Deep Neural Network Enhanced Sampling-Based Path Planning in 3D Space
Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path planning problems in 3D space, but the quality of the initial path is not guaranteed and the convergence to the optimal solution is slow. To add...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 19; číslo 4; s. 3434 - 3443 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path planning problems in 3D space, but the quality of the initial path is not guaranteed and the convergence to the optimal solution is slow. To address these problems, in this article, we present a novel sampling-based path planning framework enhanced by the deep neural network (DNN) with applications to 3D space. In the proposed framework, we first train the DNN with a number of successful path planning cases in 3D space. Then the DNN is utilized to predict the promising region where the feasible path probably exists for a given path planning problem. This predicted promising region serves as a nonuniform sampling heuristic to bias the sampling process of the path planner. In this way, the path planner can focus on the promising region in the exploration and exploitation process so that the path planning speed gets accelerated. We conduct numerical simulations to evaluate the performance of the proposed algorithm and the results show that it can perform much better than conventional path planning algorithms. Furthermore, we also investigate the performance of different DNN architectures for path planning in 3D space. Note to Practitioners-In this work, we aim to provide an efficient learning-based method to accelerate the robot path planning process in 3D space. Conventional path planning algorithms need to perceive the environment first, and then implement a series of calculations such as collision checking and data storing to generate a feasible path. When facing complex and high-dimensional environments, they do not perform well. But the proposed neural network method in this article can predict the promising region where the feasible path exists for any given environment. This prediction result is used to guide the path planning process so that the algorithm performance can get significantly improved. Apart from sampling-based algorithms, the proposed neural network model can also be extended to other types of path planning algorithms. |
|---|---|
| AbstractList | Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path planning problems in 3D space, but the quality of the initial path is not guaranteed and the convergence to the optimal solution is slow. To address these problems, in this article, we present a novel sampling-based path planning framework enhanced by the deep neural network (DNN) with applications to 3D space. In the proposed framework, we first train the DNN with a number of successful path planning cases in 3D space. Then the DNN is utilized to predict the promising region where the feasible path probably exists for a given path planning problem. This predicted promising region serves as a nonuniform sampling heuristic to bias the sampling process of the path planner. In this way, the path planner can focus on the promising region in the exploration and exploitation process so that the path planning speed gets accelerated. We conduct numerical simulations to evaluate the performance of the proposed algorithm and the results show that it can perform much better than conventional path planning algorithms. Furthermore, we also investigate the performance of different DNN architectures for path planning in 3D space. Note to Practitioners-In this work, we aim to provide an efficient learning-based method to accelerate the robot path planning process in 3D space. Conventional path planning algorithms need to perceive the environment first, and then implement a series of calculations such as collision checking and data storing to generate a feasible path. When facing complex and high-dimensional environments, they do not perform well. But the proposed neural network method in this article can predict the promising region where the feasible path exists for any given environment. This prediction result is used to guide the path planning process so that the algorithm performance can get significantly improved. Apart from sampling-based algorithms, the proposed neural network model can also be extended to other types of path planning algorithms. |
| Author | Zhang, Tianyi Wang, Jiankun Jia, Xiao Ma, Nachuan Meng, Max Q.-H. |
| Author_xml | – sequence: 1 givenname: Jiankun orcidid: 0000-0001-9139-0291 surname: Wang fullname: Wang, Jiankun email: wangjk@sustech.edu.cn organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Xiao surname: Jia fullname: Jia, Xiao email: jiaxiao@stanford.edu organization: Department of Radiation Oncology, Stanford University, Stanford, CA, USA – sequence: 3 givenname: Tianyi surname: Zhang fullname: Zhang, Tianyi email: zhangty@mail.sustech.edu.cn organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Nachuan orcidid: 0000-0002-7107-6577 surname: Ma fullname: Ma, Nachuan email: manc@mail.sustech.edu.cn organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 5 givenname: Max Q.-H. orcidid: 0000-0002-5255-5898 surname: Meng fullname: Meng, Max Q.-H. email: max.meng@ieee.org organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNp9kEtPwkAUhScGEwH9AcZNE9fFeXSYzhKhPhKiJOB6cpneSrFM67SN8d_bBuLChav7yDn33HwjMnClQ0KuGZ0wRvXdZrZOJpxyNhGMs4jGZ2TIpIxDoWIx6PtIhlJLeUFGdb2nlEexpkOSLBCr4AVbD0VXmq_SfwSJ24GzmAZrOFRF7t7De6i7cQXNLlgV4Fy3C3IXiEWwrsDiJTnPoKjx6lTH5O0h2cyfwuXr4_N8tgwt16IJFYCaCgsZZVZnNN0CZhZolgpBVYTAVKq3MTKdUjq1DNOUbaF7UwJHQB2JMbk93q18-dli3Zh92XrXRRqueKQE51PaqdhRZX1Z1x4zU_n8AP7bMGp6WqanZXpa5kSr86g_Hps30OSlazzkxb_Om6MzR8TfJC11zOJI_AA6THiN |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127349 crossref_primary_10_1109_TASE_2023_3297176 crossref_primary_10_1109_JAS_2023_124041 crossref_primary_10_1109_TASE_2025_3570694 crossref_primary_10_1016_j_engappai_2024_109866 crossref_primary_10_1109_TASE_2024_3398996 crossref_primary_10_3390_jmse13071318 crossref_primary_10_1007_s40430_025_05636_4 crossref_primary_10_3390_s24041193 crossref_primary_10_1016_j_neucom_2024_128422 crossref_primary_10_1109_TASE_2024_3368696 crossref_primary_10_1109_TASE_2025_3531504 crossref_primary_10_1109_TRO_2025_3539193 crossref_primary_10_1016_j_eswa_2023_121303 crossref_primary_10_3390_s24072157 crossref_primary_10_1007_s10015_023_00915_6 crossref_primary_10_1007_s10845_024_02541_w crossref_primary_10_1016_j_ijepes_2025_110468 crossref_primary_10_1109_ACCESS_2024_3457957 crossref_primary_10_1126_scirobotics_ads4551 crossref_primary_10_1109_TIE_2024_3426106 crossref_primary_10_1007_s12555_024_0250_4 crossref_primary_10_1016_j_oceaneng_2024_119928 |
| Cites_doi | 10.1007/978-3-319-32552-1 10.1109/ICRA40945.2020.9196833 10.1109/TSSC.1968.300136 10.1007/bf01386390 10.1109/TIE.2019.2962425 10.1109/ICRA.2018.8460730 10.1177/02783640122067453 10.1109/IROS45743.2020.9341668 10.1109/TASE.2020.2976560 10.1177/0278364919890408 10.1109/ROBOT.2007.363166 10.1016/j.robot.2018.06.013 10.3103/S014641162101003X 10.1109/IROS.2018.8593947 10.1109/IROS.2018.8594028 10.1007/978-3-030-66723-8_5 10.1109/IROS.2014.6942976 10.1109/ICRA.2016.7487413 10.1007/978-1-4615-6325-9_11 10.1109/TASE.2020.2987397 10.1177/0278364911406761 10.1109/ICNN.1994.374662 10.1177/0278364914547786 10.1109/ROBOT.2009.5152874 10.1109/70.508439 10.1609/aaai.v32i1.12106 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2016.278 10.1177/027836498600500106 10.1007/978-3-540-68405-3_1 10.1109/ICCAS.2015.7364594 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2021.3121408 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 3443 |
| ExternalDocumentID | 10_1109_TASE_2021_3121408 9598184 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Southern University of Science and Technology, Shenzhen, China funderid: 10.13039/501100012449 – fundername: Shenzhen Key Laboratory of Robotics Perception and Intelligence grantid: ZDSYS20200810171800001 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-7aa763caf01c9f0dbaefca0fd33074ea17d9b8e19d006c1edd1ba8905a2eae943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732093700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Jun 29 16:08:34 EDT 2025 Sat Nov 29 04:12:47 EST 2025 Tue Nov 18 21:53:44 EST 2025 Wed Aug 27 02:29:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-7aa763caf01c9f0dbaefca0fd33074ea17d9b8e19d006c1edd1ba8905a2eae943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7107-6577 0000-0001-9139-0291 0000-0002-5255-5898 |
| PQID | 2724732260 |
| PQPubID | 27623 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2724732260 ieee_primary_9598184 crossref_primary_10_1109_TASE_2021_3121408 crossref_citationtrail_10_1109_TASE_2021_3121408 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Goodfellow (ref22) 2014 Mirza (ref32) 2014 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Kingma (ref34) 2014 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.1007/978-3-319-32552-1 – ident: ref25 doi: 10.1109/ICRA40945.2020.9196833 – ident: ref3 doi: 10.1109/TSSC.1968.300136 – ident: ref2 doi: 10.1007/bf01386390 – ident: ref15 doi: 10.1109/TIE.2019.2962425 – ident: ref21 doi: 10.1109/ICRA.2018.8460730 – ident: ref6 doi: 10.1177/02783640122067453 – ident: ref29 doi: 10.1109/IROS45743.2020.9341668 – ident: ref30 doi: 10.1109/TASE.2020.2976560 – ident: ref19 doi: 10.1177/0278364919890408 – ident: ref18 doi: 10.1109/ROBOT.2007.363166 – volume-title: arXiv:1411.1784 year: 2014 ident: ref32 article-title: Conditional generative adversarial nets – ident: ref13 doi: 10.1016/j.robot.2018.06.013 – ident: ref28 doi: 10.3103/S014641162101003X – volume-title: arXiv:1412.6980 year: 2014 ident: ref34 article-title: Adam: A method for stochastic optimization – ident: ref24 doi: 10.1109/IROS.2018.8593947 – ident: ref20 doi: 10.1109/IROS.2018.8594028 – ident: ref26 doi: 10.1007/978-3-030-66723-8_5 – ident: ref16 doi: 10.1109/IROS.2014.6942976 – ident: ref9 doi: 10.1109/ICRA.2016.7487413 – ident: ref4 doi: 10.1007/978-1-4615-6325-9_11 – ident: ref11 doi: 10.1109/TASE.2020.2987397 – ident: ref8 doi: 10.1177/0278364911406761 – ident: ref27 doi: 10.1109/ICNN.1994.374662 – ident: ref12 doi: 10.1177/0278364914547786 – ident: ref14 doi: 10.1109/ROBOT.2009.5152874 – ident: ref7 doi: 10.1109/70.508439 – ident: ref23 doi: 10.1609/aaai.v32i1.12106 – ident: ref31 doi: 10.1007/978-3-319-24574-4_28 – volume-title: arXiv:1406.2661 year: 2014 ident: ref22 article-title: Generative adversarial networks – ident: ref33 doi: 10.1109/CVPR.2016.278 – ident: ref5 doi: 10.1177/027836498600500106 – ident: ref17 doi: 10.1007/978-3-540-68405-3_1 – ident: ref10 doi: 10.1109/ICCAS.2015.7364594 |
| SSID | ssj0024890 |
| Score | 2.4739735 |
| Snippet | Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3434 |
| SubjectTerms | Algorithms Artificial neural networks Collision avoidance Collision dynamics Deep learning deep neural network Machine learning Mathematical models Neural networks Path planning Performance evaluation Planning Prediction algorithms Robot path planning Robots Sampling sampling-based algorithm Space robots Three-dimensional displays |
| Title | Deep Neural Network Enhanced Sampling-Based Path Planning in 3D Space |
| URI | https://ieeexplore.ieee.org/document/9598184 https://www.proquest.com/docview/2724732260 |
| Volume | 19 |
| WOSCitedRecordID | wos000732093700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGP-CxIMefKERRdODJ2OlHR1bjygQD4aQgIbb0rXflMQMwsO_37YM1GhMvO3wNWl-3fd-AVwprmNhwpBmmBoquFY0lmFKrWZOM9ZMM-Fjus-PUa8Xj0ayX4KbTS8MIvriM7x1nz6XbyZ66UJldRlKq1_EFmxFUXPVq_U5Vy_28RRnEdBQhmGRweRM1oetQcd6ggG3DmpgHYr4mw7yS1V-SGKvXrr7_7vYAewVZiRprd79EEqYH8Hul-GCFei0EafEDd-whL1VtTfp5K8-5U8GypWS5y_0zqoxQ_rWECTrBUZknJNGmwysO43H8NTtDO8faLE0gWqruRc0UsqKDK0yxrXMmEkVZlqxzDQsNwtUPDIyjZFLY_lNczSGp8piF6oAFUrROIFyPsnxFEgUC6mNYVzFSmSBltIoa-AJybDJFBNVYGsYE11MFHeLLd4S71kwmTjkE4d8UiBfhevNkelqnMZfxBUH9YawQLkKtfVbJQXDzZMgCkRkhVOTnf1-6hx2Ate54OvwalBezJZ4Adv6fTGezy79v_QB3IbFoQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH64gXpwF-uagycxNpkmnclRbUWxFqFVehsyyRstyFS0-vtN0mlVFMHbHF4gfJm3bwCHmptEWClpjpmlghtNEyUz6jRzlrN6losQ071vxe120uup2yk4nvTCIGIoPsMT_xly-XZg3nyorKqkcvpFTMOsFCJio26tz8l6SYioeJuASiVlmcPkTFW7p52m8wUj7lzUyLkUyTctFNaq_JDFQcFcLP_vaiuwVBqS5HT08qswhcUaLH4ZL7gOzQbiM_HjNxxhe1TvTZrFY0j6k472xeTFAz1zisySW2cKkvEKI9IvSK1BOs6hxg24u2h2zy9puTaBGqe7hzTW2gkNo3PGjcqZzTTmRrPc1hw_C9Q8tipLkCvrOM5wtJZn2mEndYQalahtwkwxKHALSJwIZaxlXCda5JFRympn4gnFsM40ExVgYxhTU84U96stntLgWzCVeuRTj3xaIl-Bo8mR59FAjb-I1z3UE8IS5Qrsjt8qLVnuNY3iSMROPNXZ9u-nDmD-snvTSltX7esdWIh8H0OoytuFmeHLG-7BnHkf9l9f9sN_9QFRpcjo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+Enhanced+Sampling-Based+Path+Planning+in+3D+Space&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wang%2C+Jiankun&rft.au=Jia%2C+Xiao&rft.au=Zhang%2C+Tianyi&rft.au=Ma%2C+Nachuan&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=19&rft.issue=4&rft.spage=3434&rft.epage=3443&rft_id=info:doi/10.1109%2FTASE.2021.3121408&rft.externalDocID=9598184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |