IEACC: An Intelligent Edge-Aided Congestion Control Scheme for Named Data Networking With Deep Reinforcement Learning

As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content distribution, mobility support, etc. However, the research on NDN is still in its infancy, and congestion control, NDN's most important...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE eTransactions on network and service management Ročník 19; číslo 4; s. 4932 - 4947
Hlavní autori: Yang, Jiayu, Chen, Yuxin, Xue, Kaiping, Han, Jiangping, Li, Jian, Wei, David S. L., Sun, Qibin, Lu, Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1932-4537, 1932-4537
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content distribution, mobility support, etc. However, the research on NDN is still in its infancy, and congestion control, NDN's most important functional element, poses many challenges, such as congestion detection, excessive window reduction for non-congested paths, and unfairness. In this paper, we propose an Intelligent Edge-Aided Congestion Control (IEACC) scheme for the NDN network based on Deep Reinforcement Learning (DRL). The proposed IEACC provides a proactive congestion detector that utilizes intermediate routers to transmit accurate congestion information along the path to consumers through data packets. Furthermore, considering the multi-source transmission in NDN, IEACC divides data packets into different congestion degrees by a lightweight clustering algorithm and provides suitable inputs for DRL, thereby obtaining a reasonable transmission rate. Then, it distributes the estimated bandwidth resources to consumers with transmission needs to maintain fairness. Finally, we implement our proposed scheme in the simulation platform and evaluate the performance in different scenarios. The results show that it can improve data transmission rate, reduce packet loss, and maintain fairness compared with others.
AbstractList As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content distribution, mobility support, etc. However, the research on NDN is still in its infancy, and congestion control, NDN's most important functional element, poses many challenges, such as congestion detection, excessive window reduction for non-congested paths, and unfairness. In this paper, we propose an Intelligent Edge-Aided Congestion Control (IEACC) scheme for the NDN network based on Deep Reinforcement Learning (DRL). The proposed IEACC provides a proactive congestion detector that utilizes intermediate routers to transmit accurate congestion information along the path to consumers through data packets. Furthermore, considering the multi-source transmission in NDN, IEACC divides data packets into different congestion degrees by a lightweight clustering algorithm and provides suitable inputs for DRL, thereby obtaining a reasonable transmission rate. Then, it distributes the estimated bandwidth resources to consumers with transmission needs to maintain fairness. Finally, we implement our proposed scheme in the simulation platform and evaluate the performance in different scenarios. The results show that it can improve data transmission rate, reduce packet loss, and maintain fairness compared with others.
Author Yang, Jiayu
Chen, Yuxin
Wei, David S. L.
Sun, Qibin
Xue, Kaiping
Han, Jiangping
Lu, Jun
Li, Jian
Author_xml – sequence: 1
  givenname: Jiayu
  surname: Yang
  fullname: Yang, Jiayu
  organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Yuxin
  surname: Chen
  fullname: Chen, Yuxin
  organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Kaiping
  orcidid: 0000-0003-2095-7523
  surname: Xue
  fullname: Xue, Kaiping
  email: kpxue@ustc.edu.cn
  organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Jiangping
  surname: Han
  fullname: Han, Jiangping
  organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Jian
  orcidid: 0000-0002-6979-4510
  surname: Li
  fullname: Li, Jian
  organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 6
  givenname: David S. L.
  orcidid: 0000-0002-3839-5576
  surname: Wei
  fullname: Wei, David S. L.
  organization: Computer and Information Science Department, Fordham University, Bronx, NY, USA
– sequence: 7
  givenname: Qibin
  surname: Sun
  fullname: Sun, Qibin
  organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 8
  givenname: Jun
  surname: Lu
  fullname: Lu, Jun
  organization: School of Cyber Science and Technology and the Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
BookMark eNp9kE9rGzEQxUVwoY7TD1ByEfS8rv56V72ZtZMaHBdqlx4XrXbWUbKWXK1MyLevFpsSeggMzBx-7w3vXaOR8w4Q-kzJlFKivu4224cpI4xNOVUzLsQVGlPFWSYkz0dv7o_ouu-fCJEFVWyMTqvlvCy_4bnDKxeh6-weXMTLZg_Z3DbQ4NK7PfTRejecMfgOb80jHAC3PuCNPiRmoaPGG4gvPjxbt8e_bXzEC4Aj_gnWJc4kPtmuQQeXgBv0odVdD58ue4J-3S135fds_eN-Vc7XmWGKx6ygIk1tpFS5qttZM9NatkaqQtSqqAUw2fBCEFaLFEbVghkFM2ZqonXT1i2foC9n32Pwf04pRfXkT8GllxXLcyoZzSlNVH6mTPB9H6CtjI16SByDtl1FSTV0XA0dV0PH1aXjpKT_KY_BHnR4fVdze9ZYAPjHq0ISrhT_C4kHiVE
CODEN ITNSC4
CitedBy_id crossref_primary_10_1109_TNSM_2025_3560833
crossref_primary_10_1109_TNSM_2022_3217972
crossref_primary_10_1016_j_jnca_2023_103651
crossref_primary_10_1016_j_jnca_2023_103772
crossref_primary_10_1109_TNSM_2024_3486052
crossref_primary_10_1016_j_jfranklin_2024_107014
crossref_primary_10_3390_electronics13234609
crossref_primary_10_1109_TMC_2025_3543458
crossref_primary_10_1109_TNET_2024_3447467
Cites_doi 10.1109/SURV.2013.070813.00063
10.1145/1400097.1400105
10.17487/rfc3782
10.1109/COMST.2020.3005361
10.1016/j.comnet.2018.08.002
10.1038/nature14236
10.1109/ICC.2013.6655143
10.1109/INFCOMW.2014.6849276
10.1145/2984356.2984369
10.1145/3389400.3389404
10.1109/INFCOMW.2012.6193514
10.1145/2656877.2656887
10.1145/2317307.2317319
10.1109/TNSM.2021.3086437
10.1109/COMST.2015.2420097
10.1109/TNSM.2020.3044037
10.1109/TNSM.2019.2900274
10.1145/2377677.2377772
10.1109/INFCOMW.2013.6970718
10.1109/TDSC.2017.2672991
10.1109/INFCOMW.2012.6193510
10.1109/INFCOMW.2016.7562089
10.1145/1658939.1658941
10.1109/ICCCN.2005.1523908
10.1109/ICCCN.2013.6614106
10.1109/SURV.2012.082212.00018
10.1016/0169-7552(89)90019-6
10.1109/TNET.2016.2614710
10.1109/ICC.2019.8761737
10.1109/TNET.2019.2914189
10.1016/j.future.2020.01.006
10.1145/285237.285291
10.1016/j.comcom.2016.04.017
10.1145/2534169.2491233
10.1016/j.comnet.2016.09.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2022.3196344
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 4947
ExternalDocumentID 10_1109_TNSM_2022_3196344
9850399
Genre orig-research
GrantInformation_xml – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS)
  grantid: Y202093
  funderid: 10.13039/501100004739
– fundername: National Natural Science Foundation of China
  grantid: 61972371; U19B2023
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c293t-814814bc55979bf6d6aa5fc5984b98b4e25d38402b41929b42c9e62cb0aadfbf3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967028100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-4537
IngestDate Mon Jun 30 04:59:35 EDT 2025
Sat Nov 29 03:13:16 EST 2025
Tue Nov 18 22:53:29 EST 2025
Wed Aug 27 02:18:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-814814bc55979bf6d6aa5fc5984b98b4e25d38402b41929b42c9e62cb0aadfbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6979-4510
0000-0003-2095-7523
0000-0002-3839-5576
PQID 2771521711
PQPubID 85504
PageCount 16
ParticipantIDs ieee_primary_9850399
crossref_citationtrail_10_1109_TNSM_2022_3196344
crossref_primary_10_1109_TNSM_2022_3196344
proquest_journals_2771521711
PublicationCentury 2000
PublicationDate 2022-Dec.
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
Fujimoto (ref27)
ref32
ref2
ref17
Salsano (ref28)
ref39
ref16
ref38
ref19
ref18
Lillicrap (ref20) 2015
Silver (ref21)
Mnih (ref26)
ref24
ref23
ref25
ref42
ref41
ref22
ref43
(ref44) 2022
Sutton (ref40)
ref29
ref8
(ref1) 2022
ref7
ref9
ref4
ref3
ref6
ref5
Mastorakis (ref36) 2015
References_xml – ident: ref2
  doi: 10.1109/SURV.2013.070813.00063
– ident: ref38
  doi: 10.1145/1400097.1400105
– ident: ref37
  doi: 10.17487/rfc3782
– start-page: 1587
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref27
  article-title: Addressing function approximation error in actor-critic methods
– ident: ref22
  doi: 10.1109/COMST.2020.3005361
– ident: ref9
  doi: 10.1016/j.comnet.2018.08.002
– ident: ref19
  doi: 10.1038/nature14236
– start-page: 1057
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref40
  article-title: Policy gradient methods for reinforcement learning with function approximation
– ident: ref30
  doi: 10.1109/ICC.2013.6655143
– ident: ref8
  doi: 10.1109/INFCOMW.2014.6849276
– ident: ref15
  doi: 10.1145/2984356.2984369
– ident: ref43
  doi: 10.1145/3389400.3389404
– ident: ref11
  doi: 10.1109/INFCOMW.2012.6193514
– start-page: 1928
  volume-title: Proc. PMLR Int. Conf. Mach. Learn. (ICML)
  ident: ref26
  article-title: Asynchronous methods for deep reinforcement learning
– start-page: 37
  volume-title: Proc. ACM SIGCOMM Workshop Inf. Centric Netw. (ICN)
  ident: ref28
  article-title: Receiver-driven interest control protocol for content-centric networks
– ident: ref3
  doi: 10.1145/2656877.2656887
– year: 2015
  ident: ref20
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv1509.02971
– ident: ref35
  doi: 10.1145/2317307.2317319
– ident: ref14
  doi: 10.1109/TNSM.2021.3086437
– ident: ref18
  doi: 10.1109/COMST.2015.2420097
– volume-title: Pytorch
  year: 2022
  ident: ref44
– ident: ref10
  doi: 10.1109/TNSM.2020.3044037
– ident: ref25
  doi: 10.1109/TNSM.2019.2900274
– year: 2015
  ident: ref36
  article-title: ndnSIM 2.0: A new version of the NDN simulator for NS-3
– ident: ref13
  doi: 10.1145/2377677.2377772
– ident: ref31
  doi: 10.1109/INFCOMW.2013.6970718
– ident: ref23
  doi: 10.1109/TDSC.2017.2672991
– ident: ref7
  doi: 10.1109/INFCOMW.2012.6193510
– ident: ref29
  doi: 10.1109/INFCOMW.2016.7562089
– ident: ref17
  doi: 10.1145/1658939.1658941
– ident: ref39
  doi: 10.1109/ICCCN.2005.1523908
– ident: ref32
  doi: 10.1109/ICCCN.2013.6614106
– ident: ref42
  doi: 10.1109/SURV.2012.082212.00018
– ident: ref41
  doi: 10.1016/0169-7552(89)90019-6
– ident: ref4
  doi: 10.1109/TNET.2016.2614710
– ident: ref16
  doi: 10.1109/ICC.2019.8761737
– ident: ref24
  doi: 10.1109/TNET.2019.2914189
– ident: ref33
  doi: 10.1016/j.future.2020.01.006
– ident: ref5
  doi: 10.1145/285237.285291
– year: 2022
  ident: ref1
  article-title: Mobile Data Traffic Outlook
– ident: ref6
  doi: 10.1016/j.comcom.2016.04.017
– start-page: 387
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref21
  article-title: Deterministic policy gradient algorithms
– ident: ref12
  doi: 10.1145/2534169.2491233
– ident: ref34
  doi: 10.1016/j.comnet.2016.09.012
SSID ssj0058192
Score 2.3307574
Snippet As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4932
SubjectTerms Algorithms
Bandwidth
Clustering
Congestion
congestion control
Consumers
Data transmission
Deep learning
Detectors
fairness
Image edge detection
Internet
Machine learning
Named data networking
Packet loss
Reinforcement learning
Routers
TCP/IP (protocol)
TCPIP
Transmission rate (communications)
Title IEACC: An Intelligent Edge-Aided Congestion Control Scheme for Named Data Networking With Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9850399
https://www.proquest.com/docview/2771521711
Volume 19
WOSCitedRecordID wos000967028100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1932-4537
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058192
  issn: 1932-4537
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWG27bdN4W9YVBS3i-1aaZLIuaFe06-83k3YXRRGEHnJIQumXZubLTL4B2AtMO-Lal551NtASFAy8QgWR5TzC8Fgb5C7l__6CZ1n6-CiupuBgchcGEV3yGR5S08Xy9VCN6KjsSKSxbw3qNExzntR3tca7bkzCXk3UMvDF0W12c2nZXxgeujUWRd_sjiuk8mP3dSbldPF_L7MEC43ryDo11sswheUKzH8RFFyF0Xmv0-0es07JzidamxXr6T56nYFGzbrDkiJKFg1qUpY6u7G4vSCz3ivLCmsc2UlRFSyr88PttOxhUD2xE8RXdo1OaFW5M0XWaLP21-DutHfbPfOawgqesta9omM_-0hFbEJIk-ikKGKjYpFGUqQywjDWbcv8QkkxYiGjUAlMQiX9otBGmvY6zJTDEjeAmVS3JUnyJEZb0EOZcoq3KJMiVzwxLfDHnz1Xjeo4Fb94zh378EVOSOWEVN4g1YL9yZDXWnLjr86rBM2kY4NKC7bH2ObNT_meh5yTt8KDYPP3UVswR3PX2SrbMFO9jXAHZtVHNXh_23Xr7RMc_9RB
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4xNmnbA7CxaR0w_MDTtEDiOnG8t6oUUa1EaHQbb1Fsn1mlLUWQ7vfP56QVEwhpUh78YCdRPsd33935M8BB4vpC2lhH3tlAT1AwiSqTCM95lJOpdShDyf_3iSyK_PJSna_Bp9VeGEQMxWd4SM2Qy7dzs6BQ2ZHK09gb1CfwNBWCx-1ureW6m5K0V5e3TGJ1NC0uzjz_4_wwzDIh_rE84SiVe-tvMConm__3Oluw0TmPbNCi_QrWsH4NL-9ICm7DYjwaDIef2aBm45XaZsNG9gqjwcyiZcN5TTkljwc1qU6dXXjkfiPz_isrKm8e2XHVVKxoK8T9bdmPWfOTHSNes68YpFZNiCqyTp316g18OxlNh6dRd7RCZLx9byjw5y9tiE8o7TKbVVXqTKpyoVWuBfLU9j3345qyxEoLbhRm3Oi4qqzTrv8W1ut5je-Audz2NYnyZM562LnOJWVcjMtRGpm5HsTLz16aTnecjr_4VQb-EauSkCoJqbJDqgcfV0OuW9GNxzpvEzSrjh0qPdhdYlt2v-VtyaUkf0UmyfuHR-3D89Pp2aScjIsvO_CCntPWruzCenOzwD14Zv40s9ubD2Hu_QVNdteI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IEACC%3A+An+Intelligent+Edge-Aided+Congestion+Control+Scheme+for+Named+Data+Networking+With+Deep+Reinforcement+Learning&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Yang%2C+Jiayu&rft.au=Chen%2C+Yuxin&rft.au=Xue%2C+Kaiping&rft.au=Han%2C+Jiangping&rft.date=2022-12-01&rft.issn=1932-4537&rft.eissn=1932-4537&rft.volume=19&rft.issue=4&rft.spage=4932&rft.epage=4947&rft_id=info:doi/10.1109%2FTNSM.2022.3196344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSM_2022_3196344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon