossref_primary_10_1109_TFUZZ_2025_3562944 crossref_primary_10_1016_j_comnet_2025_111607 crossref_primary_10_1109_TBDATA_2024_3407543 crossref_primary_10_1007_s13042_024_02384_0 crossref_primary_10_1145_3580509 crossref_primary_10_1016_j_hcc_2024_100293 crossref_primary_10_1109_TKDE_2023_3312358 crossref_primary_10_1109_TKDE_2025_3566064 |
| Cites_doi | 10.1145/3219819.3220068 10.1145/3308558.3313562 10.1109/BigData47090.2019.9006430 10.1109/INFOCOM.2019.8737542 10.1145/2505515.2505531 10.1007/978-3-319-46128-1_29 10.1109/ICDM.2018.00182 10.1109/TKDE.2018.2849727 10.1145/3289600.3290989 10.1109/TPAMI.2008.277 10.1109/INFOCOM.2018.8486231 10.1145/2487575.2487648 10.1609/aaai.v28i1.8720 10.1145/3068777.3068781 10.1145/2588555.2588559 10.24963/ijcai.2018/537 10.1109/ICDM.2015.114 10.1145/1401890.1402008 10.1145/2939672.2939849 10.1145/3018661.3018667 10.1609/aaai.v33i01.3301996 10.1145/3219819.3220054 10.1093/bioinformatics/btz119 10.1609/icwsm.v3i1.13993 10.1145/3308558.3313484 10.1145/3219819.3220024 10.1089/cyber.2010.0651 10.1145/2939672.2939754 10.1609/aaai.v32i1.11257 10.1145/3219819.3220034 10.1109/ICDE.2019.00174 10.1145/2783258.2783268 10.1145/2939672.2939766 10.24963/ijcai.2018/288 10.1609/aaai.v32i1.12014 10.1007/s11280-017-0490-9 10.1145/3269206.3271675 10.1145/3269206.3271705 10.1109/TBDATA.2018.2850013 10.1145/2736277.2741093 10.1089/cmb.2009.0099 10.24963/ijcai.2018/362 10.1145/2623330.2623732 10.1145/3308558.3313430 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2022.3152502 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 5611 |
| ExternalDocumentID | 10_1109_TKDE_2022_3152502 9716810 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFB1003804 – fundername: NSFC grantid: U1936103; 61921003 – fundername: National Science Foundation grantid: III-1763325; III-1909323; III-2106758; SaTC-1930941 funderid: 10.13039/501100008982 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-866c9ae597dad365ec94a37145e048a0ff61cfa8b5082c4cfa2f97697a8bfb5c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000981944600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Jun 29 15:26:13 EDT 2025 Tue Nov 18 22:11:36 EST 2025 Sat Nov 29 02:36:05 EST 2025 Wed Aug 27 02:18:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-866c9ae597dad365ec94a37145e048a0ff61cfa8b5082c4cfa2f97697a8bfb5c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4562-2279 0000-0003-4266-7527 0000-0002-3491-5968 0000-0002-3242-150X |
| PQID | 2808828728 |
| PQPubID | 85438 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TKDE_2022_3152502 ieee_primary_9716810 proquest_journals_2808828728 crossref_citationtrail_10_1109_TKDE_2022_3152502 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 liu (ref4) 2016 graves (ref23) 2014 ref17 ref16 ref19 ref18 lee (ref25) 2001 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 kipf (ref20) 2017 ref8 velickovic (ref21) 2018 ref7 ref9 ref3 ref6 ref40 ref35 ref34 ref37 ref36 man (ref5) 2016 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref26 ref22 ref28 ref27 ref29 yang (ref44) 2015 |
| References_xml | – ident: ref41 doi: 10.1145/3219819.3220068 – ident: ref22 doi: 10.1145/3308558.3313562 – ident: ref29 doi: 10.1109/BigData47090.2019.9006430 – ident: ref16 doi: 10.1109/INFOCOM.2019.8737542 – start-page: 556 year: 2001 ident: ref25 article-title: Algorithms for non-negative matrix factorization publication-title: Proc 13th Int Conf Neural Inf Process Syst – ident: ref1 doi: 10.1145/2505515.2505531 – ident: ref10 doi: 10.1007/978-3-319-46128-1_29 – ident: ref15 doi: 10.1109/ICDM.2018.00182 – ident: ref50 doi: 10.1109/TKDE.2018.2849727 – ident: ref24 doi: 10.1145/3289600.3290989 – ident: ref26 doi: 10.1109/TPAMI.2008.277 – ident: ref6 doi: 10.1109/INFOCOM.2018.8486231 – ident: ref2 doi: 10.1145/2487575.2487648 – ident: ref3 doi: 10.1609/aaai.v28i1.8720 – ident: ref35 doi: 10.1145/3068777.3068781 – ident: ref31 doi: 10.1145/2588555.2588559 – ident: ref11 doi: 10.24963/ijcai.2018/537 – ident: ref9 doi: 10.1109/ICDM.2015.114 – start-page: 1774 year: 2016 ident: ref4 article-title: Aligning users across social networks using network embedding publication-title: Proc 25th Int Joint Conf Artif Intell – ident: ref27 doi: 10.1145/1401890.1402008 – ident: ref19 doi: 10.1145/2939672.2939849 – ident: ref45 doi: 10.1145/3018661.3018667 – ident: ref33 doi: 10.1609/aaai.v33i01.3301996 – ident: ref48 doi: 10.1145/3219819.3220054 – ident: ref37 doi: 10.1093/bioinformatics/btz119 – ident: ref30 doi: 10.1609/icwsm.v3i1.13993 – ident: ref28 doi: 10.1145/3308558.3313484 – ident: ref49 doi: 10.1145/3219819.3220024 – ident: ref18 doi: 10.1089/cyber.2010.0651 – start-page: 2111 year: 2015 ident: ref44 article-title: Network representation learning with rich text information publication-title: Proc 24th Int Conf Artif Intell – ident: ref39 doi: 10.1145/2939672.2939754 – ident: ref47 doi: 10.1609/aaai.v32i1.11257 – ident: ref43 doi: 10.1145/3219819.3220034 – ident: ref32 doi: 10.1109/ICDE.2019.00174 – start-page: 1 year: 2018 ident: ref21 article-title: Graph attention networks publication-title: Proc 6th Int Conf Learn Representations – ident: ref8 doi: 10.1145/2783258.2783268 – ident: ref34 doi: 10.1145/2939672.2939766 – start-page: 1764 year: 2014 ident: ref23 article-title: Towards end-to-end speech recognition with recurrent neural networks publication-title: Proc 31st Int Conf Int Conf Mach Learn – ident: ref46 doi: 10.24963/ijcai.2018/288 – ident: ref12 doi: 10.1609/aaai.v32i1.12014 – ident: ref14 doi: 10.1007/s11280-017-0490-9 – ident: ref7 doi: 10.1145/3269206.3271675 – ident: ref13 doi: 10.1145/3269206.3271705 – ident: ref51 doi: 10.1109/TBDATA.2018.2850013 – start-page: 1823 year: 2016 ident: ref5 article-title: Predict anchor links across social networks via an embedding approach publication-title: Proc 25th Int Joint Conf Artif Intell – ident: ref40 doi: 10.1145/2736277.2741093 – ident: ref36 doi: 10.1089/cmb.2009.0099 – ident: ref42 doi: 10.24963/ijcai.2018/362 – ident: ref38 doi: 10.1145/2623330.2623732 – start-page: 1 year: 2017 ident: ref20 article-title: Semi-supervised classification with graph convolutional networks publication-title: Proc 5th Int Conf Learn Representations – ident: ref17 doi: 10.1145/3308558.3313430 |
| SSID | ssj0008781 |
| Score | 2.5111117 |
| Snippet | Social network alignment, aligning different social networks on their common users, is receiving increasing attention from both academic and industry. Most of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5597 |
| SubjectTerms | Algorithms Alignment Convergence Decoding Design optimization Dynamics graph neural networks Heuristic algorithms network alignment network embedding Optimization Social networking (online) Social networks Solids Tensors |
| Title | Aligning Dynamic Social Networks: An Optimization Over Dynamic Graph Autoencoder |
| URI | https://ieeexplore.ieee.org/document/9716810 https://www.proquest.com/docview/2808828728 |
| Volume | 35 |
| WOSCitedRecordID | wos000981944600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6oeNCD001x_iIHT2J1S9cm8TbcVFC2HabsVtI0lcHcZOv8-32vzYqiCN5KSaD0S17el-R9H8C5xixCxcZ6idah10KG4iktrcdlyi2Pm1bmoj4vT6LXk6ORGqzBZVkLY63NL5_ZK3rMz_KTmVnSVtk1yR1JqqdaF0IUtVpl1JUiNyRFdoGcyG8Jd4LZbKjr4WOni0yQcySodIrHv61BuanKj0icLy93lf992C7suDSStQvc92DNTqtQWVk0MDdjq7D9RW-wBoP2ZPxKGyGsUxjRs6I6l_WKy-CLG9aesj5GkTdXnsn6ONTL1vekbs3ay2xG8peJne_D8113ePvgOUsFz-C6nnkyDI3SFllEohM_DKxRLU2ifYHFqawbaRo2TapljHkbNy185CkmLErgqzQOjH8AG9PZ1B4Ci3mgEysSESPj0n5AgVL6BsHnioTE6tBY_eTIOL1xsr2YRDnvaKiIcIkIl8jhUoeLsst7IbbxV-MaAVE2dBjU4WSFZOSm4yLikpiEFFwe_d7rGLbIR764A3YCG9l8aU9h03xk48X8LB9pnx7b0F8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5KFdSDj6pYrZqDJ3Ftm30l3opvrLWHKr0t2WxWCrWVPvz9zuymi6II3pYlgWW_ZDJfkvk-gBOFWYSMtXESpQLHQ4biSCWMw0XKDY-bRmSiPi_tsNMR_b7sluCsqIUxxmSXz8w5PWZn-clYz2mrrE5yR4LqqZZ8z-PNvFqriLsizCxJkV8gK3K90J5hNhuy3nu4ukYuyDlSVDrH499WocxW5UcszhaYm43_fdomrNtEkrVy5LegZEYV2FiYNDA7Zyuw9kVxcBu6reHglbZC2FVuRc_y-lzWya-DTy9Ya8SeMI682QJN9oSDvWh9S_rWrDWfjUkAMzGTHXi-ue5d3jnWVMHRuLLPHBEEWiqDPCJRiRv4RktPkWyfb3Ayq0aaBk2dKhFj5sa1h488xZRFhvgqjX3t7kJ5NB6ZPWAx91ViwiSMkXMp16dQKVyN8HNJUmJVaCx-cqSt4jgZXwyjjHk0ZES4RIRLZHGpwmnR5T2X2_ir8TYBUTS0GFShtkAyshNyGnFBXEKEXOz_3usYVu56j-2ofd95OIBVcpXPb4TVoDybzM0hLOuP2WA6OcpG3ScfAtOm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aligning+Dynamic+Social+Networks%3A+An+Optimization+Over+Dynamic+Graph+Autoencoder&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Sun%2C+Li&rft.au=Zhang%2C+Zhongbao&rft.au=Wang%2C+Feiyang&rft.au=Ji%2C+Pengxin&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=6&rft.spage=5597&rft.epage=5611&rft_id=info:doi/10.1109%2FTKDE.2022.3152502&rft.externalDocID=9716810 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |