Sea Ice Change Detection in SAR Images Based on Convolutional-Wavelet Neural Networks

Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed and unchanged classes. However, existing methods usually suffer from the intrinsic speckle noise of multitemporal SAR images. To solve the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters Jg. 16; H. 8; S. 1240 - 1244
Hauptverfasser: Gao, Feng, Wang, Xiao, Gao, Yunhao, Dong, Junyu, Wang, Shengke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-598X, 1558-0571
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed and unchanged classes. However, existing methods usually suffer from the intrinsic speckle noise of multitemporal SAR images. To solve the problem, this letter presents a change detection method based on convolutional-wavelet neural networks (CWNNs). In CWNN, dual-tree complex wavelet transform is introduced into convolutional neural networks for changed and unchanged pixels' classification, and then, the effect of speckle noise is effectively reduced. In addition, a virtual sample generation scheme is employed to create samples for CWNN training, and the problem of limited samples is alleviated. Experimental results on two real SAR image data sets demonstrate the effectiveness and robustness of the proposed method.
AbstractList Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed and unchanged classes. However, existing methods usually suffer from the intrinsic speckle noise of multitemporal SAR images. To solve the problem, this letter presents a change detection method based on convolutional-wavelet neural networks (CWNNs). In CWNN, dual-tree complex wavelet transform is introduced into convolutional neural networks for changed and unchanged pixels' classification, and then, the effect of speckle noise is effectively reduced. In addition, a virtual sample generation scheme is employed to create samples for CWNN training, and the problem of limited samples is alleviated. Experimental results on two real SAR image data sets demonstrate the effectiveness and robustness of the proposed method.
Author Dong, Junyu
Gao, Yunhao
Gao, Feng
Wang, Shengke
Wang, Xiao
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-1825-328X
  surname: Gao
  fullname: Gao, Feng
  organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 2
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 3
  givenname: Yunhao
  surname: Gao
  fullname: Gao, Yunhao
  organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 4
  givenname: Junyu
  orcidid: 0000-0001-7012-2087
  surname: Dong
  fullname: Dong, Junyu
  email: dongjunyu@ouc.edu.cn
  organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China
– sequence: 5
  givenname: Shengke
  surname: Wang
  fullname: Wang, Shengke
  organization: Qingdao Key Laboratory of Mixed Reality and Virtual Ocean, School of Information Science and Engineering, Ocean University of China, Qingdao, China
BookMark eNp9UEFOwzAQtFCRaAsPQFwscU6xndhxjqVAqVSB1FLBzXKcTUlJk2I7RfyeRK04cOA0q9XM7swMUK-qK0DokpIRpSS5mU8XyxEjNBkxmXDBxQnqU85lQHhMe90c8YAn8u0MDZzbEMIiKeM-Wi1B45kBPHnX1RrwHXgwvqgrXFR4OV7g2VavweFb7SDD7XpSV_u6bDqKLoNXvYcSPH6CxuqyBf9V2w93jk5zXTq4OOIQrR7uXyaPwfx5OpuM54FhSegDyXMtUxPmhMo0N2lIDZVEcB4KnWjC89zQiGRdhDRjnDARQZZKYQyPTa51OETXh7s7W3824Lza1I1tjTnFmKBMiijkLYseWMbWzlnI1c4WW22_FSWqa0917amuPXVsr9XEfzSm8LpL7a0uyn-VVwdlAQC_n1onNJJR-AM_f35w
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_rs13183697
crossref_primary_10_3390_rs12030548
crossref_primary_10_1109_MAES_2021_3117369
crossref_primary_10_1109_LGRS_2025_3532346
crossref_primary_10_1080_01431161_2024_2365818
crossref_primary_10_1016_j_ipm_2021_102726
crossref_primary_10_1016_j_isprsjprs_2021_01_004
crossref_primary_10_3390_rs17050840
crossref_primary_10_1109_ACCESS_2020_2976815
crossref_primary_10_1109_TNNLS_2023_3282935
crossref_primary_10_3390_rs14153604
crossref_primary_10_3390_rs15071770
crossref_primary_10_1109_LGRS_2023_3266891
crossref_primary_10_1080_01431161_2025_2505257
crossref_primary_10_1007_s10291_022_01309_0
crossref_primary_10_1080_01431161_2023_2273245
crossref_primary_10_1016_j_jag_2022_103132
crossref_primary_10_1109_LGRS_2025_3547844
crossref_primary_10_1007_s12145_022_00914_4
crossref_primary_10_3390_rs15010087
crossref_primary_10_3390_rs14030438
crossref_primary_10_1109_JSTARS_2023_3241944
crossref_primary_10_1109_LGRS_2025_3564600
crossref_primary_10_1109_TGRS_2025_3560724
crossref_primary_10_1029_2023GL104219
crossref_primary_10_1007_s13131_024_2437_1
crossref_primary_10_1016_j_neucom_2022_10_074
crossref_primary_10_1109_JSTARS_2025_3601023
crossref_primary_10_3390_rs15010006
crossref_primary_10_1080_2150704X_2022_2067506
crossref_primary_10_3390_rs12111868
crossref_primary_10_3390_rs14246362
crossref_primary_10_3390_rs15245664
crossref_primary_10_1109_LGRS_2024_3370548
crossref_primary_10_1016_j_rse_2024_114204
crossref_primary_10_1109_JSTARS_2023_3325370
crossref_primary_10_1109_JSTARS_2025_3584838
crossref_primary_10_1109_LGRS_2025_3534251
crossref_primary_10_1109_TGRS_2023_3264811
crossref_primary_10_1111_tgis_13133
crossref_primary_10_1109_JSTARS_2020_3040614
crossref_primary_10_1109_JSTARS_2024_3512593
crossref_primary_10_1109_TGRS_2022_3228776
crossref_primary_10_1109_JSTARS_2020_3046838
crossref_primary_10_3390_s21248290
crossref_primary_10_1109_JSTARS_2022_3199017
crossref_primary_10_1109_TGRS_2025_3564457
crossref_primary_10_1109_JSTARS_2022_3146167
crossref_primary_10_3390_rs15071868
crossref_primary_10_1049_rsn2_12058
crossref_primary_10_1109_LGRS_2021_3050746
crossref_primary_10_1109_TGRS_2021_3087530
crossref_primary_10_1109_TGRS_2024_3367970
crossref_primary_10_1016_j_jag_2025_104792
crossref_primary_10_1080_01431161_2025_2511209
crossref_primary_10_3390_rs14133025
crossref_primary_10_1109_ACCESS_2020_3042017
crossref_primary_10_1080_2150704X_2021_1946199
crossref_primary_10_1109_TGRS_2023_3327253
crossref_primary_10_1080_01431161_2021_1937372
crossref_primary_10_1109_JSTARS_2023_3268104
crossref_primary_10_1109_TGRS_2025_3598588
crossref_primary_10_1109_TGRS_2020_3000296
crossref_primary_10_1109_LGRS_2022_3198088
crossref_primary_10_1109_TGRS_2021_3130842
crossref_primary_10_1088_1742_6596_2718_1_012062
crossref_primary_10_1109_TGRS_2021_3073562
crossref_primary_10_14358_PERS_22_00108R2
crossref_primary_10_1109_ACCESS_2023_3307208
crossref_primary_10_1109_TGRS_2022_3190504
crossref_primary_10_3390_rs14184646
crossref_primary_10_1007_s12145_021_00620_7
crossref_primary_10_1109_TGRS_2021_3053571
crossref_primary_10_3390_rs14030734
crossref_primary_10_1109_LGRS_2024_3489230
crossref_primary_10_1364_AO_479955
crossref_primary_10_3390_s25092836
crossref_primary_10_3390_rs16030560
crossref_primary_10_1109_TGRS_2025_3586639
crossref_primary_10_1016_j_engappai_2024_108163
crossref_primary_10_1109_LGRS_2020_3034758
crossref_primary_10_1080_01431161_2025_2516691
crossref_primary_10_1109_LGRS_2023_3300308
crossref_primary_10_3390_rs17101782
crossref_primary_10_1109_ACCESS_2021_3111039
crossref_primary_10_1109_LGRS_2020_3029725
crossref_primary_10_3390_rs15030694
crossref_primary_10_1109_LGRS_2023_3238112
crossref_primary_10_1109_TGRS_2023_3348459
crossref_primary_10_1109_TGRS_2024_3427848
crossref_primary_10_1109_TGRS_2022_3169892
crossref_primary_10_1109_LGRS_2024_3368455
crossref_primary_10_3390_rs15071724
crossref_primary_10_1109_JSTARS_2022_3166234
crossref_primary_10_1016_j_jag_2024_104251
crossref_primary_10_1109_TCSVT_2022_3216457
crossref_primary_10_3390_rs11212565
crossref_primary_10_1016_j_jag_2022_102749
crossref_primary_10_1109_LGRS_2022_3140307
crossref_primary_10_1016_j_isprsjprs_2022_09_006
crossref_primary_10_1111_phor_70021
crossref_primary_10_1007_s12524_021_01476_6
crossref_primary_10_1109_TGRS_2020_3013673
crossref_primary_10_1007_s12524_025_02259_z
crossref_primary_10_1109_TGRS_2023_3247605
crossref_primary_10_1109_JSTARS_2024_3405170
crossref_primary_10_1109_JSTARS_2023_3317488
crossref_primary_10_1007_s11042_023_15106_5
crossref_primary_10_3389_fphys_2024_1454835
crossref_primary_10_3390_rs13234918
crossref_primary_10_1109_JSTARS_2025_3585568
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1117_1_JRS_18_016503
crossref_primary_10_3390_app12105158
crossref_primary_10_1109_TGRS_2024_3504742
crossref_primary_10_3390_rs14225762
crossref_primary_10_1007_s12524_023_01674_4
crossref_primary_10_1109_LGRS_2023_3234972
crossref_primary_10_1117_1_JRS_18_016505
crossref_primary_10_1109_JSTARS_2024_3409775
crossref_primary_10_1016_j_imavis_2025_105483
crossref_primary_10_1109_TGRS_2023_3293190
crossref_primary_10_1080_10095020_2022_2085633
crossref_primary_10_1109_ACCESS_2019_2962622
crossref_primary_10_1109_ACCESS_2020_3008262
crossref_primary_10_1109_LGRS_2022_3224454
crossref_primary_10_3390_e24020291
crossref_primary_10_1049_ell2_12290
crossref_primary_10_3390_jmse12060856
crossref_primary_10_1109_TGRS_2025_3590023
crossref_primary_10_3390_rs15020470
crossref_primary_10_1109_TGRS_2022_3155051
crossref_primary_10_3390_rs14040871
crossref_primary_10_1109_JSTARS_2023_3333959
crossref_primary_10_1109_LGRS_2021_3110302
crossref_primary_10_1007_s11042_022_13622_4
crossref_primary_10_1016_j_knosys_2023_110281
crossref_primary_10_1080_22797254_2024_2372854
crossref_primary_10_1080_01431161_2021_1899332
crossref_primary_10_1007_s41870_023_01167_0
crossref_primary_10_1109_JSTARS_2019_2960518
crossref_primary_10_1049_ipr2_13133
crossref_primary_10_1109_TGRS_2024_3427370
crossref_primary_10_1016_j_isprsjprs_2020_07_007
crossref_primary_10_1109_LGRS_2024_3431532
crossref_primary_10_1016_j_isprsjprs_2024_05_018
crossref_primary_10_1109_TGRS_2022_3211010
crossref_primary_10_1109_TGRS_2023_3344062
crossref_primary_10_1109_JSTARS_2021_3122461
crossref_primary_10_1109_JSTARS_2025_3543591
crossref_primary_10_1109_JSTARS_2024_3434966
crossref_primary_10_3390_rs16132355
crossref_primary_10_1080_01431161_2025_2467303
crossref_primary_10_1109_TGRS_2025_3569280
crossref_primary_10_1117_1_JRS_18_024501
crossref_primary_10_1007_s11042_023_15187_2
crossref_primary_10_1109_TGRS_2023_3305728
crossref_primary_10_1109_LGRS_2023_3345854
crossref_primary_10_1109_TGRS_2024_3521483
Cites_doi 10.1109/LGRS.2016.2611001
10.1109/LGRS.2015.2484220
10.1117/1.JRS.10.046019
10.1109/TITS.2017.2726546
10.1109/TIP.2011.2170702
10.1109/TCSVT.2017.2703920
10.1109/TITS.2017.2749964
10.1109/TGRS.2016.2584107
10.1109/LGRS.2017.2751559
10.1016/j.patcog.2016.11.015
10.1177/001316448104100307
10.1016/j.isprsjprs.2017.05.001
10.1109/TGRS.2018.2849692
10.1080/01431160902882538
10.1109/LGRS.2009.2025059
10.1109/LGRS.2006.869973
10.1109/JSTARS.2017.2655516
10.1109/TGRS.2016.2543660
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2019.2895656
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1244
ExternalDocumentID 10_1109_LGRS_2019_2895656
8641484
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2016FB02
  funderid: 10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 41606198; 41576011; U1706218
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c293t-85fa8bc3f018bfcb31c18065536a9a05ffc140d0571bd250264edb86cc57cfaa3
IEDL.DBID RIE
ISICitedReferencesCount 186
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476814300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:38:10 EDT 2025
Tue Nov 18 21:40:00 EST 2025
Sat Nov 29 05:53:57 EST 2025
Wed Aug 27 05:50:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-85fa8bc3f018bfcb31c18065536a9a05ffc140d0571bd250264edb86cc57cfaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7012-2087
0000-0002-1825-328X
PQID 2261286435
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2019_2895656
proquest_journals_2261286435
crossref_citationtrail_10_1109_LGRS_2019_2895656
ieee_primary_8641484
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
ref7
li (ref8) 2015; 12
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/LGRS.2016.2611001
– volume: 12
  start-page: 2458
  year: 2015
  ident: ref8
  article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2015.2484220
– ident: ref2
  doi: 10.1117/1.JRS.10.046019
– ident: ref11
  doi: 10.1109/TITS.2017.2726546
– ident: ref7
  doi: 10.1109/TIP.2011.2170702
– ident: ref10
  doi: 10.1109/TCSVT.2017.2703920
– ident: ref12
  doi: 10.1109/TITS.2017.2749964
– ident: ref18
  doi: 10.1109/TGRS.2016.2584107
– ident: ref9
  doi: 10.1109/LGRS.2017.2751559
– ident: ref15
  doi: 10.1016/j.patcog.2016.11.015
– ident: ref16
  doi: 10.1177/001316448104100307
– ident: ref3
  doi: 10.1016/j.isprsjprs.2017.05.001
– ident: ref13
  doi: 10.1109/TGRS.2018.2849692
– ident: ref5
  doi: 10.1080/01431160902882538
– ident: ref6
  doi: 10.1109/LGRS.2009.2025059
– ident: ref4
  doi: 10.1109/LGRS.2006.869973
– ident: ref14
  doi: 10.1109/JSTARS.2017.2655516
– ident: ref1
  doi: 10.1109/TGRS.2016.2543660
SSID ssj0024887
Score 2.621111
Snippet Sea ice change detection from synthetic aperture radar (SAR) images can be regarded as a classification procedure, in which pixels are classified into changed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1240
SubjectTerms Artificial neural networks
Change detection
Change detection algorithms
Classification
convolutional-wavelet neural network (CWNN)
Detection
Image classification
Image detection
Neural networks
Pixels
Radar detection
Radar imaging
SAR (radar)
Sea ice
Speckle
Synthetic aperture radar
synthetic aperture radar (SAR) images
Training
Wavelet transforms
Title Sea Ice Change Detection in SAR Images Based on Convolutional-Wavelet Neural Networks
URI https://ieeexplore.ieee.org/document/8641484
https://www.proquest.com/docview/2261286435
Volume 16
WOSCitedRecordID wos000476814300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD64oeiLl6k4nZIHn8Rqay9LHuddkCGbl72VNBcUZidbN9i_9yTNJqIIvpWSpCUnOedLzuUDOAwy1IpoC7xEMupFZ1LjnlPSkyELKZpAKuyF2_N9s92mvR57WIDjeS6MUsoGn6kT82h9-XIgxuaq7JQmEaL3qAKVZjMpc7W-6upRS4ZnEIEXM9pzHszAZ6f3N52uCeJiJ3i6MADmmw2ypCo_NLE1L9dr__uxdVh1MJK0SrlvwILKa7DsGM1fpzVYurGUvdNNeOoqTu6EImUiAblUhQ2_yslbTrqtDrl7R50yIudozyTB1xeDfOIWJO97L9xQUxTEVPHAL7bLsPHRFjxdXz1e3HqOTMETaNELj8aa00yE2g9opkUWBiIwTtU4TDjjfqy1wLOWRPgWZBJxEQIlJTOaCBE3heY83IZqPsjVDhCtTDCnZkkQZJHGYXns8yzyqU5M6R5eB382valwlcYN4UU_tScOn6VGIqmRSOokUoejeZePsszGX403jQjmDd3s16Exk2HqNuIoPTMl0rBBGO_-3msPVszYZUxfA6rFcKz2YVFMirfR8MCusU9bp8zD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BAcGFHVFWHzghAkmz1D5C2SpKhShLb5HjRSCVFLUBib9n7LhFCITELYrsOPLYM8-e5QHsBRlqRbQFXiIZ9aKa1LjnlPRkyEKKJpAKe-H20Kq327TbZTcTcDDOhVFK2eAzdWgerS9f9sWbuSo7okmE6D2ahKk4imp-ma31VVmPWjo8gwm8mNGu82EGPjtqXdx2TBgXO8TzhYEw36yQpVX5oYutgTlf-N-vLcK8A5LkuJT8EkyofBlmHaf508cyzFxY0t6PFbjvKE6aQpEylYCcqsIGYOXkOSed41vSfEGtMiQnaNEkwdeNfv7uliTveY_ckFMUxNTxwBHbZeD4cBXuz8_uGpeeo1PwBNr0wqOx5jQTofYDmmmRhYEIjFs1DhPOuB9rLfC0JRHABZlEZIRQScmMJkLEdaE5D9egkvdztQ5EKxPOqVkSBFmk8bM89nkW-VQnpngPr4I_mt5UuFrjhvKil9ozh89SI5HUSCR1EqnC_rjLa1lo46_GK0YE44Zu9quwNZJh6rbiMK2ZImnYIIw3fu-1C7OXd9ettNVsX23CnBmnjPDbgkoxeFPbMC3ei-fhYMeut08sTNAK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sea+Ice+Change+Detection+in+SAR+Images+Based+on+Convolutional-Wavelet+Neural+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Gao%2C+Feng&rft.au=Wang%2C+Xiao&rft.au=Gao%2C+Yunhao&rft.au=Dong%2C+Junyu&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=16&rft.issue=8&rft.spage=1240&rft.epage=1244&rft_id=info:doi/10.1109%2FLGRS.2019.2895656&rft.externalDocID=8641484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon