IEACC: An Intelligent Edge-Aided Congestion Control Scheme for Named Data Networking With Deep Reinforcement Learning
As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content distribution, mobility support, etc. However, the research on NDN is still in its infancy, and congestion control, NDN's most important...
Uložené v:
| Vydané v: | IEEE eTransactions on network and service management Ročník 19; číslo 4; s. 4932 - 4947 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1932-4537, 1932-4537 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content distribution, mobility support, etc. However, the research on NDN is still in its infancy, and congestion control, NDN's most important functional element, poses many challenges, such as congestion detection, excessive window reduction for non-congested paths, and unfairness. In this paper, we propose an Intelligent Edge-Aided Congestion Control (IEACC) scheme for the NDN network based on Deep Reinforcement Learning (DRL). The proposed IEACC provides a proactive congestion detector that utilizes intermediate routers to transmit accurate congestion information along the path to consumers through data packets. Furthermore, considering the multi-source transmission in NDN, IEACC divides data packets into different congestion degrees by a lightweight clustering algorithm and provides suitable inputs for DRL, thereby obtaining a reasonable transmission rate. Then, it distributes the estimated bandwidth resources to consumers with transmission needs to maintain fairness. Finally, we implement our proposed scheme in the simulation platform and evaluate the performance in different scenarios. The results show that it can improve data transmission rate, reduce packet loss, and maintain fairness compared with others. |
|---|---|
| AbstractList | As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content distribution, mobility support, etc. However, the research on NDN is still in its infancy, and congestion control, NDN's most important functional element, poses many challenges, such as congestion detection, excessive window reduction for non-congested paths, and unfairness. In this paper, we propose an Intelligent Edge-Aided Congestion Control (IEACC) scheme for the NDN network based on Deep Reinforcement Learning (DRL). The proposed IEACC provides a proactive congestion detector that utilizes intermediate routers to transmit accurate congestion information along the path to consumers through data packets. Furthermore, considering the multi-source transmission in NDN, IEACC divides data packets into different congestion degrees by a lightweight clustering algorithm and provides suitable inputs for DRL, thereby obtaining a reasonable transmission rate. Then, it distributes the estimated bandwidth resources to consumers with transmission needs to maintain fairness. Finally, we implement our proposed scheme in the simulation platform and evaluate the performance in different scenarios. The results show that it can improve data transmission rate, reduce packet loss, and maintain fairness compared with others. |
| Author | Yang, Jiayu Chen, Yuxin Wei, David S. L. Sun, Qibin Xue, Kaiping Han, Jiangping Lu, Jun Li, Jian |
| Author_xml | – sequence: 1 givenname: Jiayu surname: Yang fullname: Yang, Jiayu organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Yuxin surname: Chen fullname: Chen, Yuxin organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Kaiping orcidid: 0000-0003-2095-7523 surname: Xue fullname: Xue, Kaiping email: kpxue@ustc.edu.cn organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Jiangping surname: Han fullname: Han, Jiangping organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 5 givenname: Jian orcidid: 0000-0002-6979-4510 surname: Li fullname: Li, Jian organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 6 givenname: David S. L. orcidid: 0000-0002-3839-5576 surname: Wei fullname: Wei, David S. L. organization: Computer and Information Science Department, Fordham University, Bronx, NY, USA – sequence: 7 givenname: Qibin surname: Sun fullname: Sun, Qibin organization: School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 8 givenname: Jun surname: Lu fullname: Lu, Jun organization: School of Cyber Science and Technology and the Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China |
| BookMark | eNp9kE9rGzEQxUVwoY7TD1ByEfS8rv56V72ZtZMaHBdqlx4XrXbWUbKWXK1MyLevFpsSeggMzBx-7w3vXaOR8w4Q-kzJlFKivu4224cpI4xNOVUzLsQVGlPFWSYkz0dv7o_ouu-fCJEFVWyMTqvlvCy_4bnDKxeh6-weXMTLZg_Z3DbQ4NK7PfTRejecMfgOb80jHAC3PuCNPiRmoaPGG4gvPjxbt8e_bXzEC4Aj_gnWJc4kPtmuQQeXgBv0odVdD58ue4J-3S135fds_eN-Vc7XmWGKx6ygIk1tpFS5qttZM9NatkaqQtSqqAUw2fBCEFaLFEbVghkFM2ZqonXT1i2foC9n32Pwf04pRfXkT8GllxXLcyoZzSlNVH6mTPB9H6CtjI16SByDtl1FSTV0XA0dV0PH1aXjpKT_KY_BHnR4fVdze9ZYAPjHq0ISrhT_C4kHiVE |
| CODEN | ITNSC4 |
| CitedBy_id | crossref_primary_10_1109_TNSM_2025_3560833 crossref_primary_10_1109_TNSM_2022_3217972 crossref_primary_10_1016_j_jnca_2023_103651 crossref_primary_10_1016_j_jnca_2023_103772 crossref_primary_10_1109_TNSM_2024_3486052 crossref_primary_10_1016_j_jfranklin_2024_107014 crossref_primary_10_3390_electronics13234609 crossref_primary_10_1109_TMC_2025_3543458 crossref_primary_10_1109_TNET_2024_3447467 |
| Cites_doi | 10.1109/SURV.2013.070813.00063 10.1145/1400097.1400105 10.17487/rfc3782 10.1109/COMST.2020.3005361 10.1016/j.comnet.2018.08.002 10.1038/nature14236 10.1109/ICC.2013.6655143 10.1109/INFCOMW.2014.6849276 10.1145/2984356.2984369 10.1145/3389400.3389404 10.1109/INFCOMW.2012.6193514 10.1145/2656877.2656887 10.1145/2317307.2317319 10.1109/TNSM.2021.3086437 10.1109/COMST.2015.2420097 10.1109/TNSM.2020.3044037 10.1109/TNSM.2019.2900274 10.1145/2377677.2377772 10.1109/INFCOMW.2013.6970718 10.1109/TDSC.2017.2672991 10.1109/INFCOMW.2012.6193510 10.1109/INFCOMW.2016.7562089 10.1145/1658939.1658941 10.1109/ICCCN.2005.1523908 10.1109/ICCCN.2013.6614106 10.1109/SURV.2012.082212.00018 10.1016/0169-7552(89)90019-6 10.1109/TNET.2016.2614710 10.1109/ICC.2019.8761737 10.1109/TNET.2019.2914189 10.1016/j.future.2020.01.006 10.1145/285237.285291 10.1016/j.comcom.2016.04.017 10.1145/2534169.2491233 10.1016/j.comnet.2016.09.012 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TNSM.2022.3196344 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1932-4537 |
| EndPage | 4947 |
| ExternalDocumentID | 10_1109_TNSM_2022_3196344 9850399 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) grantid: Y202093 funderid: 10.13039/501100004739 – fundername: National Natural Science Foundation of China grantid: 61972371; U19B2023 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c293t-814814bc55979bf6d6aa5fc5984b98b4e25d38402b41929b42c9e62cb0aadfbf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000967028100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-4537 |
| IngestDate | Mon Jun 30 04:59:35 EDT 2025 Sat Nov 29 03:13:16 EST 2025 Tue Nov 18 22:53:29 EST 2025 Wed Aug 27 02:18:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-814814bc55979bf6d6aa5fc5984b98b4e25d38402b41929b42c9e62cb0aadfbf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6979-4510 0000-0003-2095-7523 0000-0002-3839-5576 |
| PQID | 2771521711 |
| PQPubID | 85504 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_9850399 crossref_citationtrail_10_1109_TNSM_2022_3196344 crossref_primary_10_1109_TNSM_2022_3196344 proquest_journals_2771521711 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec. 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE eTransactions on network and service management |
| PublicationTitleAbbrev | T-NSM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 Fujimoto (ref27) ref32 ref2 ref17 Salsano (ref28) ref39 ref16 ref38 ref19 ref18 Lillicrap (ref20) 2015 Silver (ref21) Mnih (ref26) ref24 ref23 ref25 ref42 ref41 ref22 ref43 (ref44) 2022 Sutton (ref40) ref29 ref8 (ref1) 2022 ref7 ref9 ref4 ref3 ref6 ref5 Mastorakis (ref36) 2015 |
| References_xml | – ident: ref2 doi: 10.1109/SURV.2013.070813.00063 – ident: ref38 doi: 10.1145/1400097.1400105 – ident: ref37 doi: 10.17487/rfc3782 – start-page: 1587 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref27 article-title: Addressing function approximation error in actor-critic methods – ident: ref22 doi: 10.1109/COMST.2020.3005361 – ident: ref9 doi: 10.1016/j.comnet.2018.08.002 – ident: ref19 doi: 10.1038/nature14236 – start-page: 1057 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref40 article-title: Policy gradient methods for reinforcement learning with function approximation – ident: ref30 doi: 10.1109/ICC.2013.6655143 – ident: ref8 doi: 10.1109/INFCOMW.2014.6849276 – ident: ref15 doi: 10.1145/2984356.2984369 – ident: ref43 doi: 10.1145/3389400.3389404 – ident: ref11 doi: 10.1109/INFCOMW.2012.6193514 – start-page: 1928 volume-title: Proc. PMLR Int. Conf. Mach. Learn. (ICML) ident: ref26 article-title: Asynchronous methods for deep reinforcement learning – start-page: 37 volume-title: Proc. ACM SIGCOMM Workshop Inf. Centric Netw. (ICN) ident: ref28 article-title: Receiver-driven interest control protocol for content-centric networks – ident: ref3 doi: 10.1145/2656877.2656887 – year: 2015 ident: ref20 article-title: Continuous control with deep reinforcement learning publication-title: arXiv1509.02971 – ident: ref35 doi: 10.1145/2317307.2317319 – ident: ref14 doi: 10.1109/TNSM.2021.3086437 – ident: ref18 doi: 10.1109/COMST.2015.2420097 – volume-title: Pytorch year: 2022 ident: ref44 – ident: ref10 doi: 10.1109/TNSM.2020.3044037 – ident: ref25 doi: 10.1109/TNSM.2019.2900274 – year: 2015 ident: ref36 article-title: ndnSIM 2.0: A new version of the NDN simulator for NS-3 – ident: ref13 doi: 10.1145/2377677.2377772 – ident: ref31 doi: 10.1109/INFCOMW.2013.6970718 – ident: ref23 doi: 10.1109/TDSC.2017.2672991 – ident: ref7 doi: 10.1109/INFCOMW.2012.6193510 – ident: ref29 doi: 10.1109/INFCOMW.2016.7562089 – ident: ref17 doi: 10.1145/1658939.1658941 – ident: ref39 doi: 10.1109/ICCCN.2005.1523908 – ident: ref32 doi: 10.1109/ICCCN.2013.6614106 – ident: ref42 doi: 10.1109/SURV.2012.082212.00018 – ident: ref41 doi: 10.1016/0169-7552(89)90019-6 – ident: ref4 doi: 10.1109/TNET.2016.2614710 – ident: ref16 doi: 10.1109/ICC.2019.8761737 – ident: ref24 doi: 10.1109/TNET.2019.2914189 – ident: ref33 doi: 10.1016/j.future.2020.01.006 – ident: ref5 doi: 10.1145/285237.285291 – year: 2022 ident: ref1 article-title: Mobile Data Traffic Outlook – ident: ref6 doi: 10.1016/j.comcom.2016.04.017 – start-page: 387 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref21 article-title: Deterministic policy gradient algorithms – ident: ref12 doi: 10.1145/2534169.2491233 – ident: ref34 doi: 10.1016/j.comnet.2016.09.012 |
| SSID | ssj0058192 |
| Score | 2.3307574 |
| Snippet | As a promising implementation of Information-Centric Networking (ICN), Named Data Networking (NDN) has potential advantages over the TCP/IP network in content... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4932 |
| SubjectTerms | Algorithms Bandwidth Clustering Congestion congestion control Consumers Data transmission Deep learning Detectors fairness Image edge detection Internet Machine learning Named data networking Packet loss Reinforcement learning Routers TCP/IP (protocol) TCPIP Transmission rate (communications) |
| Title | IEACC: An Intelligent Edge-Aided Congestion Control Scheme for Named Data Networking With Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/9850399 https://www.proquest.com/docview/2771521711 |
| Volume | 19 |
| WOSCitedRecordID | wos000967028100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1932-4537 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0058192 issn: 1932-4537 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWG27bdN4W9YVBS3i-1aaZLIuaFe06-83k3YXRRGEHnJIQumXZubLTL4B2AtMO-Lal551NtASFAy8QgWR5TzC8Fgb5C7l__6CZ1n6-CiupuBgchcGEV3yGR5S08Xy9VCN6KjsSKSxbw3qNExzntR3tca7bkzCXk3UMvDF0W12c2nZXxgeujUWRd_sjiuk8mP3dSbldPF_L7MEC43ryDo11sswheUKzH8RFFyF0Xmv0-0es07JzidamxXr6T56nYFGzbrDkiJKFg1qUpY6u7G4vSCz3ivLCmsc2UlRFSyr88PttOxhUD2xE8RXdo1OaFW5M0XWaLP21-DutHfbPfOawgqesta9omM_-0hFbEJIk-ikKGKjYpFGUqQywjDWbcv8QkkxYiGjUAlMQiX9otBGmvY6zJTDEjeAmVS3JUnyJEZb0EOZcoq3KJMiVzwxLfDHnz1Xjeo4Fb94zh378EVOSOWEVN4g1YL9yZDXWnLjr86rBM2kY4NKC7bH2ObNT_meh5yTt8KDYPP3UVswR3PX2SrbMFO9jXAHZtVHNXh_23Xr7RMc_9RB |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4xNmnbA7CxaR0w_MDTtEDiOnG8t6oUUa1EaHQbb1Fsn1mlLUWQ7vfP56QVEwhpUh78YCdRPsd33935M8BB4vpC2lhH3tlAT1AwiSqTCM95lJOpdShDyf_3iSyK_PJSna_Bp9VeGEQMxWd4SM2Qy7dzs6BQ2ZHK09gb1CfwNBWCx-1ureW6m5K0V5e3TGJ1NC0uzjz_4_wwzDIh_rE84SiVe-tvMConm__3Oluw0TmPbNCi_QrWsH4NL-9ICm7DYjwaDIef2aBm45XaZsNG9gqjwcyiZcN5TTkljwc1qU6dXXjkfiPz_isrKm8e2XHVVKxoK8T9bdmPWfOTHSNes68YpFZNiCqyTp316g18OxlNh6dRd7RCZLx9byjw5y9tiE8o7TKbVVXqTKpyoVWuBfLU9j3345qyxEoLbhRm3Oi4qqzTrv8W1ut5je-Audz2NYnyZM562LnOJWVcjMtRGpm5HsTLz16aTnecjr_4VQb-EauSkCoJqbJDqgcfV0OuW9GNxzpvEzSrjh0qPdhdYlt2v-VtyaUkf0UmyfuHR-3D89Pp2aScjIsvO_CCntPWruzCenOzwD14Zv40s9ubD2Hu_QVNdteI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IEACC%3A+An+Intelligent+Edge-Aided+Congestion+Control+Scheme+for+Named+Data+Networking+With+Deep+Reinforcement+Learning&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Yang%2C+Jiayu&rft.au=Chen%2C+Yuxin&rft.au=Xue%2C+Kaiping&rft.au=Han%2C+Jiangping&rft.date=2022-12-01&rft.issn=1932-4537&rft.eissn=1932-4537&rft.volume=19&rft.issue=4&rft.spage=4932&rft.epage=4947&rft_id=info:doi/10.1109%2FTNSM.2022.3196344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSM_2022_3196344 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon |