Deep Neural Network Enhanced Sampling-Based Path Planning in 3D Space

Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path planning problems in 3D space, but the quality of the initial path is not guaranteed and the convergence to the optimal solution is slow. To add...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automation science and engineering Ročník 19; číslo 4; s. 3434 - 3443
Hlavní autoři: Wang, Jiankun, Jia, Xiao, Zhang, Tianyi, Ma, Nachuan, Meng, Max Q.-H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-5955, 1558-3783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path planning problems in 3D space, but the quality of the initial path is not guaranteed and the convergence to the optimal solution is slow. To address these problems, in this article, we present a novel sampling-based path planning framework enhanced by the deep neural network (DNN) with applications to 3D space. In the proposed framework, we first train the DNN with a number of successful path planning cases in 3D space. Then the DNN is utilized to predict the promising region where the feasible path probably exists for a given path planning problem. This predicted promising region serves as a nonuniform sampling heuristic to bias the sampling process of the path planner. In this way, the path planner can focus on the promising region in the exploration and exploitation process so that the path planning speed gets accelerated. We conduct numerical simulations to evaluate the performance of the proposed algorithm and the results show that it can perform much better than conventional path planning algorithms. Furthermore, we also investigate the performance of different DNN architectures for path planning in 3D space. Note to Practitioners-In this work, we aim to provide an efficient learning-based method to accelerate the robot path planning process in 3D space. Conventional path planning algorithms need to perceive the environment first, and then implement a series of calculations such as collision checking and data storing to generate a feasible path. When facing complex and high-dimensional environments, they do not perform well. But the proposed neural network method in this article can predict the promising region where the feasible path exists for any given environment. This prediction result is used to guide the path planning process so that the algorithm performance can get significantly improved. Apart from sampling-based algorithms, the proposed neural network model can also be extended to other types of path planning algorithms.
AbstractList Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path planning problems in 3D space, but the quality of the initial path is not guaranteed and the convergence to the optimal solution is slow. To address these problems, in this article, we present a novel sampling-based path planning framework enhanced by the deep neural network (DNN) with applications to 3D space. In the proposed framework, we first train the DNN with a number of successful path planning cases in 3D space. Then the DNN is utilized to predict the promising region where the feasible path probably exists for a given path planning problem. This predicted promising region serves as a nonuniform sampling heuristic to bias the sampling process of the path planner. In this way, the path planner can focus on the promising region in the exploration and exploitation process so that the path planning speed gets accelerated. We conduct numerical simulations to evaluate the performance of the proposed algorithm and the results show that it can perform much better than conventional path planning algorithms. Furthermore, we also investigate the performance of different DNN architectures for path planning in 3D space. Note to Practitioners-In this work, we aim to provide an efficient learning-based method to accelerate the robot path planning process in 3D space. Conventional path planning algorithms need to perceive the environment first, and then implement a series of calculations such as collision checking and data storing to generate a feasible path. When facing complex and high-dimensional environments, they do not perform well. But the proposed neural network method in this article can predict the promising region where the feasible path exists for any given environment. This prediction result is used to guide the path planning process so that the algorithm performance can get significantly improved. Apart from sampling-based algorithms, the proposed neural network model can also be extended to other types of path planning algorithms.
Author Zhang, Tianyi
Wang, Jiankun
Jia, Xiao
Ma, Nachuan
Meng, Max Q.-H.
Author_xml – sequence: 1
  givenname: Jiankun
  orcidid: 0000-0001-9139-0291
  surname: Wang
  fullname: Wang, Jiankun
  email: wangjk@sustech.edu.cn
  organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Xiao
  surname: Jia
  fullname: Jia, Xiao
  email: jiaxiao@stanford.edu
  organization: Department of Radiation Oncology, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: Tianyi
  surname: Zhang
  fullname: Zhang, Tianyi
  email: zhangty@mail.sustech.edu.cn
  organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Nachuan
  orcidid: 0000-0002-7107-6577
  surname: Ma
  fullname: Ma, Nachuan
  email: manc@mail.sustech.edu.cn
  organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 5
  givenname: Max Q.-H.
  orcidid: 0000-0002-5255-5898
  surname: Meng
  fullname: Meng, Max Q.-H.
  email: max.meng@ieee.org
  organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kEtPwkAUhScGEwH9AcZNE9fFeXSYzhKhPhKiJOB6cpneSrFM67SN8d_bBuLChav7yDn33HwjMnClQ0KuGZ0wRvXdZrZOJpxyNhGMs4jGZ2TIpIxDoWIx6PtIhlJLeUFGdb2nlEexpkOSLBCr4AVbD0VXmq_SfwSJ24GzmAZrOFRF7t7De6i7cQXNLlgV4Fy3C3IXiEWwrsDiJTnPoKjx6lTH5O0h2cyfwuXr4_N8tgwt16IJFYCaCgsZZVZnNN0CZhZolgpBVYTAVKq3MTKdUjq1DNOUbaF7UwJHQB2JMbk93q18-dli3Zh92XrXRRqueKQE51PaqdhRZX1Z1x4zU_n8AP7bMGp6WqanZXpa5kSr86g_Hps30OSlazzkxb_Om6MzR8TfJC11zOJI_AA6THiN
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127349
crossref_primary_10_1109_TASE_2023_3297176
crossref_primary_10_1109_JAS_2023_124041
crossref_primary_10_1109_TASE_2025_3570694
crossref_primary_10_1016_j_engappai_2024_109866
crossref_primary_10_1109_TASE_2024_3398996
crossref_primary_10_3390_jmse13071318
crossref_primary_10_1007_s40430_025_05636_4
crossref_primary_10_3390_s24041193
crossref_primary_10_1016_j_neucom_2024_128422
crossref_primary_10_1109_TASE_2024_3368696
crossref_primary_10_1109_TASE_2025_3531504
crossref_primary_10_1109_TRO_2025_3539193
crossref_primary_10_1016_j_eswa_2023_121303
crossref_primary_10_3390_s24072157
crossref_primary_10_1007_s10015_023_00915_6
crossref_primary_10_1007_s10845_024_02541_w
crossref_primary_10_1016_j_ijepes_2025_110468
crossref_primary_10_1109_ACCESS_2024_3457957
crossref_primary_10_1126_scirobotics_ads4551
crossref_primary_10_1109_TIE_2024_3426106
crossref_primary_10_1007_s12555_024_0250_4
crossref_primary_10_1016_j_oceaneng_2024_119928
Cites_doi 10.1007/978-3-319-32552-1
10.1109/ICRA40945.2020.9196833
10.1109/TSSC.1968.300136
10.1007/bf01386390
10.1109/TIE.2019.2962425
10.1109/ICRA.2018.8460730
10.1177/02783640122067453
10.1109/IROS45743.2020.9341668
10.1109/TASE.2020.2976560
10.1177/0278364919890408
10.1109/ROBOT.2007.363166
10.1016/j.robot.2018.06.013
10.3103/S014641162101003X
10.1109/IROS.2018.8593947
10.1109/IROS.2018.8594028
10.1007/978-3-030-66723-8_5
10.1109/IROS.2014.6942976
10.1109/ICRA.2016.7487413
10.1007/978-1-4615-6325-9_11
10.1109/TASE.2020.2987397
10.1177/0278364911406761
10.1109/ICNN.1994.374662
10.1177/0278364914547786
10.1109/ROBOT.2009.5152874
10.1109/70.508439
10.1609/aaai.v32i1.12106
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2016.278
10.1177/027836498600500106
10.1007/978-3-540-68405-3_1
10.1109/ICCAS.2015.7364594
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2021.3121408
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 3443
ExternalDocumentID 10_1109_TASE_2021_3121408
9598184
Genre orig-research
GrantInformation_xml – fundername: Southern University of Science and Technology, Shenzhen, China
  funderid: 10.13039/501100012449
– fundername: Shenzhen Key Laboratory of Robotics Perception and Intelligence
  grantid: ZDSYS20200810171800001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-7aa763caf01c9f0dbaefca0fd33074ea17d9b8e19d006c1edd1ba8905a2eae943
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732093700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Jun 29 16:08:34 EDT 2025
Sat Nov 29 04:12:47 EST 2025
Tue Nov 18 21:53:44 EST 2025
Wed Aug 27 02:29:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7aa763caf01c9f0dbaefca0fd33074ea17d9b8e19d006c1edd1ba8905a2eae943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7107-6577
0000-0001-9139-0291
0000-0002-5255-5898
PQID 2724732260
PQPubID 27623
PageCount 10
ParticipantIDs proquest_journals_2724732260
ieee_primary_9598184
crossref_primary_10_1109_TASE_2021_3121408
crossref_citationtrail_10_1109_TASE_2021_3121408
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Goodfellow (ref22) 2014
Mirza (ref32) 2014
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Kingma (ref34) 2014
ref6
ref5
References_xml – ident: ref1
  doi: 10.1007/978-3-319-32552-1
– ident: ref25
  doi: 10.1109/ICRA40945.2020.9196833
– ident: ref3
  doi: 10.1109/TSSC.1968.300136
– ident: ref2
  doi: 10.1007/bf01386390
– ident: ref15
  doi: 10.1109/TIE.2019.2962425
– ident: ref21
  doi: 10.1109/ICRA.2018.8460730
– ident: ref6
  doi: 10.1177/02783640122067453
– ident: ref29
  doi: 10.1109/IROS45743.2020.9341668
– ident: ref30
  doi: 10.1109/TASE.2020.2976560
– ident: ref19
  doi: 10.1177/0278364919890408
– ident: ref18
  doi: 10.1109/ROBOT.2007.363166
– volume-title: arXiv:1411.1784
  year: 2014
  ident: ref32
  article-title: Conditional generative adversarial nets
– ident: ref13
  doi: 10.1016/j.robot.2018.06.013
– ident: ref28
  doi: 10.3103/S014641162101003X
– volume-title: arXiv:1412.6980
  year: 2014
  ident: ref34
  article-title: Adam: A method for stochastic optimization
– ident: ref24
  doi: 10.1109/IROS.2018.8593947
– ident: ref20
  doi: 10.1109/IROS.2018.8594028
– ident: ref26
  doi: 10.1007/978-3-030-66723-8_5
– ident: ref16
  doi: 10.1109/IROS.2014.6942976
– ident: ref9
  doi: 10.1109/ICRA.2016.7487413
– ident: ref4
  doi: 10.1007/978-1-4615-6325-9_11
– ident: ref11
  doi: 10.1109/TASE.2020.2987397
– ident: ref8
  doi: 10.1177/0278364911406761
– ident: ref27
  doi: 10.1109/ICNN.1994.374662
– ident: ref12
  doi: 10.1177/0278364914547786
– ident: ref14
  doi: 10.1109/ROBOT.2009.5152874
– ident: ref7
  doi: 10.1109/70.508439
– ident: ref23
  doi: 10.1609/aaai.v32i1.12106
– ident: ref31
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: arXiv:1406.2661
  year: 2014
  ident: ref22
  article-title: Generative adversarial networks
– ident: ref33
  doi: 10.1109/CVPR.2016.278
– ident: ref5
  doi: 10.1177/027836498600500106
– ident: ref17
  doi: 10.1007/978-3-540-68405-3_1
– ident: ref10
  doi: 10.1109/ICCAS.2015.7364594
SSID ssj0024890
Score 2.4739735
Snippet Robot path planning in 3D space is a challenging problem for its complex configuration. Sampling-based algorithms have gained great success in solving path...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3434
SubjectTerms Algorithms
Artificial neural networks
Collision avoidance
Collision dynamics
Deep learning
deep neural network
Machine learning
Mathematical models
Neural networks
Path planning
Performance evaluation
Planning
Prediction algorithms
Robot path planning
Robots
Sampling
sampling-based algorithm
Space robots
Three-dimensional displays
Title Deep Neural Network Enhanced Sampling-Based Path Planning in 3D Space
URI https://ieeexplore.ieee.org/document/9598184
https://www.proquest.com/docview/2724732260
Volume 19
WOSCitedRecordID wos000732093700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwGP-CxIMefKERRdODJ2OlHR1bjygQD4aQgIbb0rXflMQMwsO_37YM1GhMvO3wNWl-3fd-AVwprmNhwpBmmBoquFY0lmFKrWZOM9ZMM-Fjus-PUa8Xj0ayX4KbTS8MIvriM7x1nz6XbyZ66UJldRlKq1_EFmxFUXPVq_U5Vy_28RRnEdBQhmGRweRM1oetQcd6ggG3DmpgHYr4mw7yS1V-SGKvXrr7_7vYAewVZiRprd79EEqYH8Hul-GCFei0EafEDd-whL1VtTfp5K8-5U8GypWS5y_0zqoxQ_rWECTrBUZknJNGmwysO43H8NTtDO8faLE0gWqruRc0UsqKDK0yxrXMmEkVZlqxzDQsNwtUPDIyjZFLY_lNczSGp8piF6oAFUrROIFyPsnxFEgUC6mNYVzFSmSBltIoa-AJybDJFBNVYGsYE11MFHeLLd4S71kwmTjkE4d8UiBfhevNkelqnMZfxBUH9YawQLkKtfVbJQXDzZMgCkRkhVOTnf1-6hx2Ate54OvwalBezJZ4Adv6fTGezy79v_QB3IbFoQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH64gXpwF-uagycxNpkmnclRbUWxFqFVehsyyRstyFS0-vtN0mlVFMHbHF4gfJm3bwCHmptEWClpjpmlghtNEyUz6jRzlrN6losQ071vxe120uup2yk4nvTCIGIoPsMT_xly-XZg3nyorKqkcvpFTMOsFCJio26tz8l6SYioeJuASiVlmcPkTFW7p52m8wUj7lzUyLkUyTctFNaq_JDFQcFcLP_vaiuwVBqS5HT08qswhcUaLH4ZL7gOzQbiM_HjNxxhe1TvTZrFY0j6k472xeTFAz1zisySW2cKkvEKI9IvSK1BOs6hxg24u2h2zy9puTaBGqe7hzTW2gkNo3PGjcqZzTTmRrPc1hw_C9Q8tipLkCvrOM5wtJZn2mEndYQalahtwkwxKHALSJwIZaxlXCda5JFRympn4gnFsM40ExVgYxhTU84U96stntLgWzCVeuRTj3xaIl-Bo8mR59FAjb-I1z3UE8IS5Qrsjt8qLVnuNY3iSMROPNXZ9u-nDmD-snvTSltX7esdWIh8H0OoytuFmeHLG-7BnHkf9l9f9sN_9QFRpcjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+Enhanced+Sampling-Based+Path+Planning+in+3D+Space&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wang%2C+Jiankun&rft.au=Jia%2C+Xiao&rft.au=Zhang%2C+Tianyi&rft.au=Ma%2C+Nachuan&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=19&rft.issue=4&rft.spage=3434&rft.epage=3443&rft_id=info:doi/10.1109%2FTASE.2021.3121408&rft.externalDocID=9598184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon