Sea Ice Change Detection in SAR Images Based on Convolutional-Wavelet Neural Networks
Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed and unchanged classes. However, existing methods usually suffer from the intrinsic speckle noise of multitemporal SAR images. To solve the pr...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 16; číslo 8; s. 1240 - 1244 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed and unchanged classes. However, existing methods usually suffer from the intrinsic speckle noise of multitemporal SAR images. To solve the problem, this letter presents a change detection method based on convolutional-wavelet neural networks (CWNNs). In CWNN, dual-tree complex wavelet transform is introduced into convolutional neural networks for changed and unchanged pixels' classification, and then, the effect of speckle noise is effectively reduced. In addition, a virtual sample generation scheme is employed to create samples for CWNN training, and the problem of limited samples is alleviated. Experimental results on two real SAR image data sets demonstrate the effectiveness and robustness of the proposed method. |
|---|---|
| AbstractList | Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed and unchanged classes. However, existing methods usually suffer from the intrinsic speckle noise of multitemporal SAR images. To solve the problem, this letter presents a change detection method based on convolutional-wavelet neural networks (CWNNs). In CWNN, dual-tree complex wavelet transform is introduced into convolutional neural networks for changed and unchanged pixels' classification, and then, the effect of speckle noise is effectively reduced. In addition, a virtual sample generation scheme is employed to create samples for CWNN training, and the problem of limited samples is alleviated. Experimental results on two real SAR image data sets demonstrate the effectiveness and robustness of the proposed method. |
| Author | Dong, Junyu Gao, Yunhao Gao, Feng Wang, Shengke Wang, Xiao |
| Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-1825-328X surname: Gao fullname: Gao, Feng organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 2 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 3 givenname: Yunhao surname: Gao fullname: Gao, Yunhao organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 4 givenname: Junyu orcidid: 0000-0001-7012-2087 surname: Dong fullname: Dong, Junyu email: dongjunyu@ouc.edu.cn organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China – sequence: 5 givenname: Shengke surname: Wang fullname: Wang, Shengke organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China |
| BookMark | eNp9UEFOwzAQtFCRaAsPQFwscU6xndhxjqVAqVSB1FLBzXKcTUlJk2I7RfyeRK04cOA0q9XM7swMUK-qK0DokpIRpSS5mU8XyxEjNBkxmXDBxQnqU85lQHhMe90c8YAn8u0MDZzbEMIiKeM-Wi1B45kBPHnX1RrwHXgwvqgrXFR4OV7g2VavweFb7SDD7XpSV_u6bDqKLoNXvYcSPH6CxuqyBf9V2w93jk5zXTq4OOIQrR7uXyaPwfx5OpuM54FhSegDyXMtUxPmhMo0N2lIDZVEcB4KnWjC89zQiGRdhDRjnDARQZZKYQyPTa51OETXh7s7W3824Lza1I1tjTnFmKBMiijkLYseWMbWzlnI1c4WW22_FSWqa0917amuPXVsr9XEfzSm8LpL7a0uyn-VVwdlAQC_n1onNJJR-AM_f35w |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_3390_rs13183697 crossref_primary_10_3390_rs12030548 crossref_primary_10_1109_MAES_2021_3117369 crossref_primary_10_1109_LGRS_2025_3532346 crossref_primary_10_1080_01431161_2024_2365818 crossref_primary_10_1016_j_ipm_2021_102726 crossref_primary_10_1016_j_isprsjprs_2021_01_004 crossref_primary_10_3390_rs17050840 crossref_primary_10_1109_ACCESS_2020_2976815 crossref_primary_10_1109_TNNLS_2023_3282935 crossref_primary_10_3390_rs14153604 crossref_primary_10_3390_rs15071770 crossref_primary_10_1109_LGRS_2023_3266891 crossref_primary_10_1080_01431161_2025_2505257 crossref_primary_10_1007_s10291_022_01309_0 crossref_primary_10_1080_01431161_2023_2273245 crossref_primary_10_1016_j_jag_2022_103132 crossref_primary_10_1109_LGRS_2025_3547844 crossref_primary_10_1007_s12145_022_00914_4 crossref_primary_10_3390_rs15010087 crossref_primary_10_3390_rs14030438 crossref_primary_10_1109_JSTARS_2023_3241944 crossref_primary_10_1109_LGRS_2025_3564600 crossref_primary_10_1109_TGRS_2025_3560724 crossref_primary_10_1029_2023GL104219 crossref_primary_10_1007_s13131_024_2437_1 crossref_primary_10_1016_j_neucom_2022_10_074 crossref_primary_10_1109_JSTARS_2025_3601023 crossref_primary_10_3390_rs15010006 crossref_primary_10_1080_2150704X_2022_2067506 crossref_primary_10_3390_rs12111868 crossref_primary_10_3390_rs14246362 crossref_primary_10_3390_rs15245664 crossref_primary_10_1109_LGRS_2024_3370548 crossref_primary_10_1016_j_rse_2024_114204 crossref_primary_10_1109_JSTARS_2023_3325370 crossref_primary_10_1109_JSTARS_2025_3584838 crossref_primary_10_1109_LGRS_2025_3534251 crossref_primary_10_1109_TGRS_2023_3264811 crossref_primary_10_1111_tgis_13133 crossref_primary_10_1109_JSTARS_2020_3040614 crossref_primary_10_1109_JSTARS_2024_3512593 crossref_primary_10_1109_TGRS_2022_3228776 crossref_primary_10_1109_JSTARS_2020_3046838 crossref_primary_10_3390_s21248290 crossref_primary_10_1109_JSTARS_2022_3199017 crossref_primary_10_1109_TGRS_2025_3564457 crossref_primary_10_1109_JSTARS_2022_3146167 crossref_primary_10_3390_rs15071868 crossref_primary_10_1049_rsn2_12058 crossref_primary_10_1109_LGRS_2021_3050746 crossref_primary_10_1109_TGRS_2021_3087530 crossref_primary_10_1109_TGRS_2024_3367970 crossref_primary_10_1016_j_jag_2025_104792 crossref_primary_10_1080_01431161_2025_2511209 crossref_primary_10_3390_rs14133025 crossref_primary_10_1109_ACCESS_2020_3042017 crossref_primary_10_1080_2150704X_2021_1946199 crossref_primary_10_1109_TGRS_2023_3327253 crossref_primary_10_1080_01431161_2021_1937372 crossref_primary_10_1109_JSTARS_2023_3268104 crossref_primary_10_1109_TGRS_2025_3598588 crossref_primary_10_1109_TGRS_2020_3000296 crossref_primary_10_1109_LGRS_2022_3198088 crossref_primary_10_1109_TGRS_2021_3130842 crossref_primary_10_1088_1742_6596_2718_1_012062 crossref_primary_10_1109_TGRS_2021_3073562 crossref_primary_10_14358_PERS_22_00108R2 crossref_primary_10_1109_ACCESS_2023_3307208 crossref_primary_10_1109_TGRS_2022_3190504 crossref_primary_10_3390_rs14184646 crossref_primary_10_1007_s12145_021_00620_7 crossref_primary_10_1109_TGRS_2021_3053571 crossref_primary_10_3390_rs14030734 crossref_primary_10_1109_LGRS_2024_3489230 crossref_primary_10_1364_AO_479955 crossref_primary_10_3390_s25092836 crossref_primary_10_3390_rs16030560 crossref_primary_10_1109_TGRS_2025_3586639 crossref_primary_10_1016_j_engappai_2024_108163 crossref_primary_10_1109_LGRS_2020_3034758 crossref_primary_10_1080_01431161_2025_2516691 crossref_primary_10_1109_LGRS_2023_3300308 crossref_primary_10_3390_rs17101782 crossref_primary_10_1109_ACCESS_2021_3111039 crossref_primary_10_1109_LGRS_2020_3029725 crossref_primary_10_3390_rs15030694 crossref_primary_10_1109_LGRS_2023_3238112 crossref_primary_10_1109_TGRS_2023_3348459 crossref_primary_10_1109_TGRS_2024_3427848 crossref_primary_10_1109_TGRS_2022_3169892 crossref_primary_10_1109_LGRS_2024_3368455 crossref_primary_10_3390_rs15071724 crossref_primary_10_1109_JSTARS_2022_3166234 crossref_primary_10_1016_j_jag_2024_104251 crossref_primary_10_1109_TCSVT_2022_3216457 crossref_primary_10_3390_rs11212565 crossref_primary_10_1016_j_jag_2022_102749 crossref_primary_10_1109_LGRS_2022_3140307 crossref_primary_10_1016_j_isprsjprs_2022_09_006 crossref_primary_10_1111_phor_70021 crossref_primary_10_1007_s12524_021_01476_6 crossref_primary_10_1109_TGRS_2020_3013673 crossref_primary_10_1007_s12524_025_02259_z crossref_primary_10_1109_TGRS_2023_3247605 crossref_primary_10_1109_JSTARS_2024_3405170 crossref_primary_10_1109_JSTARS_2023_3317488 crossref_primary_10_1007_s11042_023_15106_5 crossref_primary_10_3389_fphys_2024_1454835 crossref_primary_10_3390_rs13234918 crossref_primary_10_1109_JSTARS_2025_3585568 crossref_primary_10_1016_j_jag_2021_102615 crossref_primary_10_1117_1_JRS_18_016503 crossref_primary_10_3390_app12105158 crossref_primary_10_1109_TGRS_2024_3504742 crossref_primary_10_3390_rs14225762 crossref_primary_10_1007_s12524_023_01674_4 crossref_primary_10_1109_LGRS_2023_3234972 crossref_primary_10_1117_1_JRS_18_016505 crossref_primary_10_1109_JSTARS_2024_3409775 crossref_primary_10_1016_j_imavis_2025_105483 crossref_primary_10_1109_TGRS_2023_3293190 crossref_primary_10_1080_10095020_2022_2085633 crossref_primary_10_1109_ACCESS_2019_2962622 crossref_primary_10_1109_ACCESS_2020_3008262 crossref_primary_10_1109_LGRS_2022_3224454 crossref_primary_10_3390_e24020291 crossref_primary_10_1049_ell2_12290 crossref_primary_10_3390_jmse12060856 crossref_primary_10_1109_TGRS_2025_3590023 crossref_primary_10_3390_rs15020470 crossref_primary_10_1109_TGRS_2022_3155051 crossref_primary_10_3390_rs14040871 crossref_primary_10_1109_JSTARS_2023_3333959 crossref_primary_10_1109_LGRS_2021_3110302 crossref_primary_10_1007_s11042_022_13622_4 crossref_primary_10_1016_j_knosys_2023_110281 crossref_primary_10_1080_22797254_2024_2372854 crossref_primary_10_1080_01431161_2021_1899332 crossref_primary_10_1007_s41870_023_01167_0 crossref_primary_10_1109_JSTARS_2019_2960518 crossref_primary_10_1049_ipr2_13133 crossref_primary_10_1109_TGRS_2024_3427370 crossref_primary_10_1016_j_isprsjprs_2020_07_007 crossref_primary_10_1109_LGRS_2024_3431532 crossref_primary_10_1016_j_isprsjprs_2024_05_018 crossref_primary_10_1109_TGRS_2022_3211010 crossref_primary_10_1109_TGRS_2023_3344062 crossref_primary_10_1109_JSTARS_2021_3122461 crossref_primary_10_1109_JSTARS_2025_3543591 crossref_primary_10_1109_JSTARS_2024_3434966 crossref_primary_10_3390_rs16132355 crossref_primary_10_1080_01431161_2025_2467303 crossref_primary_10_1109_TGRS_2025_3569280 crossref_primary_10_1117_1_JRS_18_024501 crossref_primary_10_1007_s11042_023_15187_2 crossref_primary_10_1109_TGRS_2023_3305728 crossref_primary_10_1109_LGRS_2023_3345854 crossref_primary_10_1109_TGRS_2024_3521483 |
| Cites_doi | 10.1109/LGRS.2016.2611001 10.1109/LGRS.2015.2484220 10.1117/1.JRS.10.046019 10.1109/TITS.2017.2726546 10.1109/TIP.2011.2170702 10.1109/TCSVT.2017.2703920 10.1109/TITS.2017.2749964 10.1109/TGRS.2016.2584107 10.1109/LGRS.2017.2751559 10.1016/j.patcog.2016.11.015 10.1177/001316448104100307 10.1016/j.isprsjprs.2017.05.001 10.1109/TGRS.2018.2849692 10.1080/01431160902882538 10.1109/LGRS.2009.2025059 10.1109/LGRS.2006.869973 10.1109/JSTARS.2017.2655516 10.1109/TGRS.2016.2543660 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2019.2895656 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1244 |
| ExternalDocumentID | 10_1109_LGRS_2019_2895656 8641484 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2016FB02 funderid: 10.13039/501100007129 – fundername: National Natural Science Foundation of China grantid: 41606198; 41576011; U1706218 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c293t-85fa8bc3f018bfcb31c18065536a9a05ffc140d0571bd250264edb86cc57cfaa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 186 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476814300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 08:38:10 EDT 2025 Tue Nov 18 21:40:00 EST 2025 Sat Nov 29 05:53:57 EST 2025 Wed Aug 27 05:50:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-85fa8bc3f018bfcb31c18065536a9a05ffc140d0571bd250264edb86cc57cfaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7012-2087 0000-0002-1825-328X |
| PQID | 2261286435 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1109_LGRS_2019_2895656 proquest_journals_2261286435 crossref_citationtrail_10_1109_LGRS_2019_2895656 ieee_primary_8641484 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref18 ref7 li (ref8) 2015; 12 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/LGRS.2016.2611001 – volume: 12 start-page: 2458 year: 2015 ident: ref8 article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2015.2484220 – ident: ref2 doi: 10.1117/1.JRS.10.046019 – ident: ref11 doi: 10.1109/TITS.2017.2726546 – ident: ref7 doi: 10.1109/TIP.2011.2170702 – ident: ref10 doi: 10.1109/TCSVT.2017.2703920 – ident: ref12 doi: 10.1109/TITS.2017.2749964 – ident: ref18 doi: 10.1109/TGRS.2016.2584107 – ident: ref9 doi: 10.1109/LGRS.2017.2751559 – ident: ref15 doi: 10.1016/j.patcog.2016.11.015 – ident: ref16 doi: 10.1177/001316448104100307 – ident: ref3 doi: 10.1016/j.isprsjprs.2017.05.001 – ident: ref13 doi: 10.1109/TGRS.2018.2849692 – ident: ref5 doi: 10.1080/01431160902882538 – ident: ref6 doi: 10.1109/LGRS.2009.2025059 – ident: ref4 doi: 10.1109/LGRS.2006.869973 – ident: ref14 doi: 10.1109/JSTARS.2017.2655516 – ident: ref1 doi: 10.1109/TGRS.2016.2543660 |
| SSID | ssj0024887 |
| Score | 2.621111 |
| Snippet | Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1240 |
| SubjectTerms | Artificial neural networks Change detection Change detection algorithms Classification convolutional-wavelet neural network (CWNN) Detection Image classification Image detection Neural networks Pixels Radar detection Radar imaging SAR (radar) Sea ice Speckle Synthetic aperture radar synthetic aperture radar (SAR) images Training Wavelet transforms |
| Title | Sea Ice Change Detection in SAR Images Based on Convolutional-Wavelet Neural Networks |
| URI | https://ieeexplore.ieee.org/document/8641484 https://www.proquest.com/docview/2261286435 |
| Volume | 16 |
| WOSCitedRecordID | wos000476814300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5souiLl01x3siDT2K3dr2ljzrdFGTI5nRvJU0THGgnthv47z1Js4kogm-lJE3Jl-R8Jzk5H8Bpm1GOls-1osSXlpcwnHN-pOZV6jKVU0vqrezHu7Dfp-NxdF-B8-VdGCGEDj4TTfWoz_LTKZ-prbIWDTxk714VqmEYlHe1vvLqUS2GpxiBhY2NzQmmY0etu95gqIK4oiZ6F4rAfLNBWlTlx0qszUt3638_tg2bhkaSixL3HaiIrAbrRtH8-aMGaz0t2ftRh9FQMHLLBSkvEpArUejwq4xMMjK8GJDbV1xTcnKJ9iwl-LozzeZmQLIX64kpaYqCqCwe2GK_DBvPd2HUvX7o3FhGTMHiaNELREAymnBX2g5NJE9chzvqUNV3AxYx25eSo6-VIn1zkhR5ERIlkSY04NwPuWTM3YOVbJqJfSBt6VPpSYnMIvVSdNiQQlKOXRCGaO6k0wB70b0xN5nGleDFS6w9DjuKFSKxQiQ2iDTgbFnlrUyz8VfhuoJgWdD0fgOOFhjGZiLmcVulSMMCrn_we61D2FDfLmP6jmCleJ-JY1jl82KSv5_oMfYJDF7MNg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD7BW_TFC2hEUfvgk3GwsQ26R0S5RCRGRHlbuq6NJjgMTBP_vaddwRiNiW9L06ZLv7bnO-3p-QBOq4xytHyuFUS-tLyI4ZrzA7WuYpepnFpSH2U_9Or9Ph2NgtscnC_ewgghdPCZKKtPfZcfT_ibOiqr0JqH7N1bghXf86p29lrrK7Me1XJ4ihNY2N3I3GE6dlDpte8GKowrKKN_oSjMNyukZVV-7MXawLS2_vdr27BpiCRpZMjvQE4keVg3muZPH3lYa2vR3o8CDAeCkS4XJHtKQC5FqgOwEvKckEHjjnRfcFeZkQu0aDHB4uYkeTdTko2tR6bEKVKi8nhgj_0scHy2C8PW1X2zYxk5BYujTU8RA8loxF1pOzSSPHId7qhrVd-tsYDZvpQcva0YCZwTxciMkCqJOKI1zv06l4y5e7CcTBKxD6QqfSo9KZFbxF6MLhuSSMpxCOp1NHjSKYI9H96Qm1zjSvJiHGqfww5ChUioEAkNIkU4WzR5zRJt_FW5oCBYVDSjX4TSHMPQLMVZWFVJ0rCC6x_83uoE1jv3N72w1-1fH8KG6ieL8CvBcjp9E0ewyt_T59n0WM-3T9Z-z30 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sea+Ice+Change+Detection+in+SAR+Images+Based+on+Convolutional-Wavelet+Neural+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Gao%2C+Feng&rft.au=Wang%2C+Xiao&rft.au=Gao%2C+Yunhao&rft.au=Dong%2C+Junyu&rft.date=2019-08-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=16&rft.issue=8&rft.spage=1240&rft.epage=1244&rft_id=info:doi/10.1109%2FLGRS.2019.2895656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2019_2895656 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |