Robust Coordinated Reinforcement Learning for MAC Design in Sensor Networks

In this paper, we propose a medium access control (MAC) design method for wireless sensor networks based on decentralized coordinated reinforcement learning. Our solution maps the MAC resource allocation problem first to a factor graph, and then, based on the dependencies between sensors, transforms...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 37; no. 10; pp. 2211 - 2224
Main Authors: Nisioti, Eleni, Thomos, Nikolaos
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a medium access control (MAC) design method for wireless sensor networks based on decentralized coordinated reinforcement learning. Our solution maps the MAC resource allocation problem first to a factor graph, and then, based on the dependencies between sensors, transforms it into a coordination graph, on which the max-sum algorithm is employed to find the optimal transmission actions for sensors. We have theoretically analyzed the system and determined the convergence guarantees for decentralized coordinated learning in sensor networks. As part of this analysis, we derive a novel sufficient condition for the convergence of max-sum on graphs with cycles and employ it to render the learning process robust. In addition, we reduce the complexity of applying max-sum to our optimization problem by expressing coordination as a multiple knapsack problem (MKP). The complexity of the proposed solution can be, thus, bounded by the capacities of the MKP. Our simulations reveal the benefits coming from adaptivity and sensors' coordination, both inherent in the proposed learning-based MAC.
AbstractList In this paper, we propose a medium access control (MAC) design method for wireless sensor networks based on decentralized coordinated reinforcement learning. Our solution maps the MAC resource allocation problem first to a factor graph, and then, based on the dependencies between sensors, transforms it into a coordination graph, on which the max-sum algorithm is employed to find the optimal transmission actions for sensors. We have theoretically analyzed the system and determined the convergence guarantees for decentralized coordinated learning in sensor networks. As part of this analysis, we derive a novel sufficient condition for the convergence of max-sum on graphs with cycles and employ it to render the learning process robust. In addition, we reduce the complexity of applying max-sum to our optimization problem by expressing coordination as a multiple knapsack problem (MKP). The complexity of the proposed solution can be, thus, bounded by the capacities of the MKP. Our simulations reveal the benefits coming from adaptivity and sensors' coordination, both inherent in the proposed learning-based MAC.
Author Thomos, Nikolaos
Nisioti, Eleni
Author_xml – sequence: 1
  givenname: Eleni
  orcidid: 0000-0001-7170-7108
  surname: Nisioti
  fullname: Nisioti, Eleni
  email: e.nisioti@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K
– sequence: 2
  givenname: Nikolaos
  orcidid: 0000-0001-7266-2642
  surname: Thomos
  fullname: Thomos, Nikolaos
  email: nthomos@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K
BookMark eNp9kE1LAzEQhoNUsK3-APGy4HlrJtnuJseyflsVWj0v2c1sSW2TmqSI_94tLR48eBp4mWfe4RmQnnUWCTkHOgKg8upxPilHjIIcMcm5EMUR6cN4LFJKqeiRPi04T0UB-QkZhLCkFLJMsD55mrl6G2JSOue1sSqiTmZobOt8g2u0MZmi8tbYRdJFyfOkTK4xmIVNjE3maEMXvmD8cv4jnJLjVq0Cnh3mkLzf3ryV9-n09e6hnEzTpvstpgXWQrGWMUStaygkw7GiNRcZz3QDBUjMudItF4A8p20j6jxrQTaa6YyxnA_J5f7uxrvPLYZYLd3W266yYkwyKYDDbgv2W413IXhsq403a-W_K6DVzlm1c1btnFUHZx1T_GEaE1U0zkavzOpf8mJPGkT8bRKF5ACS_wBBwnsI
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3211653
crossref_primary_10_1109_JIOT_2020_3025365
crossref_primary_10_1109_JIOT_2021_3132006
crossref_primary_10_3390_e25010101
crossref_primary_10_1109_TMM_2021_3052339
crossref_primary_10_1007_s00521_022_07515_8
crossref_primary_10_1109_TNSE_2022_3201121
crossref_primary_10_1016_j_comnet_2024_110631
crossref_primary_10_1038_s41598_023_48956_y
crossref_primary_10_3390_s21237925
crossref_primary_10_4018_IJSIR_287549
crossref_primary_10_1016_j_comnet_2020_107646
Cites_doi 10.1109/PIMRC.2018.8580848
10.1109/TCOMM.2010.120710.100054
10.1109/TWC.2007.348337
10.1109/IPSN.2005.1440895
10.1162/089976600300015880
10.1007/11780519_1
10.3233/AIC-2010-0476
10.1109/TIT.2007.909166
10.1145/1015330.1015410
10.1016/S0004-3702(98)00023-X
10.1007/BF00992698
10.1561/2200000001
10.1002/9780470316870
10.1109/TCOM.1983.1095828
10.1109/18.910585
10.1287/mnsc.5.1.97
10.1007/BF01580430
10.1145/1478462.1478502
10.1016/j.artint.2010.11.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2019.2933887
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 2224
ExternalDocumentID 10_1109_JSAC_2019_2933887
8793119
Genre orig-research
GrantInformation_xml – fundername: European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Research and Innovation Staff Exchange Grant through the project RECENT
  grantid: 823903
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c293t-7eb8a2f22eeddb1792e5a0b38434dc1719e63adf381e360fc8b64f19cd2d42263
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487055400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Mon Jun 30 10:17:59 EDT 2025
Sat Nov 29 03:23:01 EST 2025
Tue Nov 18 21:25:27 EST 2025
Wed Aug 27 02:42:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7eb8a2f22eeddb1792e5a0b38434dc1719e63adf381e360fc8b64f19cd2d42263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7170-7108
0000-0001-7266-2642
PQID 2292981316
PQPubID 85481
PageCount 14
ParticipantIDs proquest_journals_2292981316
ieee_primary_8793119
crossref_primary_10_1109_JSAC_2019_2933887
crossref_citationtrail_10_1109_JSAC_2019_2933887
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref30
murphy (ref20) 1999
ref10
ref2
claus (ref6) 1998
ref19
ref18
guestrin (ref8) 2002
jordan (ref29) 2007; 1
bernardo (ref28) 1994
ref24
ref26
guestrin (ref5) 2002
ref25
ref22
ref21
martello (ref11) 1990
naparstek (ref16) 2017
zhang (ref7) 2011
ref27
kok (ref23) 2006; 7
toni (ref15) 2018
ref9
ref4
ref3
sun (ref1) 2018
challita (ref17) 2017
References_xml – year: 1990
  ident: ref11
  publication-title: Knapsack Problems Algorithms and Computer Implementations
– ident: ref4
  doi: 10.1109/PIMRC.2018.8580848
– start-page: 467
  year: 1999
  ident: ref20
  article-title: Loopy belief propagation for approximate inference: An empirical study
  publication-title: Proc 15th Conf Uncertainty Artif Intell
– ident: ref3
  doi: 10.1109/TCOMM.2010.120710.100054
– start-page: 1523
  year: 2002
  ident: ref5
  article-title: Multiagent planning with factored MDPs
  publication-title: Advances in Neural Information Processing Systems 14
– ident: ref14
  doi: 10.1109/TWC.2007.348337
– ident: ref10
  doi: 10.1109/IPSN.2005.1440895
– year: 2017
  ident: ref16
  article-title: Deep multi-user reinforcement learning for distributed dynamic spectrum access
  publication-title: arXiv 1704 02613
– year: 2018
  ident: ref1
  article-title: Application of machine learning in wireless networks: Key techniques and open issues
  publication-title: arXiv 1809 08707
– ident: ref22
  doi: 10.1162/089976600300015880
– year: 2017
  ident: ref17
  article-title: Proactive resource management in LTE-U systems: A deep learning perspective
  publication-title: arXiv 1702 07031
– start-page: 1
  year: 2011
  ident: ref7
  article-title: Coordinated multi-agent reinforcement learning in networked distributed POMDPs
  publication-title: Proc 25th Conf Artif Intell (AAAI)
– ident: ref19
  doi: 10.1007/11780519_1
– ident: ref9
  doi: 10.3233/AIC-2010-0476
– start-page: 1
  year: 1998
  ident: ref6
  article-title: The dynamics of reinforcement learning in cooperative multiagent systems
  publication-title: Proc AAAI
– ident: ref12
  doi: 10.1109/TIT.2007.909166
– start-page: 227
  year: 2002
  ident: ref8
  article-title: Coordinated reinforcement learning
  publication-title: Proc ICML
– ident: ref18
  doi: 10.1145/1015330.1015410
– ident: ref25
  doi: 10.1016/S0004-3702(98)00023-X
– volume: 7
  start-page: 1789
  year: 2006
  ident: ref23
  article-title: Collaborative multiagent reinforcement learning by payoff propagation
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1007/BF00992698
– year: 2018
  ident: ref15
  article-title: IRSA transmission optimization via online learning
  publication-title: arXiv 1801 09060
– volume: 1
  start-page: 1
  year: 2007
  ident: ref29
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000001
– year: 1994
  ident: ref28
  publication-title: Bayesian Theory
  doi: 10.1002/9780470316870
– ident: ref13
  doi: 10.1109/TCOM.1983.1095828
– ident: ref24
  doi: 10.1109/18.910585
– ident: ref27
  doi: 10.1287/mnsc.5.1.97
– ident: ref30
  doi: 10.1007/BF01580430
– ident: ref2
  doi: 10.1145/1478462.1478502
– ident: ref21
  doi: 10.1016/j.artint.2010.11.001
SSID ssj0014482
Score 2.3915107
Snippet In this paper, we propose a medium access control (MAC) design method for wireless sensor networks based on decentralized coordinated reinforcement learning....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2211
SubjectTerms Access control
Algorithms
Complexity
Complexity theory
Computer simulation
Convergence
Coordination
coordination graphs
irregular repetition slotted ALOHA
Knapsack problem
Machine learning
max-sum algorithm
Media Access Protocol
Medium access control
Optimization
POMDP
Q-learning
Reinforcement learning
Remote sensors
Resource allocation
Resource management
Sensors
Throughput
Wireless sensor networks
Title Robust Coordinated Reinforcement Learning for MAC Design in Sensor Networks
URI https://ieeexplore.ieee.org/document/8793119
https://www.proquest.com/docview/2292981316
Volume 37
WOSCitedRecordID wos000487055400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9z-KAPfk1xOiUPPomdTdKl7eOYDlEcsinsrTTpVQbSytr593tJuzJQBN9KSPpxSXr3y939jpArP8alq5nnDESIACWMpaNi8Bw3SKWIuTZclLbYhD-ZBPN5-NIiN00uDADY4DPom0vry09yvTJHZbcBLiZmOD63fF9WuVqNxwBhhvUY-EI4BgTUHkx81u3jbDgyQVxhH3WbsNFzGzrIFlX58Se26mW8_78XOyB7tRlJh9W8H5IWZEdkd4NcsEOeprlaFSUd5YgvFxnalAmdgiVK1fZMkNbcqu8Um-jzcETvbDgHXWR0hugWGydVkHhxTN7G96-jB6cuneBo_MbS8UEFMU85RxWYKNx0HAaxq0TgCS_RzGch4FQkKeprENJNdaCkl7JQJzwxubXihLSzPINTQqXkwFXigjZYkrlqoEDyIE1TQ9cFrEvctTAjXfOKm_IWH5HFF24YGflHRv5RLf8uuW6GfFakGn917hiBNx1rWXdJbz1jUb3tiohztPYCJpg8-33UOdkx966i8XqkXS5XcEG29Ve5KJaXdkV9A10Mx1A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFNQHv6Y4nZoHn8RuTdL143FMx3RziFPwrTTpVQbSidv8-72kdQwUwbcSEtJekt79cne_A7gIEtq6mntOW0YEUKLEd1SCnuOGmS8ToQ0XpS02EYxG4ctL9FCBq2UuDCLa4DNsmkfry0-nemGuylohbSZuOD7X2p4n3CJba-kzIKBhfQaBlI6BAaUPk2Zr3Y07XRPGFTVJu0kbP7eihWxZlR__Yqtgejv_e7Vd2C4NSdYpVn4PKpjvw9YKvWANBo9TtZjNWXdKCHOSk1WZske0VKna3gqykl31lVETu-902bUN6GCTnI0J31LjqAgTnx3Ac-_mqdt3yuIJjqZvnDsBqjARmRCkBFNFx05gO3GVDD3ppZoHPEJajDQjjY3SdzMdKt_LeKRTkZrsWnkI1Xya4xEw3xcoVOqiNmiSu6qt0BdhlmWGsAt5HdxvYca6ZBY3BS7eYosw3Cg28o-N_ONS_nW4XA55L2g1_upcMwJfdixlXYfG94rF5cGbxUKQvRdyyf3j30edw0b_6X4YD29HgxPYNPMUsXkNqM4_FngK6_pzPpl9nNnd9QXmPsqX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Coordinated+Reinforcement+Learning+for+MAC+Design+in+Sensor+Networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Nisioti%2C+Eleni&rft.au=Thomos%2C+Nikolaos&rft.date=2019-10-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=37&rft.issue=10&rft.spage=2211&rft.epage=2224&rft_id=info:doi/10.1109%2FJSAC.2019.2933887&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2019_2933887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon