Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning

Portfolio Selection is an important real-world financial task and has attracted extensive attention in artificial intelligence communities. This task, however, has two main difficulties: (i) the non-stationary price series and complex asset correlations make the learning of feature representation ve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on knowledge and data engineering Ročník 34; číslo 1; s. 236 - 248
Hlavní autoři: Zhang, Yifan, Zhao, Peilin, Wu, Qingyao, Li, Bin, Huang, Junzhou, Tan, Mingkui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1041-4347, 1558-2191
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Portfolio Selection is an important real-world financial task and has attracted extensive attention in artificial intelligence communities. This task, however, has two main difficulties: (i) the non-stationary price series and complex asset correlations make the learning of feature representation very hard; (ii) the practicality principle in financial markets requires controlling both transaction and risk costs. Most existing methods adopt handcraft features and/or consider no constraints for the costs, which may make them perform unsatisfactorily and fail to control both costs in practice. In this paper, we propose a cost-sensitive portfolio selection method with deep reinforcement learning. Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations, while a new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning. We theoretically analyze the near-optimality of the proposed reward, which shows that the growth rate of the policy regarding this reward function can approach the theoretical optimum. We also empirically evaluate the proposed method on real-world datasets. Promising results demonstrate the effectiveness and superiority of the proposed method in terms of profitability, cost-sensitivity and representation abilities.
AbstractList Portfolio Selection is an important real-world financial task and has attracted extensive attention in artificial intelligence communities. This task, however, has two main difficulties: (i) the non-stationary price series and complex asset correlations make the learning of feature representation very hard; (ii) the practicality principle in financial markets requires controlling both transaction and risk costs. Most existing methods adopt handcraft features and/or consider no constraints for the costs, which may make them perform unsatisfactorily and fail to control both costs in practice. In this paper, we propose a cost-sensitive portfolio selection method with deep reinforcement learning. Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations, while a new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning. We theoretically analyze the near-optimality of the proposed reward, which shows that the growth rate of the policy regarding this reward function can approach the theoretical optimum. We also empirically evaluate the proposed method on real-world datasets. Promising results demonstrate the effectiveness and superiority of the proposed method in terms of profitability, cost-sensitivity and representation abilities.
Author Zhao, Peilin
Huang, Junzhou
Tan, Mingkui
Wu, Qingyao
Li, Bin
Zhang, Yifan
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0002-2125-1074
  surname: Zhang
  fullname: Zhang, Yifan
  email: sezyifan@mail.scut.edu.cn
  organization: South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Peilin
  orcidid: 0000-0001-8543-3953
  surname: Zhao
  fullname: Zhao, Peilin
  email: peilinzhao@hotmail.com
  organization: AI Lab, Tencent, Shenzhen, China
– sequence: 3
  givenname: Qingyao
  orcidid: 0000-0002-6771-3932
  surname: Wu
  fullname: Wu, Qingyao
  email: qyw@scut.edu.cn
  organization: South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  email: binli.whu@whu.edu.cn
  organization: Wuhan University, Wuhan, China
– sequence: 5
  givenname: Junzhou
  surname: Huang
  fullname: Huang, Junzhou
  email: joehhuang@tencent.com
  organization: AI Lab, Tencent, Shenzhen, China
– sequence: 6
  givenname: Mingkui
  orcidid: 0000-0001-8856-756X
  surname: Tan
  fullname: Tan, Mingkui
  email: mingkuitan@scut.edu.cn
  organization: South China University of Technology, Guangzhou, China
BookMark eNp9kE1PAjEQhhuDiYD-AONlE8-LM9uybY8K-BFJNILnTVlmTcnSYltI_PdCMB48eJo5vM-8mafHOs47YuwSYYAI-mb-PJ4MCihgUGipJcAJ6-JwqPICNXb2OwjMBRfyjPViXAGAkgq77G7kY8pn5KJNdkfZqw-p8a312YxaqpP1LttZk42JNtkbWdf4UNOaXMqmZIKz7uOcnTamjXTxM_vs_X4yHz3m05eHp9HtNK8LzVOuBC5IKg0LYxRyU6tiaQpsOKKRS6OphFLrBdQLWipDig953YhSIDUkQRDvs-vj3U3wn1uKqVr5bXD7yqooQSop5VDsU3hM1cHHGKipNsGuTfiqEKqDquqgqjqoqn5U7Rn5h6ltMoffUzC2_Ze8OpKWiH6bNHAUqPg3ytZ4TA
CODEN ITKEEH
CitedBy_id crossref_primary_10_1049_gtd2_12040
crossref_primary_10_1080_24725854_2021_1973156
crossref_primary_10_1109_ACCESS_2022_3166599
crossref_primary_10_1007_s10614_024_10786_z
crossref_primary_10_1109_ACCESS_2021_3068768
crossref_primary_10_1109_LSP_2023_3296913
crossref_primary_10_1007_s10489_024_06107_4
crossref_primary_10_1007_s00766_025_00436_7
crossref_primary_10_1186_s13059_022_02692_0
crossref_primary_10_1007_s10462_024_11066_w
crossref_primary_10_1109_TKDE_2025_3545115
crossref_primary_10_1145_3733714
crossref_primary_10_4018_IJITWE_332777
crossref_primary_10_1109_TKDE_2023_3251721
crossref_primary_10_1007_s10489_025_06242_6
crossref_primary_10_1016_j_orl_2023_10_011
crossref_primary_10_1007_s11067_024_09663_x
crossref_primary_10_1109_TNNLS_2022_3231917
crossref_primary_10_1016_j_knosys_2022_109650
crossref_primary_10_1109_TKDE_2023_3250472
crossref_primary_10_1016_j_neunet_2021_09_002
crossref_primary_10_1016_j_eswa_2024_124193
crossref_primary_10_1109_TKDE_2023_3301036
crossref_primary_10_1016_j_eswa_2023_120297
crossref_primary_10_1016_j_ins_2022_08_074
Cites_doi 10.1109/ICCV.2019.00719
10.1016/B978-1-55860-335-6.50021-0
10.1007/978-3-540-77226-2_102
10.1109/CVPR.2015.7298965
10.1023/A:1010884214864
10.1609/aaai.v27i1.8693
10.2307/2975974
10.1007/978-3-030-32239-7_40
10.1142/9789814293501_0015
10.1007/s10479-016-2316-z
10.1007/978-3-540-87987-9_13
10.1609/aaai.v28i1.8907
10.1109/TKDE.2016.2563433
10.1111/1467-9965.00058
10.1613/jair.1336
10.1109/TKDE.2018.2826011
10.1145/2512962
10.1109/IHMSC.2013.84
10.1109/CVPR42600.2020.00545
10.1080/14697688.2017.1357831
10.1609/aaai.v29i1.9453
10.1145/2229012.2229022
10.32657/10356/90191
10.1109/CVPR42600.2020.01264
10.1109/TNNLS.2016.2522401
10.1145/3219819.3220113
10.1016/j.dss.2004.08.010
10.1007/978-3-662-54970-4_28
10.1145/1143844.1143846
10.1109/TIP.2020.3006377
10.1109/CVPR42600.2020.01030
10.1214/aop/1176991793
10.1109/72.935097
10.1287/mnsc.2013.1838
10.1109/TKDE.2019.2955078
10.1145/2435209.2435213
10.1016/j.ijforecast.2003.09.015
10.1038/nature14236
10.1145/3219819.3219948
10.1002/j.1538-7305.1956.tb03809.x
10.1145/3274643
10.1080/14697688.2011.570368
10.1145/2939672.2939861
10.1007/s10994-012-5281-z
10.1145/3269206.3269290
10.1016/0196-8858(86)90029-1
10.1609/aaai.v31i1.10728
10.1162/neco.1997.9.8.1735
10.1038/Nature14539
10.1609/aaai.v33i01.33011134
10.1524/stnd.2007.25.1.63
10.1007/978-3-642-36288-0_17
10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-#
10.1109/CVPR.2017.113
10.1007/978-1-4615-5625-1_10
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.2979700
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 248
ExternalDocumentID 10_1109_TKDE_2020_2979700
9031418
Genre orig-research
GrantInformation_xml – fundername: Guangdong Provincial Scientific and Technological Funds
  grantid: 2018B010107001; 2018B010108002
– fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams
  grantid: 2017ZT07X183
– fundername: National Natural Science Foundation of China
  grantid: 61876208; 71971164
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: D2191240
  funderid: 10.13039/501100012226
– fundername: NSFC
  grantid: 61836003
– fundername: Tencent AI Lab Rhino-Bird Focused Research Program
  grantid: JR201902
– fundername: Pearl River S and T Nova Program of Guangzhou
  grantid: 201806010081
  funderid: 10.13039/501100009334
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-841be7890baa813ac82da21f311a7da9e60699b0cbed8ae8353cf4641efe704e3
IEDL.DBID RIE
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728576400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Jun 29 14:10:08 EDT 2025
Sat Nov 29 02:36:02 EST 2025
Tue Nov 18 22:35:39 EST 2025
Wed Aug 27 05:11:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-841be7890baa813ac82da21f311a7da9e60699b0cbed8ae8353cf4641efe704e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2125-1074
0000-0001-8543-3953
0000-0001-8856-756X
0000-0002-6771-3932
PQID 2607877754
PQPubID 85438
PageCount 13
ParticipantIDs ieee_primary_9031418
crossref_primary_10_1109_TKDE_2020_2979700
proquest_journals_2607877754
crossref_citationtrail_10_1109_TKDE_2020_2979700
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
Sutskever (ref60)
ref52
Van Den Oord (ref63)
ref11
ref10
ref54
ref17
ref16
ref19
Yu (ref66)
ref18
Schulman (ref55)
ref46
Huang (ref30)
ref45
ref48
Cao (ref8)
ref47
Guo (ref22) 2018
ref42
ref41
ref44
ref43
Neuneier (ref49)
ref9
Li (ref37)
ref4
ref3
Sikdar (ref59)
ref6
Vajda (ref62)
ref40
Jiang (ref31) 2017
Bai (ref5) 2018
ref35
ref34
ref36
ref75
ref74
ref33
ref32
ref2
Neuneier (ref51)
Sutton (ref61)
ref39
ref38
ref71
ref70
ref73
ref72
Bradbury (ref7) 2016
ref24
Wang (ref64)
ref68
ref23
ref67
ref26
ref25
ref69
ref21
ref65
ref28
Neuneier (ref50)
ref27
Abadi (ref1)
ref29
Guo (ref20)
References_xml – ident: ref68
  doi: 10.1109/ICCV.2019.00719
– ident: ref24
  doi: 10.1016/B978-1-55860-335-6.50021-0
– start-page: 952
  volume-title: Proc. 8th Int. Conf. Neural Inf. Process. Syst.
  ident: ref50
  article-title: Optimal asset allocation using adaptive dynamic programming
– start-page: 1057
  volume-title: Proc. 12th Int. Conf. Neural Inf. Process. Syst.
  ident: ref61
  article-title: Policy gradient methods for reinforcement learning with function approximation
– ident: ref40
  doi: 10.1007/978-3-540-77226-2_102
– ident: ref42
  doi: 10.1109/CVPR.2015.7298965
– start-page: 936
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref51
  article-title: Enhancing Q-learning for optimal asset allocation
– ident: ref19
  doi: 10.1023/A:1010884214864
– ident: ref13
  doi: 10.1609/aaai.v27i1.8693
– ident: ref43
  doi: 10.2307/2975974
– ident: ref74
  doi: 10.1007/978-3-030-32239-7_40
– ident: ref12
  doi: 10.1142/9789814293501_0015
– ident: ref75
  doi: 10.1007/s10479-016-2316-z
– ident: ref23
  doi: 10.1007/978-3-540-87987-9_13
– ident: ref14
  doi: 10.1609/aaai.v28i1.8907
– ident: ref29
  doi: 10.1109/TKDE.2016.2563433
– ident: ref26
  doi: 10.1111/1467-9965.00058
– ident: ref6
  doi: 10.1613/jair.1336
– start-page: 735
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref20
  article-title: NAT: Neural architecture transformer for accurate and compact architectures
– ident: ref70
  doi: 10.1109/TKDE.2018.2826011
– year: 2018
  ident: ref5
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– ident: ref38
  doi: 10.1145/2512962
– start-page: 2165
  volume-title: Proc. AAAI Conf. Artif. Intell.
  ident: ref59
  article-title: Top-trading-cycles mechanisms with acceptable bundles
– start-page: 273
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref37
  article-title: On-line portfolio selection with moving average reversion
– ident: ref18
  doi: 10.1109/IHMSC.2013.84
– ident: ref21
  doi: 10.1109/CVPR42600.2020.00545
– ident: ref39
  doi: 10.1080/14697688.2017.1357831
– start-page: 1031
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref49
  article-title: Risk sensitive reinforcement learning
– ident: ref56
  doi: 10.1609/aaai.v29i1.9453
– start-page: 265
  volume-title: Proc. USENIX Symp. Operating Syst. Des. Implementation
  ident: ref1
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref4
  doi: 10.1145/2229012.2229022
– ident: ref41
  doi: 10.32657/10356/90191
– ident: ref10
  doi: 10.1109/CVPR42600.2020.01264
– ident: ref15
  doi: 10.1109/TNNLS.2016.2522401
– ident: ref16
  doi: 10.1145/3219819.3220113
– ident: ref17
  doi: 10.1016/j.dss.2004.08.010
– ident: ref54
  doi: 10.1007/978-3-662-54970-4_28
– ident: ref2
  doi: 10.1145/1143844.1143846
– ident: ref73
  doi: 10.1109/TIP.2020.3006377
– ident: ref67
  doi: 10.1109/CVPR42600.2020.01030
– ident: ref3
  doi: 10.1214/aop/1176991793
– ident: ref45
  doi: 10.1109/72.935097
– ident: ref48
  doi: 10.1287/mnsc.2013.1838
– ident: ref72
  doi: 10.1109/TKDE.2019.2955078
– volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref55
  article-title: Trust region policy optimization
– start-page: 178
  volume-title: Proc. Int. Joint Conf. Artif. Intell.
  ident: ref30
  article-title: Semi-universal portfolios with transaction costs
– ident: ref35
  doi: 10.1145/2435209.2435213
– ident: ref28
  doi: 10.1016/j.ijforecast.2003.09.015
– ident: ref44
  doi: 10.1038/nature14236
– year: 2017
  ident: ref31
  article-title: A deep reinforcement learning framework for the financial portfolio management problem
  publication-title: arXiv:1706.10059
– start-page: 3104
  volume-title: Proc. 27th Int. Conf. Neural Inf. Process. Syst.
  ident: ref60
  article-title: Sequence to sequence learning with neural networks
– ident: ref71
  doi: 10.1145/3219819.3219948
– year: 2018
  ident: ref22
  article-title: Robust log-optimal strategy with reinforcement learning
– ident: ref32
  doi: 10.1002/j.1538-7305.1956.tb03809.x
– ident: ref25
  doi: 10.1145/3274643
– ident: ref52
  doi: 10.1080/14697688.2011.570368
– start-page: 125
  volume-title: Proc. ISCA Speech Synthesis Workshop
  ident: ref63
  article-title: WaveNet: A generative model for raw audio
– ident: ref69
  doi: 10.1145/2939672.2939861
– start-page: 1995
  volume-title: Proc. 33rd Int. Conf. Mach. Learn.
  ident: ref64
  article-title: Dueling network architectures for deep reinforcement learning
– ident: ref36
  doi: 10.1007/s10994-012-5281-z
– start-page: 719
  volume-title: Proc. Prague Stochastics
  ident: ref62
  article-title: Analysis of semi-log-optimal investment strategies
– ident: ref65
  doi: 10.1145/3269206.3269290
– ident: ref11
  doi: 10.1016/0196-8858(86)90029-1
– ident: ref57
  doi: 10.1609/aaai.v31i1.10728
– ident: ref27
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref34
  doi: 10.1038/Nature14539
– ident: ref58
  doi: 10.1609/aaai.v33i01.33011134
– ident: ref53
  doi: 10.1524/stnd.2007.25.1.63
– start-page: 1774
  volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
  ident: ref8
  article-title: Multi-marginal Wasserstein GAN
– ident: ref9
  doi: 10.1007/978-3-642-36288-0_17
– ident: ref46
  doi: 10.1002/(SICI)1099-131X(1998090)17:5/6<441::AID-FOR707>3.0.CO;2-#
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref66
  article-title: Multi-scale context aggregation by dilated convolutions
– year: 2016
  ident: ref7
  article-title: Quasi-recurrent neural networks
– ident: ref33
  doi: 10.1109/CVPR.2017.113
– ident: ref47
  doi: 10.1007/978-1-4615-5625-1_10
SSID ssj0008781
Score 2.6347182
Snippet Portfolio Selection is an important real-world financial task and has attracted extensive attention in artificial intelligence communities. This task, however,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 236
SubjectTerms Artificial intelligence
Correlation
Cost analysis
Costs
Decision making
Deep learning
Feature extraction
Investment
Learning (artificial intelligence)
Optimization
Portfolio selection
Portfolios
Profitability
reinforcement learning
Representations
Risk management
Task analysis
transaction cost
Title Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9031418
https://www.proquest.com/docview/2607877754
Volume 34
WOSCitedRecordID wos000728576400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHH1WxWiUHT-K2m2y2SY5aFUEo4gO8LdnsrBRKt_T1-03StBQUwdsekmWZ2cwrM98HcMVoYhxSVsQRVcRtDBAp1k2jHNPEuhydSrMkmxD9vvz8VC81uFnPwiCibz7Dtnv0d_lFZeauVNZRDmudyi3YEkIsZ7XWVlcKT0hqswubEyVchBtMGqvO-_P9g80EWdxmSijhhtk2fJAnVflhib17edz_34cdwF4II8ntUu-HUMNRA_ZXFA0knNgG7G7gDR7BXa-azqI317PurBxxbaRlNRxU5M3T4VgdkcVAk3vEMXlFD6pqfP2QBBzWr2P4eHx47z1FgUQhMtaTzyLJaY5u2jXXWtJEG8kKzWiZUKpFoRXaDEapPDY5FlKjDcgSU_Iup1iiiDkmJ1AfVSM8BaLTEpnRvGCJjbty97pY8sLaWixFEXebEK_EmpmAMO6ILoaZzzRilTlNZE4TWdBEE67XW8ZLeI2_Fh850a8XBqk3obXSXRYO4DSzaZpwUIcpP_t91znsMDfJ4KspLajPJnO8gG2zmA2mk0v_b30Dw_rKWg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDp7E1U022yRHrYpiLWIreFuy2VkpSFfs4_ebpGkpKIK3PSTLMrOZV2a-D-CU0cQ4pKyII6qI2xggUqyeRjmmiXU5OpVmTDYhWi359qae5-B8OguDiL75DC_co7_LLyozdKWyS-Ww1qmch8WUc0bH01pTuyuFpyS1-YXNihIuwh0mjdVl5_Hm1uaCLL5gSijhxtlmvJCnVflhi72DuVv_36dtwFoIJMnVWPObMIe9LVifkDSQcGa3YHUGcXAbrhtVfxC1Xde6s3PENZKW1Ue3Im1PiGO1REZdTW4QP8kLelhV4yuIJCCxvu_A691tp3EfBRqFyFhfPogkpzm6eddca0kTbSQrNKNlQqkWhVZocxil8tjkWEiNNiRLTMnrnGKJIuaY7MJCr-rhHhCdlsiM5gVLbOSVu9fFkhfW2mIpirheg3gi1swEjHFHdfGR-VwjVpnTROY0kQVN1OBsuuVzDLDx1-JtJ_rpwiD1GhxOdJeFI9jPbKImHNhhyvd_33UCy_edp2bWfGg9HsAKc3MNvrZyCAuDryEewZIZDbr9r2P_n30DdNPNoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Sensitive+Portfolio+Selection+via+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhang%2C+Yifan&rft.au=Zhao%2C+Peilin&rft.au=Wu%2C+Qingyao&rft.au=Li%2C+Bin&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=1&rft.spage=236&rft_id=info:doi/10.1109%2FTKDE.2020.2979700&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon